metal-organic compounds
Bis(2-amino-6-methylpyridinium) tetrachloridocuprate(II)
aDepartment of Medicine, Tibet Nationalities Institute, Xianyang, Shaanxi 712082, People's Republic of China, bKey Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, People's Republic of China, cCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and dCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdwhb@sina.com
The title compound, (C6H9N2)2[CuCl4], contains a distorted tetrahedral [CuCl4]2− anion and two protonated aminopyridinium cations. The geometries of the protonated aminopyridinium cations reveal amine–imine The crystal packing is influenced by N—H⋯Cl and C—H⋯Cl hydrogen bonds and π–π stacking interactions [centroid–centroid distances = 3.635 (4) and 3.642 (4)°].
Related literature
For a series of compounds with formula A2[MX4], where A is an organic cation, usually a protonted base, M is a divalent transition metal ion and X is a halide (Cl, Br), see: Hammar et al. (1997). For complexes in which A is a protonated alkylamine, see: Zhou & Drumheller (1990), a heterocycle such as pyridine, see: Place & Willett (1987), 2-aminopyrimidine, see: Zanchini & Willett (1990) and 2-amino-3-methylpridine, see: Coffey et al. (2000). For bond lengths and angles in related structures, see: Antolini et al. (1988); Zhang et al. (2005); Jin, Shun et al. (2005); Feng et al. (2007); Nahringbauer & Kvick (1977). For other 2-aminopyridinium structures, see: Luque et al. (1997); Jin et al. (2000, 2001); Jin, Tu et al. (2005). For studies on the tautomeric forms of 2-aminopyridine systems, see: Inuzuka & Fujimoto (1986, 1990); Ishikawa et al. (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680904923X/kp2235sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680904923X/kp2235Isup2.hkl
2-Amino-6-methyl-pyridine, aqueous HCl and CuCl2.2H2O in a molar ratio of 2:2:1 were mixed and dissolved in sufficient water. It was kept stirring and heating till a clear solution was obtained. Crystals of (I) were formed by gradual evaporation of excess water over one week at 293 K. Analysis for (I) (%): C 34.06; H 4.25; N, 13.27; Found (%): C 34.02; H 4.28; N 13.22. IR Spectrum (KBr, cm-1): 3411 (s), 3295 (s), 3195 (m), 3090 (m), 1656 (versus), 1630 (w), 1565 (w), 1474 (w), 1392 (m), 1309 (m), 1174 (w), 1042 (w), 997 (w), 793 (m), 715 (w), 612 (w), 564 (w), 421 (m).
All the H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93 Å for aromatic group, 0.86 Å for amido and 0.96 Å for methyl with isotropic displacement parameters 1.2 times Ueq of the parent atoms.
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I). | |
Fig. 2. A packing diagram viewed down along the b axis. Hydrogen bonds are illustrated as thin lines. |
(C6H9N2)2[CuCl4] | Z = 2 |
Mr = 423.65 | F(000) = 430.0 |
Triclinic, P1 | Dx = 1.553 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7466 (17) Å | Cell parameters from 2451 reflections |
b = 8.0372 (18) Å | θ = 2.2–24.3° |
c = 14.969 (3) Å | µ = 1.79 mm−1 |
α = 78.922 (4)° | T = 273 K |
β = 82.154 (4)° | Prism, blue |
γ = 89.911 (4)° | 0.35 × 0.34 × 0.30 mm |
V = 905.8 (3) Å3 |
Bruker SMART APEX area-detector diffractometer | 3206 independent reflections |
Radiation source: fine-focus sealed tube | 3161 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.013 |
ϕ and ω scan | θmax = 25.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −7→9 |
Tmin = 0.549, Tmax = 0.578 | k = −9→9 |
4783 measured reflections | l = −12→17 |
Refinement on f2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0481P)2 + 0.406P] where P = (Fo2 + 2Fc2)/3 |
3161 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
(C6H9N2)2[CuCl4] | γ = 89.911 (4)° |
Mr = 423.65 | V = 905.8 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.7466 (17) Å | Mo Kα radiation |
b = 8.0372 (18) Å | µ = 1.79 mm−1 |
c = 14.969 (3) Å | T = 273 K |
α = 78.922 (4)° | 0.35 × 0.34 × 0.30 mm |
β = 82.154 (4)° |
Bruker SMART APEX area-detector diffractometer | 3206 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 3161 reflections with I > 2σ(I) |
Tmin = 0.549, Tmax = 0.578 | Rint = 0.013 |
4783 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.55 e Å−3 |
3161 reflections | Δρmin = −0.33 e Å−3 |
190 parameters |
Geometry. all e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. the cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. an approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. refinement of f2 against all reflections. the weighted r-factor wr and goodness of fit s are based on f2, conventional r-factors r are based on f, with f set to zero for negative f2. the threshold expression of f2 > σ(f2) is used only for calculating r-factors(gt) etc. and is not relevant to the choice of reflections for refinement. r-factors based on f2 are statistically about twice as large as those based on f, and r- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
cu1 | 0.18139 (4) | 0.80739 (4) | 0.75385 (2) | 0.04615 (13) | |
cl4 | 0.31507 (11) | 0.56448 (9) | 0.80270 (5) | 0.0630 (2) | |
cl1 | 0.04761 (10) | 0.98881 (10) | 0.83451 (6) | 0.0677 (2) | |
cl3 | 0.41383 (10) | 0.96162 (10) | 0.68092 (7) | 0.0757 (3) | |
cl2 | −0.04646 (10) | 0.69927 (13) | 0.70434 (6) | 0.0734 (3) | |
n4 | 0.4134 (3) | 0.7120 (3) | 0.97401 (16) | 0.0498 (5) | |
h4 | 0.3725 | 0.6715 | 0.9318 | 0.060* | |
c8 | 0.6468 (4) | 0.8324 (4) | 1.0262 (2) | 0.0575 (7) | |
h8 | 0.7613 | 0.8733 | 1.0172 | 0.069* | |
c1 | 0.2333 (4) | 0.4070 (3) | 0.56633 (19) | 0.0506 (6) | |
n2 | 0.1895 (3) | 0.5691 (3) | 0.54343 (16) | 0.0506 (5) | |
h2 | 0.1328 | 0.6149 | 0.5855 | 0.061* | |
c11 | 0.3066 (4) | 0.7100 (4) | 1.0545 (2) | 0.0532 (7) | |
c9 | 0.5450 (5) | 0.8298 (4) | 1.1068 (2) | 0.0646 (8) | |
h9 | 0.5906 | 0.8679 | 1.1538 | 0.077* | |
c10 | 0.3717 (4) | 0.7707 (4) | 1.1212 (2) | 0.0641 (8) | |
h10 | 0.3017 | 0.7733 | 1.1766 | 0.077* | |
c5 | 0.2289 (4) | 0.6664 (4) | 0.4578 (2) | 0.0574 (7) | |
n1 | 0.1881 (4) | 0.3267 (3) | 0.65263 (19) | 0.0753 (8) | |
h1a | 0.1321 | 0.3790 | 0.6922 | 0.090* | |
h1b | 0.2148 | 0.2224 | 0.6690 | 0.090* | |
c2 | 0.3220 (4) | 0.3304 (4) | 0.4975 (2) | 0.0610 (8) | |
h2a | 0.3539 | 0.2177 | 0.5104 | 0.073* | |
c3 | 0.3598 (4) | 0.4236 (5) | 0.4123 (2) | 0.0720 (10) | |
h3 | 0.4166 | 0.3735 | 0.3658 | 0.086* | |
c12 | 0.1255 (4) | 0.6423 (5) | 1.0599 (3) | 0.0741 (9) | |
h12a | 0.1120 | 0.6067 | 1.0035 | 0.111* | |
h12b | 0.0440 | 0.7294 | 1.0696 | 0.111* | |
h12c | 0.1038 | 0.5474 | 1.1102 | 0.111* | |
n3 | 0.6670 (4) | 0.7728 (4) | 0.8737 (2) | 0.0784 (8) | |
h3a | 0.6183 | 0.7342 | 0.8333 | 0.094* | |
h3b | 0.7728 | 0.8112 | 0.8607 | 0.094* | |
c4 | 0.3162 (4) | 0.5927 (5) | 0.3920 (2) | 0.0704 (9) | |
h4a | 0.3471 | 0.6554 | 0.3329 | 0.084* | |
c6 | 0.1734 (5) | 0.8456 (4) | 0.4464 (3) | 0.0841 (11) | |
h6a | 0.1139 | 0.8658 | 0.5037 | 0.126* | |
h6b | 0.0965 | 0.8668 | 0.4005 | 0.126* | |
h6c | 0.2741 | 0.9200 | 0.4274 | 0.126* | |
c7 | 0.5786 (3) | 0.7731 (3) | 0.9564 (2) | 0.0513 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
cu1 | 0.04167 (19) | 0.0479 (2) | 0.0488 (2) | 0.00113 (13) | 0.00015 (14) | −0.01383 (14) |
cl4 | 0.0799 (5) | 0.0468 (4) | 0.0649 (5) | 0.0114 (3) | −0.0143 (4) | −0.0143 (3) |
cl1 | 0.0553 (4) | 0.0672 (5) | 0.0843 (6) | −0.0018 (3) | 0.0113 (4) | −0.0387 (4) |
cl3 | 0.0564 (4) | 0.0628 (5) | 0.0938 (6) | −0.0028 (3) | 0.0196 (4) | −0.0012 (4) |
cl2 | 0.0468 (4) | 0.1114 (7) | 0.0754 (5) | −0.0016 (4) | −0.0041 (4) | −0.0547 (5) |
n4 | 0.0454 (12) | 0.0522 (13) | 0.0532 (13) | 0.0017 (10) | −0.0052 (10) | −0.0151 (10) |
c8 | 0.0479 (15) | 0.0499 (15) | 0.075 (2) | 0.0064 (12) | −0.0217 (15) | −0.0052 (14) |
c1 | 0.0541 (15) | 0.0491 (15) | 0.0523 (16) | −0.0018 (12) | −0.0095 (12) | −0.0177 (12) |
n2 | 0.0494 (13) | 0.0517 (13) | 0.0511 (13) | −0.0010 (10) | 0.0017 (10) | −0.0171 (10) |
c11 | 0.0483 (15) | 0.0512 (15) | 0.0540 (16) | 0.0060 (12) | −0.0003 (13) | 0.0003 (13) |
c9 | 0.078 (2) | 0.0630 (19) | 0.0567 (18) | 0.0104 (16) | −0.0305 (17) | −0.0069 (15) |
c10 | 0.071 (2) | 0.074 (2) | 0.0435 (15) | 0.0107 (16) | −0.0065 (14) | −0.0028 (14) |
c5 | 0.0474 (15) | 0.0672 (18) | 0.0556 (17) | −0.0057 (13) | −0.0081 (13) | −0.0059 (14) |
n1 | 0.106 (2) | 0.0559 (15) | 0.0605 (17) | 0.0022 (14) | −0.0031 (15) | −0.0076 (13) |
c2 | 0.0581 (17) | 0.0664 (18) | 0.071 (2) | 0.0108 (14) | −0.0178 (15) | −0.0373 (16) |
c3 | 0.0570 (18) | 0.110 (3) | 0.060 (2) | 0.0061 (18) | −0.0058 (15) | −0.045 (2) |
c12 | 0.0543 (18) | 0.081 (2) | 0.079 (2) | −0.0058 (16) | 0.0037 (16) | −0.0056 (18) |
n3 | 0.0528 (15) | 0.102 (2) | 0.082 (2) | −0.0050 (14) | 0.0126 (14) | −0.0362 (17) |
c4 | 0.0624 (19) | 0.100 (3) | 0.0455 (17) | −0.0032 (18) | −0.0046 (14) | −0.0077 (17) |
c6 | 0.078 (2) | 0.065 (2) | 0.097 (3) | −0.0018 (18) | −0.004 (2) | 0.007 (2) |
c7 | 0.0410 (14) | 0.0475 (14) | 0.0647 (18) | 0.0082 (11) | −0.0025 (13) | −0.0124 (13) |
Cu1—Cl3 | 2.2183 (9) | c10—h10 | 0.9300 |
Cu1—Cl1 | 2.2333 (8) | c5—c4 | 1.348 (5) |
Cu1—Cl2 | 2.2426 (9) | c5—c6 | 1.488 (5) |
Cu1—Cl4 | 2.2517 (9) | n1—h1a | 0.8600 |
N4—C7 | 1.345 (4) | n1—h1b | 0.8600 |
N4—C11 | 1.362 (4) | c2—c3 | 1.343 (5) |
n4—h4 | 0.8600 | c2—h2a | 0.9300 |
c8—c9 | 1.345 (5) | c3—c4 | 1.386 (5) |
c8—c7 | 1.394 (4) | c3—h3 | 0.9300 |
c8—h8 | 0.9300 | c12—h12a | 0.9600 |
C1—N1 | 1.328 (4) | c12—h12b | 0.9600 |
C1—N2 | 1.337 (4) | c12—h12c | 0.9600 |
c1—c2 | 1.401 (4) | N3—C7 | 1.330 (4) |
N2—C5 | 1.363 (4) | n3—h3a | 0.8600 |
n2—h2 | 0.8600 | n3—h3b | 0.8600 |
c11—c10 | 1.348 (4) | c4—h4a | 0.9300 |
c11—c12 | 1.492 (4) | c6—h6a | 0.9600 |
c9—c10 | 1.399 (5) | c6—h6b | 0.9600 |
c9—h9 | 0.9300 | c6—h6c | 0.9600 |
cl3—cu1—cl1 | 100.96 (4) | c1—n1—h1a | 120.0 |
cl3—cu1—cl2 | 132.57 (4) | c1—n1—h1b | 120.0 |
cl1—cu1—cl2 | 100.71 (3) | h1a—n1—h1b | 120.0 |
cl3—cu1—cl4 | 98.61 (4) | c3—c2—c1 | 118.4 (3) |
cl1—cu1—cl4 | 129.70 (4) | c3—c2—h2a | 120.8 |
cl2—cu1—cl4 | 99.05 (4) | c1—c2—h2a | 120.8 |
c7—n4—c11 | 124.2 (3) | c2—c3—c4 | 121.6 (3) |
c7—n4—h4 | 117.9 | c2—c3—h3 | 119.2 |
c11—n4—h4 | 117.9 | c4—c3—h3 | 119.2 |
c9—c8—c7 | 119.2 (3) | c11—c12—h12a | 109.5 |
c9—c8—h8 | 120.4 | c11—c12—h12b | 109.5 |
c7—c8—h8 | 120.4 | h12a—c12—h12b | 109.5 |
n1—c1—n2 | 118.3 (3) | c11—c12—h12c | 109.5 |
n1—c1—c2 | 123.6 (3) | h12a—c12—h12c | 109.5 |
n2—c1—c2 | 118.1 (3) | h12b—c12—h12c | 109.5 |
c1—n2—c5 | 124.3 (2) | c7—n3—h3a | 120.0 |
c1—n2—h2 | 117.8 | c7—n3—h3b | 120.0 |
c5—n2—h2 | 117.8 | h3a—n3—h3b | 120.0 |
c10—c11—n4 | 117.9 (3) | c5—c4—c3 | 120.1 (3) |
c10—c11—c12 | 125.8 (3) | c5—c4—h4a | 119.9 |
n4—c11—c12 | 116.4 (3) | c3—c4—h4a | 119.9 |
c8—c9—c10 | 121.2 (3) | c5—c6—h6a | 109.5 |
c8—c9—h9 | 119.4 | c5—c6—h6b | 109.5 |
c10—c9—h9 | 119.4 | h6a—c6—h6b | 109.5 |
c11—c10—c9 | 119.7 (3) | c5—c6—h6c | 109.5 |
c11—c10—h10 | 120.2 | h6a—c6—h6c | 109.5 |
c9—c10—h10 | 120.2 | h6b—c6—h6c | 109.5 |
c4—c5—n2 | 117.3 (3) | n3—c7—n4 | 118.2 (3) |
c4—c5—c6 | 126.2 (3) | n3—c7—c8 | 124.0 (3) |
n2—c5—c6 | 116.4 (3) | n4—c7—c8 | 117.8 (3) |
n1—c1—n2—c5 | 179.5 (3) | n1—c1—c2—c3 | 179.5 (3) |
c2—c1—n2—c5 | −1.6 (4) | n2—c1—c2—c3 | 0.5 (4) |
c7—n4—c11—c10 | −1.1 (4) | c1—c2—c3—c4 | 1.2 (5) |
c7—n4—c11—c12 | 178.0 (3) | n2—c5—c4—c3 | 1.0 (5) |
c7—c8—c9—c10 | −0.8 (4) | c6—c5—c4—c3 | −180.0 (3) |
n4—c11—c10—c9 | −1.3 (4) | c2—c3—c4—c5 | −2.1 (5) |
c12—c11—c10—c9 | 179.8 (3) | c11—n4—c7—n3 | −177.7 (3) |
c8—c9—c10—c11 | 2.2 (5) | c11—n4—c7—c8 | 2.5 (4) |
c1—n2—c5—c4 | 0.8 (4) | c9—c8—c7—n3 | 178.8 (3) |
c1—n2—c5—c6 | −178.3 (3) | c9—c8—c7—n4 | −1.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl4 | 0.86 | 2.93 | 3.453 (4) | 121 |
N1—H1A···Cl2 | 0.86 | 2.95 | 3.655 (4) | 141 |
N1—H1B···Cl3i | 0.86 | 2.60 | 3.399 (4) | 157 |
N1—H1B···Cl1i | 0.86 | 2.95 | 3.511 (4) | 125 |
N3—H3B···Cl1ii | 0.86 | 2.51 | 3.347 (4) | 166 |
N3—H3B···Cl2ii | 0.86 | 2.86 | 3.277 (4) | 112 |
N2—H2···Cl2 | 0.86 | 2.31 | 3.162 (4) | 171 |
N3—H3A···Cl4 | 0.86 | 2.85 | 3.585 (4) | 144 |
N4—H4···Cl4 | 0.86 | 2.36 | 3.204 (4) | 169 |
C6—H6C···Cl3iii | 0.96 | 2.78 | 3.670 (4) | 155 |
C12—H12B···Cl1iv | 0.96 | 2.94 | 3.781 (4) | 147 |
Symmetry codes: (i) x, y−1, z; (ii) x+1, y, z; (iii) −x+1, −y+2, −z+1; (iv) −x, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | (C6H9N2)2[CuCl4] |
Mr | 423.65 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 273 |
a, b, c (Å) | 7.7466 (17), 8.0372 (18), 14.969 (3) |
α, β, γ (°) | 78.922 (4), 82.154 (4), 89.911 (4) |
V (Å3) | 905.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.79 |
Crystal size (mm) | 0.35 × 0.34 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART APEX area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.549, 0.578 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4783, 3206, 3161 |
Rint | 0.013 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.090, 1.05 |
No. of reflections | 3161 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.33 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).
Cu1—Cl3 | 2.2183 (9) | N4—C11 | 1.362 (4) |
Cu1—Cl1 | 2.2333 (8) | C1—N1 | 1.328 (4) |
Cu1—Cl2 | 2.2426 (9) | C1—N2 | 1.337 (4) |
Cu1—Cl4 | 2.2517 (9) | N2—C5 | 1.363 (4) |
N4—C7 | 1.345 (4) | N3—C7 | 1.330 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl4 | 0.86 | 2.93 | 3.453 (4) | 121.4 |
N1—H1A···Cl2 | 0.86 | 2.95 | 3.655 (4) | 141.1 |
N1—H1B···Cl3i | 0.86 | 2.60 | 3.399 (4) | 156.6 |
N1—H1B···Cl1i | 0.86 | 2.95 | 3.511 (4) | 125.0 |
N3—H3B···Cl1ii | 0.86 | 2.51 | 3.347 (4) | 165.5 |
N3—H3B···Cl2ii | 0.86 | 2.86 | 3.277 (4) | 112.0 |
N2—H2···Cl2 | 0.86 | 2.31 | 3.162 (4) | 171.0 |
N3—H3A···Cl4 | 0.86 | 2.85 | 3.585 (4) | 144.3 |
N4—H4···Cl4 | 0.86 | 2.36 | 3.204 (4) | 169.3 |
C6—H6C···Cl3iii | 0.96 | 2.78 | 3.670 (4) | 154.7 |
C12—H12B···Cl1iv | 0.96 | 2.94 | 3.781 (4) | 146.5 |
Symmetry codes: (i) x, y−1, z; (ii) x+1, y, z; (iii) −x+1, −y+2, −z+1; (iv) −x, −y+2, −z+2. |
Acknowledgements
We are grateful for the financial support of the Natural Science Foundation of Tibet (2009-10-12) and the Natural Science Foundation of the Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education (2009-11-12).
References
Antolini, L., Benedetti, A., Fabretti, A. C. & Giusti, A. (1988). Inorg. Chem. 27, 2192–2194. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coffey, T. J., Landee, C. P., Robinson, W. T., Turnbull, M. M., Winn, M. & Woodward, F. M. (2000). Inorg. Chim. Acta, 303, 54–60. Web of Science CSD CrossRef CAS Google Scholar
Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786–m1787. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hammar, P. R., Dender, D. C., Reich, D. H., Albrecht, A. & Landee, C. P. (1997). J. Appl. Phys. 81, 4615–4617. CSD CrossRef Web of Science Google Scholar
Inuzuka, K. & Fujimoto, A. (1986). Spectrochim. Acta A, 42, 929–937. CrossRef Web of Science Google Scholar
Inuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 971–975. CrossRef CAS Web of Science Google Scholar
Ishikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305–2312. Web of Science CrossRef CAS Google Scholar
Jin, Z.-M., Pan, Y.-J., Hu, M.-L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191–195. Web of Science CSD CrossRef CAS Google Scholar
Jin, Z.-M., Pan, Y.-J., Liu, J.-G. & Xu, D.-J. (2000). J. Chem. Crystallogr. 30, 195–198. Web of Science CSD CrossRef CAS Google Scholar
Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jin, Z.-M., Tu, B., He, L., Hu, M.-L. & Zou, J.-W. (2005). Acta Cryst. C61, m197–m199. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854. CSD CrossRef Web of Science Google Scholar
Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Place, H. & Willett, R. D. (1987). Acta Cryst. C43, 1497–1500. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zanchini, C. & Willett, R. D. (1990). Inorg. Chem. 29, 3027–3030. CSD CrossRef CAS Web of Science Google Scholar
Zhang, J., Ye, L., Yu, J.-S. & Wu, L.-X. (2005). Acta Cryst. E61, m1633–m1634. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, P. & Drumheller, J. E. (1990). J. Appl. Phys. 67, 5755–5757. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There are a series of compounds of the formula A2[MX4], where A is an organic cation, usually a protonted base, M is a divalent transition metal ion and X is a halide (Cl, Br) (Hammar et al., 1997). A wide variety of these complexes are known where the A-group is a protonated alkylamine (Zhou et al., 1990), heterocycle such as pyridine (Place et al., 1987), 2-aminopyrimidine (Zanchini et al., 1990), or 2-amino-3-methylpridine (Coffey et al., 2000). The crystal structure of the title compound, (I), is now subjected to X-ray structure analysis.
The asymmetric unit comprises the two protonated, 2-amino-6-methyl-pyridinium cations (HAMP) and [CuCl4]2- anion (Fig. 1, Table1). The dihedral angle of the two HAMP cations is of 97.0 (3)°. The [CuCl4]2- anion assumes a distorted tetrahedral geometry consistent with the anticipated by Jahn–Teller effect documented by the value of the trans Cl—Cu—Cl angle and also by the dihedral angle between CuCl2 planes. In the present structure, the two independent trans angles are 132.57 (4)° and 129.70 (4)° and the dihedral angle between the CuCl2 planes is 65.4°. The average value of 2.2365Å observed in the [CuCl4]2- anion is shorter than the average value of 2.270Å (Antolini et al., 1988) or 2.260Å (Zhang et al., 2005) of square planar [CuCl4]2-anion. In the cation, the N3—C7 bond [1.330 (4) Å] is shorter than the N4—C7 [1.345 (4) Å] and N4—C11 [1.362 (4) Å] bonds, and the C7—C8 [1.394 (4) Å] and C(9)—C(10) [1.399 (5) Å] bonds are significantly longer than C8—C9 [1.345 (5) Å] and C10—C11 [1.348 (4) Å] bonds, this are similar to those in the HAMP cation of (C6H9N2)[ZnCl3(C6H8N2)] (Jin et al., 2005) and (C6H9N2)2[Sb2Cl6O] (Feng et al., 2007). In contrast, in the solid state structure of AMP, the N—C bond out of ring is clearly longer than that in the ring (Nahringbauer et al., 1997). The geometric features of HAMP cation (N1/N2/C1/C6) resemble those observed in other 2-aminopyridinium structures (Luque et al., 1997; Jin et al., 2000; Jin et al., 2001; Jin et al., 2005) that are believed to be involved in amine-imine tautomerism (Inuzuka et al., 1986; Inuzuka et al., 1990; Ishikawa et al., 2002). Similar features are also provided by cation HAMP (N3/N4/C7/C12). The crystal packing is determined by hydrogen bonds (Fig. 2 and Table 2) and π–π stacking interactions. The X1A···X1Ai separation (X1A is the centroid of the C1C5 ring, symmetry code: 1 - x, 1 - y, 1 - z) is of 3.635 (4)°, and the X1B···X1Bi separation (X1B is the centroid of the C7C11 ring, symmetry code: 1 - x, 2 - y, 2 - z) is of 3.642 (4)°.