organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3265-o3266

(20S,2′′S)-20-[4′-(3′′-Hy­droxy-2′′-methyl­prop­yl)-3′-methylisoxazol-5-yl]-5β-preg­nan-3β,16β-diol

aEscuela de Ingeniería Química, Universidad del Istmo, Ciudad Universitaria s/n, 70760 Sto. Domingo Tehuantepec, Oax., Mexico, bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, 72000 Puebla, Pue., Mexico, and cDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, N.L., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 4 November 2009; accepted 24 November 2009; online 28 November 2009)

The title steroidal compound, C29H47NO4, was prepared in a one-pot reaction starting from a sarsasapogenin derivative of known configuration. The isoxazole heterocycle is oriented towards the α face of the steroid nucleus and, although fully functionalized on C atoms, does not provoke steric hindrance with the adjacent D ring. The absolute configuration observed for chiral centers is as expected, and shows that no epimerization occurred in the precursors. In the crystal, the three OH groups serve as donors for hydrogen bonding with O and N atoms. The isoxazole N atom is involved in O—H⋯N hydrogen bonds, forming chains along [100]. These chains are further connected via O—H⋯O and weak C—H⋯O contacts, giving rise to a three-dimensional supra­molecular network.

Related literature

For a general introduction to steroids functionalized with heterocycles, see: Banday et al. (2008[Banday, A. H., Singh, S., Alam, M. S., Reddy, D. M., Gupta, B. D. & Kumar, H. M. S. (2008). Steroids, 73, 370-374.]); Pathak & Jindal (1998[Pathak, D. & Jindal, D. P. (1998). Asian J. Chem. 10, 813-817.]); Litvinovskaya et al. (1998[Litvinovskaya, R. P., Drach, S. V. & Khripach, V. A. (1998). Russ. J. Org. Chem. 34, 647-654.]); Beam et al. (2000[Beam, C. F., Schady, D. A., Rose, K. L., Kelley, W. Jr, Rakkhit, R., Hornsby, C. D. & Studer-Martinez, S. L. (2000). Synth. Commun. 30, 3391-3404.]). For the biological activity of danazol, a steroid sharing structural features with the title compound, see: Gupta et al. (1999[Gupta, R., Pathak, D. & Jindal, D. P. (1999). Eur. J. Med. Chem. 34, 659-662.]). For 23-acetylsarsasapogenin, used as starting material, see: Meza-Reyes et al. (2005[Meza-Reyes, S., Sandoval-Ramírez, J., Montiel-Smith, S., Hernández-Linares, G., Vinãs-Bravo, O., Martínez-Pascual, R., Fernández-Herrera, M. A., Vega-Báez, J. L., Merino-Montiel, P., Santillán, R. L., et al. (2005). Arkivoc, vi, 307-320.]).

[Scheme 1]

Experimental

Crystal data
  • C29H47NO4

  • Mr = 473.68

  • Monoclinic, P 21

  • a = 6.5540 (8) Å

  • b = 30.131 (4) Å

  • c = 7.1971 (10) Å

  • β = 98.500 (13)°

  • V = 1405.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.6 × 0.2 × 0.2 mm

Data collection
  • Bruker P4 diffractometer

  • 8425 measured reflections

  • 2534 independent reflections

  • 2003 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.07

  • 2534 reflections

  • 322 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O32—H32⋯O33i 0.82 (5) 1.93 (5) 2.746 (3) 170 (5)
O33—H33⋯N24ii 0.85 (4) 2.03 (4) 2.828 (3) 157 (4)
O34—H34⋯O32iii 0.90 (6) 1.89 (6) 2.775 (4) 166 (5)
O33—H33⋯O23ii 0.85 (4) 2.69 (4) 3.536 (3) 171 (4)
C18—H18C⋯O23ii 0.96 2.46 3.362 (4) 157
C28—H28C⋯O34iv 0.97 2.60 3.471 (4) 150
Symmetry codes: (i) x, y, z-1; (ii) x+1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z]; (iv) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is a continuous interest for new synthetic routes affording steroids functionalized with heteroatoms and heterocycles, since these groups modify the biological activity of related molecules (Banday et al., 2008; Pathak & Jindal, 1998). For example, the synthesis of suitable precursors for steroids analogs to brassinosteroids has been reported (Litvinovskaya et al., 1998). Functionalization with an isoxazol heterocycle has been limited to date to few examples, where the heterocycle is fused with the A ring of the steroid. An example of a molecule belonging to this family is danazol (Gupta et al., 1999), a derivative of ethisterone, which has numerous medicinal applications.

In relation with this general goal, we have developed several reagents for the direct one-step functionalization of steroids on remote positions. The title compound was synthesized readily starting from 23-acetylsarsasapogenin (Meza-Reyes et al., 2005) in a one-pot reaction carried out in dry media (see Experimental). This new route improves known procedures, which make necessary the isolation of an oxime intermediate, prior to the heterocyclization in acid conditions (Beam et al., 2000). Full details about the involved chemistry and mechanistic aspects of this unprecedented reaction will be reported elsewhere. It was however essential to X-ray characterize the product, in order to determine if any epimerization occurred during the cleavage of rings E and F.

The title molecule displays the expected cis-fused A/B ring system, characteristic of sarsasapogenin derivatives (Fig. 1). Rings A,B and C have the expected chair conformation, while the 5-membered ring D is twisted on C13—C14. The spiroketal E/F system was cleaved during the reaction, affording a C21-pregnane nucleus substituted at C20 by an isoxazol heterocycle. Positions for O and N atoms in the heterocycle were unambiguously determined from X-ray data, and are consistent with the positions for double bonds, C22=C26 and C25=N24. The isoxazol ring is oriented towards the α face, and its plane approximately bisects the mean plane of the A···D steroidal nucleus. This conformation avoids any hindrance with the methyl group, C21, and OH group at C16. The observed absolute configuration indicates that the E/F rings cleavage occurred without epimerization, despite use of the strongly acidic medium used for the reaction. C20 is retained as S, and the chiral C atom C29 in the lateral chain has the S configuration.

In the crystal, molecules are associated via O—H···N hydrogen bonds involving the isoxalic N atom as an acceptor, forming chains running along the [100] direction (Fig. 2). The hydroxyl groups at O32 and O34, form O—H···O contacts between chains. The resulting three-dimensional supramolecular network also includes weak C—H···O hydrogen bond interactions involving the O23 and O24 atoms as acceptors.

Related literature top

For a general introduction to steroids functionalized with heterocycles, see: Banday et al. (2008); Pathak & Jindal (1998); Litvinovskaya et al. (1998); Beam et al. (2000). For the biological activity of danazol, a steroid sharing structural features with the title compound, see: Gupta et al. (1999). For 23-acetylsarsasapogenin used as starting material, see: Meza-Reyes et al. (2005).

Experimental top

A mixture of 23-acetylsarsasapogenin (2 mmol), hydroxylamine hydrochloride (4 mmol) and a previously prepared P2O5/SiO2 reagent (1 g) were grounded thoroughly in a mortar. An immediate color change was observed. The mortar was covered with a watch glass and put inside a microwave device (2450 MHz, 1200 W). The mixture was irradiated for 3 min, allowing the reaction to complete (TLC). The mixture was then cooled to room temperature, and 10 ml of 5% aqueous HCl was added. The resulting solution was extracted with CH2Cl2 (2×10 ml) and dried over CaCl2. Evaporation of solvent under reduced pressure gave the pure title compound, in 81% yield. Anal. found (calc. for C29H47NO4): C 73.52 (75.53), H 9.98 (9.99), N 2.95 (2.95%). Single crystals were obtained by slow evaporation of an acetone solution.

Refinement top

H atoms for hydroxyl groups, H32, H33 and H34, were found in a difference map and refined freely. C-bonded H atoms were placed in idealized positions and refined using a riding approximation, with C—H bond lengths fixed to 0.96 (methyl), 0.97 (methylene) or 0.98 Å (methine). Methyl groups were allowed to rotate about their C—C bonds. Isotropic displacement parameters for H atoms were computed from displacement of carrier atoms: Uiso(H) = 1.5Ueq(carrier atom) for methyl and hydroxyl groups, and Uiso(H) = 1.2Ueq(carrier C) for other H atoms.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids for non-H atoms shown at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram for (I) viewed down the c axis. Dashed lines indicate O—H···O and O—H···N intermolecular hydrogen bonds. Weak C—H···O intermolecular interactions have been omitted for clarity.
(20S,2''S)-20-[4'-(3''-Hydroxy-2''-methylpropyl)-3'- methylisoxazol-5-yl]-5β-pregnan-3β,16β-diol top
Crystal data top
C29H47NO4F(000) = 520
Mr = 473.68Dx = 1.119 Mg m3
Monoclinic, P21Melting point: 500 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.5540 (8) ÅCell parameters from 64 reflections
b = 30.131 (4) Åθ = 3.7–11.9°
c = 7.1971 (10) ŵ = 0.07 mm1
β = 98.500 (13)°T = 296 K
V = 1405.6 (3) Å3Needle, colorless
Z = 20.6 × 0.2 × 0.2 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.030
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.7°
Graphite monochromatorh = 77
ω scansk = 3535
8425 measured reflectionsl = 88
2534 independent reflections3 standard reflections every 97 reflections
2003 reflections with I > 2σ(I) intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.041P)2 + 0.1586P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2534 reflectionsΔρmax = 0.13 e Å3
322 parametersΔρmin = 0.12 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.026 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C29H47NO4V = 1405.6 (3) Å3
Mr = 473.68Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.5540 (8) ŵ = 0.07 mm1
b = 30.131 (4) ÅT = 296 K
c = 7.1971 (10) Å0.6 × 0.2 × 0.2 mm
β = 98.500 (13)°
Data collection top
Bruker P4
diffractometer
Rint = 0.030
8425 measured reflections3 standard reflections every 97 reflections
2534 independent reflections intensity decay: <1%
2003 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.13 e Å3
2534 reflectionsΔρmin = 0.12 e Å3
322 parameters
Special details top

Experimental. Colourless crystals, m.p. 227-228°C (acetone); [α]D -106.4° (c 1.0, EtOH); IR ν max (cm-1): 3386, 3355, 3321, 2933, 2821, 1629. 1H-NMR δ: 4.12 (1H, s, H-3), 3.97 (1H, m, H-16), 3.51 and 3.47 (2H, ABX system, J3'',2'' = 6 Hz, Jgem = 11 Hz, H-3''), 3.30 (1H, dc, J20,17 = 9 Hz and J20,21 = 7 Hz, H-20), 2.47 and 2.16 (2H, dd, J1 = J2 = 8 Hz, H-1''), 2.22 (3H, s, CH3-3'), 1.28 (3H, d, J21,20 = 7 Hz, CH3-21), 0.98 (3H, s, CH3-19), 0.95 (3H, d, J = 6 Hz, CH3-2''), 0.93 (3H, s, CH3-18). 13C-NMR, δ: 10.7 (CH3-3'), 13.2 (C-18), 17.0 (C-21), 19.4 (CH3-2''), 20.9 (C-11), 24.0 (C-19), 26.1 (C-1''), 26.2 (C-7), 26.6 (C-1), 27.8 (C-12), 29.0 (C-20), 29.9 (C-2), 33.5 (C-15), 35.2 (C-6), 35.2 (C-8), 36.1 (C-9), 36.4 (C-13), 36.5 (C-5), 39.8 (C-2''), 40.4 (C-4), 42.6 (C-10), 53.9 (C-14), 58.8 (C-17), 67.0 (C-3), 67.5 (C-3''), 72.5 (C-16), 109.9 (C-5'), 159.7 (C-3', C=N), 173.0 (C-4').

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6068 (5)0.66437 (9)0.3655 (4)0.0550 (8)
H1B0.71080.68740.36890.066*
H1C0.54380.66080.23570.066*
C20.4435 (5)0.67967 (10)0.4788 (5)0.0647 (9)
H2A0.33220.65810.46690.078*
H2B0.38680.70770.42930.078*
C30.5310 (6)0.68522 (11)0.6842 (5)0.0726 (9)
H3A0.41850.69220.75510.087*
C40.6348 (6)0.64271 (11)0.7600 (5)0.0747 (10)
H4A0.53050.61990.76160.090*
H4B0.69910.64760.88870.090*
C50.7976 (5)0.62606 (10)0.6460 (4)0.0622 (8)
H5A0.90720.64840.65650.075*
C60.8957 (7)0.58263 (12)0.7296 (5)0.0806 (11)
H6B1.01920.57650.67450.097*
H6C0.93640.58640.86380.097*
C70.7507 (7)0.54323 (11)0.6954 (5)0.0737 (10)
H7A0.63480.54770.76290.088*
H7B0.82270.51660.74430.088*
C80.6706 (5)0.53673 (9)0.4874 (4)0.0524 (7)
H8A0.78840.53030.42210.063*
C90.5657 (5)0.57996 (9)0.4041 (4)0.0467 (6)
H9D0.45310.58610.47600.056*
C100.7136 (4)0.62065 (9)0.4332 (4)0.0504 (7)
C110.4650 (5)0.57340 (9)0.1993 (4)0.0531 (7)
H11B0.38370.59950.15930.064*
H11C0.57290.57110.12100.064*
C120.3259 (5)0.53243 (9)0.1663 (4)0.0534 (7)
H12A0.28000.52900.03270.064*
H12B0.20490.53680.22720.064*
C130.4376 (4)0.48992 (8)0.2428 (4)0.0448 (6)
C140.5181 (5)0.49856 (9)0.4517 (4)0.0519 (7)
H14C0.39780.50710.50980.062*
C150.5816 (6)0.45203 (10)0.5279 (4)0.0640 (9)
H15C0.71320.44330.49310.077*
H15D0.59070.45100.66350.077*
C160.4078 (5)0.42238 (9)0.4337 (4)0.0531 (7)
H16B0.30740.41960.52130.064*
C170.2987 (4)0.44850 (9)0.2579 (4)0.0476 (7)
H17C0.16900.45970.29230.057*
C180.6125 (5)0.47874 (10)0.1303 (4)0.0528 (7)
H18A0.71160.50240.14320.079*
H18B0.55670.47510.00010.079*
H18C0.67840.45170.17720.079*
C190.8950 (5)0.61529 (13)0.3227 (6)0.0778 (10)
H19B0.84340.61230.19130.117*
H19C0.97250.58930.36550.117*
H19D0.98270.64090.34200.117*
C200.2387 (5)0.41917 (9)0.0833 (4)0.0504 (7)
H20B0.36540.40670.04780.061*
C210.1250 (5)0.44472 (10)0.0881 (5)0.0631 (8)
H21C0.07560.42410.18610.095*
H21D0.21840.46530.13310.095*
H21E0.01050.46060.05150.095*
C220.1037 (4)0.38157 (9)0.1246 (4)0.0499 (7)
O230.0587 (3)0.39290 (7)0.2120 (4)0.0703 (7)
N240.1752 (4)0.35417 (10)0.2322 (4)0.0703 (8)
C250.0791 (5)0.32195 (10)0.1605 (4)0.0538 (7)
C260.1011 (4)0.33757 (9)0.0881 (4)0.0445 (6)
C270.1567 (5)0.27556 (11)0.1658 (5)0.0661 (9)
H27D0.27180.27480.23400.099*
H27E0.04870.25680.22680.099*
H27F0.19940.26520.03990.099*
C280.2554 (4)0.31208 (9)0.0033 (4)0.0474 (6)
H28C0.24990.28120.03340.057*
H28D0.39220.32310.04460.057*
C290.2250 (5)0.31457 (10)0.2173 (4)0.0554 (7)
H29C0.21550.34590.25450.067*
C300.0285 (6)0.2913 (2)0.3036 (6)0.123 (2)
H30B0.01670.29250.43810.185*
H30C0.08820.30590.26410.185*
H30D0.03250.26090.26330.185*
C310.4103 (5)0.29436 (10)0.2882 (4)0.0624 (8)
H31C0.53250.31070.23510.075*
H31D0.42660.26410.24290.075*
O320.3985 (5)0.29406 (8)0.4864 (3)0.0788 (8)
H320.411 (8)0.3187 (17)0.533 (7)0.118*
O330.4750 (3)0.37840 (6)0.3970 (3)0.0570 (6)
H330.584 (6)0.3790 (14)0.345 (5)0.086*
O340.6814 (5)0.71965 (8)0.7127 (4)0.0898 (9)
H340.633 (9)0.743 (2)0.640 (8)0.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0655 (19)0.0375 (15)0.0597 (18)0.0086 (14)0.0013 (15)0.0075 (13)
C20.0618 (19)0.0362 (16)0.093 (3)0.0006 (14)0.0010 (18)0.0017 (16)
C30.095 (3)0.0424 (17)0.083 (2)0.0033 (18)0.023 (2)0.0076 (16)
C40.121 (3)0.0451 (18)0.058 (2)0.007 (2)0.011 (2)0.0015 (15)
C50.079 (2)0.0448 (17)0.0573 (19)0.0017 (15)0.0073 (16)0.0000 (14)
C60.103 (3)0.059 (2)0.069 (2)0.020 (2)0.025 (2)0.0043 (16)
C70.113 (3)0.0437 (17)0.0565 (19)0.0123 (18)0.0130 (19)0.0027 (15)
C80.0696 (18)0.0367 (14)0.0490 (15)0.0109 (14)0.0029 (14)0.0027 (12)
C90.0567 (16)0.0361 (14)0.0479 (15)0.0046 (12)0.0099 (13)0.0014 (11)
C100.0530 (16)0.0428 (16)0.0547 (17)0.0034 (13)0.0049 (13)0.0003 (13)
C110.0653 (18)0.0342 (14)0.0564 (17)0.0034 (13)0.0019 (14)0.0071 (12)
C120.0599 (17)0.0362 (14)0.0618 (18)0.0071 (14)0.0009 (14)0.0048 (13)
C130.0552 (16)0.0327 (14)0.0479 (15)0.0084 (12)0.0124 (13)0.0024 (11)
C140.0733 (19)0.0364 (14)0.0471 (16)0.0132 (13)0.0124 (14)0.0045 (12)
C150.103 (3)0.0400 (16)0.0488 (16)0.0108 (17)0.0088 (17)0.0070 (13)
C160.075 (2)0.0361 (15)0.0540 (16)0.0108 (14)0.0284 (15)0.0070 (13)
C170.0568 (16)0.0341 (14)0.0555 (16)0.0111 (12)0.0205 (13)0.0027 (12)
C180.0611 (17)0.0425 (15)0.0582 (17)0.0037 (14)0.0198 (14)0.0022 (13)
C190.064 (2)0.083 (3)0.090 (3)0.009 (2)0.0209 (19)0.003 (2)
C200.0600 (17)0.0341 (14)0.0601 (17)0.0051 (13)0.0185 (14)0.0018 (13)
C210.079 (2)0.0459 (17)0.0633 (19)0.0029 (16)0.0076 (16)0.0018 (14)
C220.0503 (16)0.0408 (15)0.0615 (17)0.0074 (13)0.0175 (13)0.0019 (13)
O230.0679 (14)0.0463 (12)0.1057 (18)0.0066 (11)0.0431 (13)0.0007 (11)
N240.0619 (16)0.0570 (16)0.099 (2)0.0012 (14)0.0343 (15)0.0019 (15)
C250.0506 (16)0.0491 (17)0.0618 (18)0.0001 (13)0.0082 (13)0.0058 (14)
C260.0462 (15)0.0391 (14)0.0484 (15)0.0026 (12)0.0076 (12)0.0026 (12)
C270.0631 (19)0.0566 (19)0.077 (2)0.0153 (16)0.0056 (16)0.0095 (16)
C280.0504 (15)0.0388 (14)0.0523 (16)0.0052 (12)0.0055 (12)0.0025 (12)
C290.0638 (18)0.0488 (16)0.0545 (17)0.0065 (14)0.0117 (14)0.0048 (13)
C300.077 (2)0.224 (7)0.065 (2)0.029 (3)0.000 (2)0.032 (3)
C310.087 (2)0.0444 (17)0.0610 (19)0.0047 (16)0.0275 (16)0.0000 (15)
O320.139 (2)0.0432 (12)0.0641 (14)0.0046 (14)0.0467 (14)0.0002 (11)
O330.0660 (13)0.0314 (10)0.0785 (14)0.0066 (9)0.0266 (11)0.0099 (10)
O340.128 (2)0.0423 (13)0.0880 (19)0.0053 (14)0.0196 (17)0.0085 (12)
Geometric parameters (Å, º) top
C1—C21.511 (5)C16—O331.433 (3)
C1—C101.537 (4)C16—C171.569 (4)
C1—H1B0.9700C16—H16B0.9800
C1—H1C0.9700C17—C201.539 (4)
C2—C31.514 (5)C17—H17C0.9800
C2—H2A0.9700C18—H18A0.9600
C2—H2B0.9700C18—H18B0.9600
C3—O341.425 (4)C18—H18C0.9600
C3—C41.514 (5)C19—H19B0.9600
C3—H3A0.9800C19—H19C0.9600
C4—C51.524 (5)C19—H19D0.9600
C4—H4A0.9700C20—C221.494 (4)
C4—H4B0.9700C20—C211.549 (4)
C5—C61.540 (5)C20—H20B0.9800
C5—C101.558 (4)C21—H21C0.9600
C5—H5A0.9800C21—H21D0.9600
C6—C71.518 (5)C21—H21E0.9600
C6—H6B0.9700C22—C261.351 (4)
C6—H6C0.9700C22—O231.358 (3)
C7—C81.524 (4)O23—N241.414 (3)
C7—H7A0.9700N24—C251.304 (4)
C7—H7B0.9700C25—C261.438 (4)
C8—C141.521 (4)C25—C271.490 (4)
C8—C91.551 (4)C26—C281.497 (4)
C8—H8A0.9800C27—H27D0.9600
C9—C111.536 (4)C27—H27E0.9600
C9—C101.558 (4)C27—H27F0.9600
C9—H9D0.9800C28—C291.525 (4)
C10—C191.534 (4)C28—H28C0.9700
C11—C121.532 (4)C28—H28D0.9700
C11—H11B0.9700C29—C311.513 (4)
C11—H11C0.9700C29—C301.517 (5)
C12—C131.536 (4)C29—H29C0.9800
C12—H12A0.9700C30—H30B0.9600
C12—H12B0.9700C30—H30C0.9600
C13—C181.535 (4)C30—H30D0.9600
C13—C141.540 (4)C31—O321.417 (4)
C13—C171.558 (4)C31—H31C0.9700
C14—C151.540 (4)C31—H31D0.9700
C14—H14C0.9800O32—H320.82 (5)
C15—C161.525 (5)O33—H330.85 (4)
C15—H15C0.9700O34—H340.90 (6)
C15—H15D0.9700
C2—C1—C10114.6 (3)C16—C15—H15C111.1
C2—C1—H1B108.6C14—C15—H15C111.1
C10—C1—H1B108.6C16—C15—H15D111.1
C2—C1—H1C108.6C14—C15—H15D111.1
C10—C1—H1C108.6H15C—C15—H15D109.1
H1B—C1—H1C107.6O33—C16—C15113.2 (3)
C1—C2—C3111.4 (3)O33—C16—C17115.5 (2)
C1—C2—H2A109.4C15—C16—C17106.6 (2)
C3—C2—H2A109.4O33—C16—H16B107.0
C1—C2—H2B109.4C15—C16—H16B107.0
C3—C2—H2B109.4C17—C16—H16B107.0
H2A—C2—H2B108.0C20—C17—C13119.0 (2)
O34—C3—C2112.0 (3)C20—C17—C16113.6 (2)
O34—C3—C4107.5 (3)C13—C17—C16104.9 (2)
C2—C3—C4110.1 (3)C20—C17—H17C106.2
O34—C3—H3A109.1C13—C17—H17C106.2
C2—C3—H3A109.1C16—C17—H17C106.2
C4—C3—H3A109.1C13—C18—H18A109.5
C3—C4—C5113.4 (3)C13—C18—H18B109.5
C3—C4—H4A108.9H18A—C18—H18B109.5
C5—C4—H4A108.9C13—C18—H18C109.5
C3—C4—H4B108.9H18A—C18—H18C109.5
C5—C4—H4B108.9H18B—C18—H18C109.5
H4A—C4—H4B107.7C10—C19—H19B109.5
C4—C5—C6110.8 (3)C10—C19—H19C109.5
C4—C5—C10112.9 (3)H19B—C19—H19C109.5
C6—C5—C10111.2 (3)C10—C19—H19D109.5
C4—C5—H5A107.2H19B—C19—H19D109.5
C6—C5—H5A107.2H19C—C19—H19D109.5
C10—C5—H5A107.2C22—C20—C17111.1 (2)
C7—C6—C5112.7 (3)C22—C20—C21107.8 (2)
C7—C6—H6B109.1C17—C20—C21113.6 (2)
C5—C6—H6B109.1C22—C20—H20B108.1
C7—C6—H6C109.1C17—C20—H20B108.1
C5—C6—H6C109.1C21—C20—H20B108.1
H6B—C6—H6C107.8C20—C21—H21C109.5
C6—C7—C8112.1 (3)C20—C21—H21D109.5
C6—C7—H7A109.2H21C—C21—H21D109.5
C8—C7—H7A109.2C20—C21—H21E109.5
C6—C7—H7B109.2H21C—C21—H21E109.5
C8—C7—H7B109.2H21D—C21—H21E109.5
H7A—C7—H7B107.9C26—C22—O23110.4 (3)
C14—C8—C7112.7 (3)C26—C22—C20134.1 (3)
C14—C8—C9109.1 (2)O23—C22—C20115.4 (2)
C7—C8—C9109.9 (2)C22—O23—N24108.2 (2)
C14—C8—H8A108.4C25—N24—O23105.9 (2)
C7—C8—H8A108.4N24—C25—C26111.7 (3)
C9—C8—H8A108.4N24—C25—C27120.1 (3)
C11—C9—C8111.5 (2)C26—C25—C27128.1 (3)
C11—C9—C10113.6 (2)C22—C26—C25103.8 (2)
C8—C9—C10112.2 (2)C22—C26—C28126.8 (3)
C11—C9—H9D106.3C25—C26—C28129.5 (3)
C8—C9—H9D106.3C25—C27—H27D109.5
C10—C9—H9D106.3C25—C27—H27E109.5
C19—C10—C1106.1 (3)H27D—C27—H27E109.5
C19—C10—C5109.4 (3)C25—C27—H27F109.5
C1—C10—C5107.5 (2)H27D—C27—H27F109.5
C19—C10—C9111.2 (2)H27E—C27—H27F109.5
C1—C10—C9112.7 (2)C26—C28—C29115.0 (2)
C5—C10—C9109.7 (2)C26—C28—H28C108.5
C12—C11—C9114.4 (2)C29—C28—H28C108.5
C12—C11—H11B108.7C26—C28—H28D108.5
C9—C11—H11B108.7C29—C28—H28D108.5
C12—C11—H11C108.7H28C—C28—H28D107.5
C9—C11—H11C108.7C31—C29—C30110.6 (3)
H11B—C11—H11C107.6C31—C29—C28109.2 (2)
C11—C12—C13112.0 (2)C30—C29—C28111.5 (3)
C11—C12—H12A109.2C31—C29—H29C108.5
C13—C12—H12A109.2C30—C29—H29C108.5
C11—C12—H12B109.2C28—C29—H29C108.5
C13—C12—H12B109.2C29—C30—H30B109.5
H12A—C12—H12B107.9C29—C30—H30C109.5
C18—C13—C12110.3 (2)H30B—C30—H30C109.5
C18—C13—C14112.2 (2)C29—C30—H30D109.5
C12—C13—C14106.6 (2)H30B—C30—H30D109.5
C18—C13—C17110.5 (2)H30C—C30—H30D109.5
C12—C13—C17116.1 (2)O32—C31—C29114.5 (3)
C14—C13—C17100.8 (2)O32—C31—H31C108.6
C8—C14—C13114.5 (2)C29—C31—H31C108.6
C8—C14—C15119.5 (3)O32—C31—H31D108.6
C13—C14—C15103.3 (2)C29—C31—H31D108.6
C8—C14—H14C106.2H31C—C31—H31D107.6
C13—C14—H14C106.2C31—O32—H32114 (3)
C15—C14—H14C106.2C16—O33—H33111 (3)
C16—C15—C14103.3 (3)C3—O34—H34108 (4)
C10—C1—C2—C357.4 (3)C18—C13—C14—C1571.8 (3)
C1—C2—C3—O3464.8 (3)C12—C13—C14—C15167.4 (3)
C1—C2—C3—C454.7 (4)C17—C13—C14—C1545.8 (3)
O34—C3—C4—C568.1 (4)C8—C14—C15—C16169.8 (2)
C2—C3—C4—C554.2 (4)C13—C14—C15—C1641.3 (3)
C3—C4—C5—C6179.6 (3)C14—C15—C16—O33148.1 (2)
C3—C4—C5—C1054.1 (4)C14—C15—C16—C1720.0 (3)
C4—C5—C6—C772.2 (4)C18—C13—C17—C2042.3 (3)
C10—C5—C6—C754.2 (4)C12—C13—C17—C2084.3 (3)
C5—C6—C7—C855.6 (4)C14—C13—C17—C20161.1 (2)
C6—C7—C8—C14177.6 (3)C18—C13—C17—C1686.1 (3)
C6—C7—C8—C955.7 (4)C12—C13—C17—C16147.3 (2)
C14—C8—C9—C1150.7 (3)C14—C13—C17—C1632.7 (2)
C7—C8—C9—C11174.7 (3)O33—C16—C17—C2012.9 (3)
C14—C8—C9—C10179.4 (2)C15—C16—C17—C20139.6 (3)
C7—C8—C9—C1056.6 (3)O33—C16—C17—C13118.7 (2)
C2—C1—C10—C19170.8 (3)C15—C16—C17—C138.0 (3)
C2—C1—C10—C553.8 (3)C13—C17—C20—C22179.3 (2)
C2—C1—C10—C967.2 (3)C16—C17—C20—C2256.4 (3)
C4—C5—C10—C19166.0 (3)C13—C17—C20—C2157.6 (3)
C6—C5—C10—C1968.8 (4)C16—C17—C20—C21178.2 (3)
C4—C5—C10—C151.2 (3)C17—C20—C22—C26134.1 (3)
C6—C5—C10—C1176.4 (3)C21—C20—C22—C26100.9 (4)
C4—C5—C10—C971.8 (3)C17—C20—C22—O2348.8 (3)
C6—C5—C10—C953.5 (4)C21—C20—C22—O2376.2 (3)
C11—C9—C10—C1962.0 (3)C26—C22—O23—N240.6 (3)
C8—C9—C10—C1965.5 (3)C20—C22—O23—N24177.2 (2)
C11—C9—C10—C157.0 (3)C22—O23—N24—C250.9 (3)
C8—C9—C10—C1175.5 (2)O23—N24—C25—C260.8 (3)
C11—C9—C10—C5176.8 (2)O23—N24—C25—C27177.5 (3)
C8—C9—C10—C555.7 (3)O23—C22—C26—C250.1 (3)
C8—C9—C11—C1249.7 (3)C20—C22—C26—C25177.1 (3)
C10—C9—C11—C12177.6 (2)O23—C22—C26—C28178.8 (2)
C9—C11—C12—C1353.1 (3)C20—C22—C26—C284.0 (5)
C11—C12—C13—C1866.6 (3)N24—C25—C26—C220.5 (4)
C11—C12—C13—C1455.4 (3)C27—C25—C26—C22177.7 (3)
C11—C12—C13—C17166.7 (2)N24—C25—C26—C28179.3 (3)
C7—C8—C14—C13178.4 (3)C27—C25—C26—C281.2 (5)
C9—C8—C14—C1359.3 (3)C22—C26—C28—C2981.4 (4)
C7—C8—C14—C1555.2 (4)C25—C26—C28—C29100.0 (3)
C9—C8—C14—C15177.6 (3)C26—C28—C29—C31170.2 (2)
C18—C13—C14—C859.7 (3)C26—C28—C29—C3067.2 (4)
C12—C13—C14—C861.1 (3)C30—C29—C31—O3255.9 (4)
C17—C13—C14—C8177.3 (2)C28—C29—C31—O32179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O32—H32···O33i0.82 (5)1.93 (5)2.746 (3)170 (5)
O33—H33···N24ii0.85 (4)2.03 (4)2.828 (3)157 (4)
O34—H34···O32iii0.90 (6)1.89 (6)2.775 (4)166 (5)
O33—H33···O23ii0.85 (4)2.69 (4)3.536 (3)171 (4)
C18—H18C···O23ii0.962.463.362 (4)157
C28—H28C···O34iv0.972.603.471 (4)150
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x+1, y+1/2, z; (iv) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC29H47NO4
Mr473.68
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)6.5540 (8), 30.131 (4), 7.1971 (10)
β (°) 98.500 (13)
V3)1405.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.6 × 0.2 × 0.2
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8425, 2534, 2003
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.07
No. of reflections2534
No. of parameters322
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.12

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O32—H32···O33i0.82 (5)1.93 (5)2.746 (3)170 (5)
O33—H33···N24ii0.85 (4)2.03 (4)2.828 (3)157 (4)
O34—H34···O32iii0.90 (6)1.89 (6)2.775 (4)166 (5)
O33—H33···O23ii0.85 (4)2.69 (4)3.536 (3)171 (4)
C18—H18C···O23ii0.962.463.362 (4)156.9
C28—H28C···O34iv0.972.603.471 (4)150.2
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x+1, y+1/2, z; (iv) x+1, y1/2, z+1.
 

Acknowledgements

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT, grant 83049).

References

First citationBanday, A. H., Singh, S., Alam, M. S., Reddy, D. M., Gupta, B. D. & Kumar, H. M. S. (2008). Steroids, 73, 370–374.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeam, C. F., Schady, D. A., Rose, K. L., Kelley, W. Jr, Rakkhit, R., Hornsby, C. D. & Studer-Martinez, S. L. (2000). Synth. Commun. 30, 3391–3404.  Web of Science CrossRef CAS Google Scholar
First citationGupta, R., Pathak, D. & Jindal, D. P. (1999). Eur. J. Med. Chem. 34, 659–662.  Web of Science PubMed CAS Google Scholar
First citationLitvinovskaya, R. P., Drach, S. V. & Khripach, V. A. (1998). Russ. J. Org. Chem. 34, 647–654.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeza-Reyes, S., Sandoval-Ramírez, J., Montiel-Smith, S., Hernández-Linares, G., Vinãs-Bravo, O., Martínez-Pascual, R., Fernández-Herrera, M. A., Vega-Báez, J. L., Merino-Montiel, P., Santillán, R. L., et al. (2005). Arkivoc, vi, 307–320.  Google Scholar
First citationPathak, D. & Jindal, D. P. (1998). Asian J. Chem. 10, 813–817.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3265-o3266
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds