metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1661-m1662

Bis(2-amino-6-methyl­pyridinium) tetra­chloridocuprate(II)

aDepartment of Medicine, Tibet Nationalities Institute, Xianyang, Shaanxi 712082, People's Republic of China, bKey Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, People's Republic of China, cCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and dCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdwhb@sina.com

(Received 8 October 2009; accepted 18 November 2009; online 21 November 2009)

The title compound, (C6H9N2)2[CuCl4], contains a distorted tetra­hedral [CuCl4]2− anion and two protonated amino­pyridinium cations. The geometries of the protonated amino­pyridinium cations reveal amine–imine tautomerism. The crystal packing is influenced by N—H⋯Cl and C—H⋯Cl hydrogen bonds and ππ stacking inter­actions [centroid–centroid distances = 3.635 (4) and 3.642 (4)°].

Related literature

For a series of compounds with formula A2[MX4], where A is an organic cation, usually a protonted base, M is a divalent transition metal ion and X is a halide (Cl, Br), see: Hammar et al. (1997[Hammar, P. R., Dender, D. C., Reich, D. H., Albrecht, A. & Landee, C. P. (1997). J. Appl. Phys. 81, 4615-4617.]). For complexes in which A is a protonated alkyl­amine, see: Zhou & Drumheller (1990[Zhou, P. & Drumheller, J. E. (1990). J. Appl. Phys. 67, 5755-5757.]), a heterocycle such as pyridine, see: Place & Willett (1987[Place, H. & Willett, R. D. (1987). Acta Cryst. C43, 1497-1500.]), 2-amino­pyrimidine, see: Zanchini & Willett (1990[Zanchini, C. & Willett, R. D. (1990). Inorg. Chem. 29, 3027-3030.]) and 2-amino-3-methyl­pridine, see: Coffey et al. (2000[Coffey, T. J., Landee, C. P., Robinson, W. T., Turnbull, M. M., Winn, M. & Woodward, F. M. (2000). Inorg. Chim. Acta, 303, 54-60.]). For bond lengths and angles in related structures, see: Antolini et al. (1988[Antolini, L., Benedetti, A., Fabretti, A. C. & Giusti, A. (1988). Inorg. Chem. 27, 2192-2194.]); Zhang et al. (2005[Zhang, J., Ye, L., Yu, J.-S. & Wu, L.-X. (2005). Acta Cryst. E61, m1633-m1634.]); Jin, Shun et al. (2005[Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43-m45.]); Feng et al. (2007[Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786-m1787.]); Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]). For other 2-amino­pyridinium structures, see: Luque et al. (1997[Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847-854.]); Jin et al. (2000[Jin, Z.-M., Pan, Y.-J., Liu, J.-G. & Xu, D.-J. (2000). J. Chem. Crystallogr. 30, 195-198.], 2001[Jin, Z.-M., Pan, Y.-J., Hu, M.-L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191-195.]); Jin, Tu et al. (2005[Jin, Z.-M., Tu, B., He, L., Hu, M.-L. & Zou, J.-W. (2005). Acta Cryst. C61, m197-m199.]). For studies on the tautomeric forms of 2-aminopyridine systems, see: Inuzuka & Fujimoto (1986[Inuzuka, K. & Fujimoto, A. (1986). Spectrochim. Acta A, 42, 929-937.], 1990[Inuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 971-975.]); Ishikawa et al. (2002[Ishikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305-2312.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H9N2)2[CuCl4]

  • Mr = 423.65

  • Triclinic, [P \overline 1]

  • a = 7.7466 (17) Å

  • b = 8.0372 (18) Å

  • c = 14.969 (3) Å

  • α = 78.922 (4)°

  • β = 82.154 (4)°

  • γ = 89.911 (4)°

  • V = 905.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 273 K

  • 0.35 × 0.34 × 0.30 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.549, Tmax = 0.578

  • 4783 measured reflections

  • 3161 independent reflections

  • 2874 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.05

  • 3161 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—Cl3 2.2183 (9)
Cu1—Cl1 2.2333 (8)
Cu1—Cl2 2.2426 (9)
Cu1—Cl4 2.2517 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl4 0.86 2.93 3.453 (4) 121
N1—H1A⋯Cl2 0.86 2.95 3.655 (4) 141
N1—H1B⋯Cl3i 0.86 2.60 3.399 (4) 157
N1—H1B⋯Cl1i 0.86 2.95 3.511 (4) 125
N3—H3B⋯Cl1ii 0.86 2.51 3.347 (4) 166
N3—H3B⋯Cl2ii 0.86 2.86 3.277 (4) 112
N2—H2⋯Cl2 0.86 2.31 3.162 (4) 171
N3—H3A⋯Cl4 0.86 2.85 3.585 (4) 144
N4—H4⋯Cl4 0.86 2.36 3.204 (4) 169
C6—H6C⋯Cl3iii 0.96 2.78 3.670 (4) 155
C12—H12B⋯Cl1iv 0.96 2.94 3.781 (4) 147
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z; (iii) -x+1, -y+2, -z+1; (iv) -x, -y+2, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There are a series of compounds of the formula A2[MX4], where A is an organic cation, usually a protonted base, M is a divalent transition metal ion and X is a halide (Cl, Br) (Hammar et al., 1997). A wide variety of these complexes are known where the A-group is a protonated alkylamine (Zhou et al., 1990), heterocycle such as pyridine (Place et al., 1987), 2-aminopyrimidine (Zanchini et al., 1990), or 2-amino-3-methylpridine (Coffey et al., 2000). The crystal structure of the title compound, (I), is now subjected to X-ray structure analysis.

The asymmetric unit comprises the two protonated, 2-amino-6-methyl-pyridinium cations (HAMP) and [CuCl4]2- anion (Fig. 1, Table1). The dihedral angle of the two HAMP cations is of 97.0 (3)°. The [CuCl4]2- anion assumes a distorted tetrahedral geometry consistent with the anticipated by Jahn–Teller effect documented by the value of the trans Cl—Cu—Cl angle and also by the dihedral angle between CuCl2 planes. In the present structure, the two independent trans angles are 132.57 (4)° and 129.70 (4)° and the dihedral angle between the CuCl2 planes is 65.4°. The average value of 2.2365Å observed in the [CuCl4]2- anion is shorter than the average value of 2.270Å (Antolini et al., 1988) or 2.260Å (Zhang et al., 2005) of square planar [CuCl4]2-anion. In the cation, the N3—C7 bond [1.330 (4) Å] is shorter than the N4—C7 [1.345 (4) Å] and N4—C11 [1.362 (4) Å] bonds, and the C7—C8 [1.394 (4) Å] and C(9)—C(10) [1.399 (5) Å] bonds are significantly longer than C8—C9 [1.345 (5) Å] and C10—C11 [1.348 (4) Å] bonds, this are similar to those in the HAMP cation of (C6H9N2)[ZnCl3(C6H8N2)] (Jin et al., 2005) and (C6H9N2)2[Sb2Cl6O] (Feng et al., 2007). In contrast, in the solid state structure of AMP, the N—C bond out of ring is clearly longer than that in the ring (Nahringbauer et al., 1997). The geometric features of HAMP cation (N1/N2/C1/C6) resemble those observed in other 2-aminopyridinium structures (Luque et al., 1997; Jin et al., 2000; Jin et al., 2001; Jin et al., 2005) that are believed to be involved in amine-imine tautomerism (Inuzuka et al., 1986; Inuzuka et al., 1990; Ishikawa et al., 2002). Similar features are also provided by cation HAMP (N3/N4/C7/C12). The crystal packing is determined by hydrogen bonds (Fig. 2 and Table 2) and ππ stacking interactions. The X1A···X1Ai separation (X1A is the centroid of the C1C5 ring, symmetry code: 1 - x, 1 - y, 1 - z) is of 3.635 (4)°, and the X1B···X1Bi separation (X1B is the centroid of the C7C11 ring, symmetry code: 1 - x, 2 - y, 2 - z) is of 3.642 (4)°.

Related literature top

For a series of compounds with formula A2[MX4], where A is an organic cation, usually a protonted base, M is a 2+ transition metal ion and X is a halide (Cl, Br), see: Hammar et al. (1997). For complexes in which A is a protonated alkylamine, see: Zhou & Drumheller (1990), a heterocycle such as pyridine, see: Place & Willett (1987), 2-aminopyrimidine, see: Zanchini & Willett (1990) and 2-amino-3-methylpridine, see: Coffey et al. (2000). For bond lengths and angles in related structures, see: Antolini et al. (1988); Zhang et al. (2005); Jin, Shun et al. (2005); Feng et al. (2007); Nahringbauer & Kvick (1977). For other 2-aminopyridinium structures, see: Luque et al. (1997); Jin et al. (2000, 2001); Jin, Tu et al. (2005); Inuzuka & Fujimoto (1986, 1990); Ishikawa et al. (2002).

Experimental top

2-Amino-6-methyl-pyridine, aqueous HCl and CuCl2.2H2O in a molar ratio of 2:2:1 were mixed and dissolved in sufficient water. It was kept stirring and heating till a clear solution was obtained. Crystals of (I) were formed by gradual evaporation of excess water over one week at 293 K. Analysis for (I) (%): C 34.06; H 4.25; N, 13.27; Found (%): C 34.02; H 4.28; N 13.22. IR Spectrum (KBr, cm-1): 3411 (s), 3295 (s), 3195 (m), 3090 (m), 1656 (versus), 1630 (w), 1565 (w), 1474 (w), 1392 (m), 1309 (m), 1174 (w), 1042 (w), 997 (w), 793 (m), 715 (w), 612 (w), 564 (w), 421 (m).

Refinement top

All the H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93 Å for aromatic group, 0.86 Å for amido and 0.96 Å for methyl with isotropic displacement parameters 1.2 times Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I).
[Figure 2] Fig. 2. A packing diagram viewed down along the b axis. Hydrogen bonds are illustrated as thin lines.
Bis(2-amino-6-methylpyridinium) tetrachloridocuprate(II) top
Crystal data top
(C6H9N2)2[CuCl4]Z = 2
Mr = 423.65F(000) = 430.0
Triclinic, P1Dx = 1.553 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7466 (17) ÅCell parameters from 2451 reflections
b = 8.0372 (18) Åθ = 2.2–24.3°
c = 14.969 (3) ŵ = 1.79 mm1
α = 78.922 (4)°T = 273 K
β = 82.154 (4)°Prism, blue
γ = 89.911 (4)°0.35 × 0.34 × 0.30 mm
V = 905.8 (3) Å3
Data collection top
Bruker SMART APEX area-detector
diffractometer
3206 independent reflections
Radiation source: fine-focus sealed tube3161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scanθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 79
Tmin = 0.549, Tmax = 0.578k = 99
4783 measured reflectionsl = 1217
Refinement top
Refinement on f2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.406P]
where P = (Fo2 + 2Fc2)/3
3161 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
(C6H9N2)2[CuCl4]γ = 89.911 (4)°
Mr = 423.65V = 905.8 (3) Å3
Triclinic, P1Z = 2
a = 7.7466 (17) ÅMo Kα radiation
b = 8.0372 (18) ŵ = 1.79 mm1
c = 14.969 (3) ÅT = 273 K
α = 78.922 (4)°0.35 × 0.34 × 0.30 mm
β = 82.154 (4)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
3206 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3161 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.578Rint = 0.013
4783 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
3161 reflectionsΔρmin = 0.33 e Å3
190 parameters
Special details top

Geometry. all e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. the cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. an approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. refinement of f2 against all reflections. the weighted r-factor wr and goodness of fit s are based on f2, conventional r-factors r are based on f, with f set to zero for negative f2. the threshold expression of f2 > σ(f2) is used only for calculating r-factors(gt) etc. and is not relevant to the choice of reflections for refinement. r-factors based on f2 are statistically about twice as large as those based on f, and r- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
cu10.18139 (4)0.80739 (4)0.75385 (2)0.04615 (13)
cl40.31507 (11)0.56448 (9)0.80270 (5)0.0630 (2)
cl10.04761 (10)0.98881 (10)0.83451 (6)0.0677 (2)
cl30.41383 (10)0.96162 (10)0.68092 (7)0.0757 (3)
cl20.04646 (10)0.69927 (13)0.70434 (6)0.0734 (3)
n40.4134 (3)0.7120 (3)0.97401 (16)0.0498 (5)
h40.37250.67150.93180.060*
c80.6468 (4)0.8324 (4)1.0262 (2)0.0575 (7)
h80.76130.87331.01720.069*
c10.2333 (4)0.4070 (3)0.56633 (19)0.0506 (6)
n20.1895 (3)0.5691 (3)0.54343 (16)0.0506 (5)
h20.13280.61490.58550.061*
c110.3066 (4)0.7100 (4)1.0545 (2)0.0532 (7)
c90.5450 (5)0.8298 (4)1.1068 (2)0.0646 (8)
h90.59060.86791.15380.077*
c100.3717 (4)0.7707 (4)1.1212 (2)0.0641 (8)
h100.30170.77331.17660.077*
c50.2289 (4)0.6664 (4)0.4578 (2)0.0574 (7)
n10.1881 (4)0.3267 (3)0.65263 (19)0.0753 (8)
h1a0.13210.37900.69220.090*
h1b0.21480.22240.66900.090*
c20.3220 (4)0.3304 (4)0.4975 (2)0.0610 (8)
h2a0.35390.21770.51040.073*
c30.3598 (4)0.4236 (5)0.4123 (2)0.0720 (10)
h30.41660.37350.36580.086*
c120.1255 (4)0.6423 (5)1.0599 (3)0.0741 (9)
h12a0.11200.60671.00350.111*
h12b0.04400.72941.06960.111*
h12c0.10380.54741.11020.111*
n30.6670 (4)0.7728 (4)0.8737 (2)0.0784 (8)
h3a0.61830.73420.83330.094*
h3b0.77280.81120.86070.094*
c40.3162 (4)0.5927 (5)0.3920 (2)0.0704 (9)
h4a0.34710.65540.33290.084*
c60.1734 (5)0.8456 (4)0.4464 (3)0.0841 (11)
h6a0.11390.86580.50370.126*
h6b0.09650.86680.40050.126*
h6c0.27410.92000.42740.126*
c70.5786 (3)0.7731 (3)0.9564 (2)0.0513 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
cu10.04167 (19)0.0479 (2)0.0488 (2)0.00113 (13)0.00015 (14)0.01383 (14)
cl40.0799 (5)0.0468 (4)0.0649 (5)0.0114 (3)0.0143 (4)0.0143 (3)
cl10.0553 (4)0.0672 (5)0.0843 (6)0.0018 (3)0.0113 (4)0.0387 (4)
cl30.0564 (4)0.0628 (5)0.0938 (6)0.0028 (3)0.0196 (4)0.0012 (4)
cl20.0468 (4)0.1114 (7)0.0754 (5)0.0016 (4)0.0041 (4)0.0547 (5)
n40.0454 (12)0.0522 (13)0.0532 (13)0.0017 (10)0.0052 (10)0.0151 (10)
c80.0479 (15)0.0499 (15)0.075 (2)0.0064 (12)0.0217 (15)0.0052 (14)
c10.0541 (15)0.0491 (15)0.0523 (16)0.0018 (12)0.0095 (12)0.0177 (12)
n20.0494 (13)0.0517 (13)0.0511 (13)0.0010 (10)0.0017 (10)0.0171 (10)
c110.0483 (15)0.0512 (15)0.0540 (16)0.0060 (12)0.0003 (13)0.0003 (13)
c90.078 (2)0.0630 (19)0.0567 (18)0.0104 (16)0.0305 (17)0.0069 (15)
c100.071 (2)0.074 (2)0.0435 (15)0.0107 (16)0.0065 (14)0.0028 (14)
c50.0474 (15)0.0672 (18)0.0556 (17)0.0057 (13)0.0081 (13)0.0059 (14)
n10.106 (2)0.0559 (15)0.0605 (17)0.0022 (14)0.0031 (15)0.0076 (13)
c20.0581 (17)0.0664 (18)0.071 (2)0.0108 (14)0.0178 (15)0.0373 (16)
c30.0570 (18)0.110 (3)0.060 (2)0.0061 (18)0.0058 (15)0.045 (2)
c120.0543 (18)0.081 (2)0.079 (2)0.0058 (16)0.0037 (16)0.0056 (18)
n30.0528 (15)0.102 (2)0.082 (2)0.0050 (14)0.0126 (14)0.0362 (17)
c40.0624 (19)0.100 (3)0.0455 (17)0.0032 (18)0.0046 (14)0.0077 (17)
c60.078 (2)0.065 (2)0.097 (3)0.0018 (18)0.004 (2)0.007 (2)
c70.0410 (14)0.0475 (14)0.0647 (18)0.0082 (11)0.0025 (13)0.0124 (13)
Geometric parameters (Å, º) top
Cu1—Cl32.2183 (9)c10—h100.9300
Cu1—Cl12.2333 (8)c5—c41.348 (5)
Cu1—Cl22.2426 (9)c5—c61.488 (5)
Cu1—Cl42.2517 (9)n1—h1a0.8600
N4—C71.345 (4)n1—h1b0.8600
N4—C111.362 (4)c2—c31.343 (5)
n4—h40.8600c2—h2a0.9300
c8—c91.345 (5)c3—c41.386 (5)
c8—c71.394 (4)c3—h30.9300
c8—h80.9300c12—h12a0.9600
C1—N11.328 (4)c12—h12b0.9600
C1—N21.337 (4)c12—h12c0.9600
c1—c21.401 (4)N3—C71.330 (4)
N2—C51.363 (4)n3—h3a0.8600
n2—h20.8600n3—h3b0.8600
c11—c101.348 (4)c4—h4a0.9300
c11—c121.492 (4)c6—h6a0.9600
c9—c101.399 (5)c6—h6b0.9600
c9—h90.9300c6—h6c0.9600
cl3—cu1—cl1100.96 (4)c1—n1—h1a120.0
cl3—cu1—cl2132.57 (4)c1—n1—h1b120.0
cl1—cu1—cl2100.71 (3)h1a—n1—h1b120.0
cl3—cu1—cl498.61 (4)c3—c2—c1118.4 (3)
cl1—cu1—cl4129.70 (4)c3—c2—h2a120.8
cl2—cu1—cl499.05 (4)c1—c2—h2a120.8
c7—n4—c11124.2 (3)c2—c3—c4121.6 (3)
c7—n4—h4117.9c2—c3—h3119.2
c11—n4—h4117.9c4—c3—h3119.2
c9—c8—c7119.2 (3)c11—c12—h12a109.5
c9—c8—h8120.4c11—c12—h12b109.5
c7—c8—h8120.4h12a—c12—h12b109.5
n1—c1—n2118.3 (3)c11—c12—h12c109.5
n1—c1—c2123.6 (3)h12a—c12—h12c109.5
n2—c1—c2118.1 (3)h12b—c12—h12c109.5
c1—n2—c5124.3 (2)c7—n3—h3a120.0
c1—n2—h2117.8c7—n3—h3b120.0
c5—n2—h2117.8h3a—n3—h3b120.0
c10—c11—n4117.9 (3)c5—c4—c3120.1 (3)
c10—c11—c12125.8 (3)c5—c4—h4a119.9
n4—c11—c12116.4 (3)c3—c4—h4a119.9
c8—c9—c10121.2 (3)c5—c6—h6a109.5
c8—c9—h9119.4c5—c6—h6b109.5
c10—c9—h9119.4h6a—c6—h6b109.5
c11—c10—c9119.7 (3)c5—c6—h6c109.5
c11—c10—h10120.2h6a—c6—h6c109.5
c9—c10—h10120.2h6b—c6—h6c109.5
c4—c5—n2117.3 (3)n3—c7—n4118.2 (3)
c4—c5—c6126.2 (3)n3—c7—c8124.0 (3)
n2—c5—c6116.4 (3)n4—c7—c8117.8 (3)
n1—c1—n2—c5179.5 (3)n1—c1—c2—c3179.5 (3)
c2—c1—n2—c51.6 (4)n2—c1—c2—c30.5 (4)
c7—n4—c11—c101.1 (4)c1—c2—c3—c41.2 (5)
c7—n4—c11—c12178.0 (3)n2—c5—c4—c31.0 (5)
c7—c8—c9—c100.8 (4)c6—c5—c4—c3180.0 (3)
n4—c11—c10—c91.3 (4)c2—c3—c4—c52.1 (5)
c12—c11—c10—c9179.8 (3)c11—n4—c7—n3177.7 (3)
c8—c9—c10—c112.2 (5)c11—n4—c7—c82.5 (4)
c1—n2—c5—c40.8 (4)c9—c8—c7—n3178.8 (3)
c1—n2—c5—c6178.3 (3)c9—c8—c7—n41.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl40.862.933.453 (4)121
N1—H1A···Cl20.862.953.655 (4)141
N1—H1B···Cl3i0.862.603.399 (4)157
N1—H1B···Cl1i0.862.953.511 (4)125
N3—H3B···Cl1ii0.862.513.347 (4)166
N3—H3B···Cl2ii0.862.863.277 (4)112
N2—H2···Cl20.862.313.162 (4)171
N3—H3A···Cl40.862.853.585 (4)144
N4—H4···Cl40.862.363.204 (4)169
C6—H6C···Cl3iii0.962.783.670 (4)155
C12—H12B···Cl1iv0.962.943.781 (4)147
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+1, y+2, z+1; (iv) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula(C6H9N2)2[CuCl4]
Mr423.65
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.7466 (17), 8.0372 (18), 14.969 (3)
α, β, γ (°)78.922 (4), 82.154 (4), 89.911 (4)
V3)905.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.35 × 0.34 × 0.30
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.549, 0.578
No. of measured, independent and
observed [I > 2σ(I)] reflections
4783, 3206, 3161
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.05
No. of reflections3161
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.33

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—Cl32.2183 (9)N4—C111.362 (4)
Cu1—Cl12.2333 (8)C1—N11.328 (4)
Cu1—Cl22.2426 (9)C1—N21.337 (4)
Cu1—Cl42.2517 (9)N2—C51.363 (4)
N4—C71.345 (4)N3—C71.330 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl40.862.933.453 (4)121.4
N1—H1A···Cl20.862.953.655 (4)141.1
N1—H1B···Cl3i0.862.603.399 (4)156.6
N1—H1B···Cl1i0.862.953.511 (4)125.0
N3—H3B···Cl1ii0.862.513.347 (4)165.5
N3—H3B···Cl2ii0.862.863.277 (4)112.0
N2—H2···Cl20.862.313.162 (4)171.0
N3—H3A···Cl40.862.853.585 (4)144.3
N4—H4···Cl40.862.363.204 (4)169.3
C6—H6C···Cl3iii0.962.783.670 (4)154.7
C12—H12B···Cl1iv0.962.943.781 (4)146.5
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+1, y+2, z+1; (iv) x, y+2, z+2.
 

Acknowledgements

We are grateful for the financial support of the Natural Science Foundation of Tibet (2009-10-12) and the Natural Science Foundation of the Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education (2009-11-12).

References

First citationAntolini, L., Benedetti, A., Fabretti, A. C. & Giusti, A. (1988). Inorg. Chem. 27, 2192–2194.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoffey, T. J., Landee, C. P., Robinson, W. T., Turnbull, M. M., Winn, M. & Woodward, F. M. (2000). Inorg. Chim. Acta, 303, 54–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationFeng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786–m1787.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHammar, P. R., Dender, D. C., Reich, D. H., Albrecht, A. & Landee, C. P. (1997). J. Appl. Phys. 81, 4615–4617.  CSD CrossRef Web of Science Google Scholar
First citationInuzuka, K. & Fujimoto, A. (1986). Spectrochim. Acta A, 42, 929–937.  CrossRef Web of Science Google Scholar
First citationInuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 971–975.  CrossRef CAS Web of Science Google Scholar
First citationIshikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305–2312.  Web of Science CrossRef CAS Google Scholar
First citationJin, Z.-M., Pan, Y.-J., Hu, M.-L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Z.-M., Pan, Y.-J., Liu, J.-G. & Xu, D.-J. (2000). J. Chem. Crystallogr. 30, 195–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJin, Z.-M., Tu, B., He, L., Hu, M.-L. & Zou, J.-W. (2005). Acta Cryst. C61, m197–m199.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLuque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.  CSD CrossRef Web of Science Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPlace, H. & Willett, R. D. (1987). Acta Cryst. C43, 1497–1500.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZanchini, C. & Willett, R. D. (1990). Inorg. Chem. 29, 3027–3030.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, J., Ye, L., Yu, J.-S. & Wu, L.-X. (2005). Acta Cryst. E61, m1633–m1634.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, P. & Drumheller, J. E. (1990). J. Appl. Phys. 67, 5755–5757.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1661-m1662
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds