metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1507-m1508

Di-μ-chlorido-bis­­(chlorido{2,2′-[3-(1H-imidazol-4-ylmeth­yl)-3-aza­pentane-1,5-di­yl]diphthalimide}copper(II))

aDepartment of Chemistry, Huangshan University, Huangshan 245041, People's Republic of China
*Correspondence e-mail: zhaopengqi@hsu.edu.cn

(Received 11 October 2009; accepted 29 October 2009; online 4 November 2009)

The centrosymmetric dinuclear CuII complex, [Cu2Cl4(C24H21N5O4)2], was synthesized by the reaction of CuCl2·2H2O with the tripodal ligand 2,2′-[3-(1H-imid­azol-4-ylmeth­yl)-3-aza­pentane-1,5-di­yl]diphthalimide (L). Each of the CuII ions is coordinated by two N atoms from the ligand, two bridging Cl atoms and one terminal Cl atom. The CuII coordination can be best be described as a transition state between four- and five-coordination, since one of the bridging Cl atoms has a much longer Cu—Cl bond distance [2.7069 (13) Å] than the other [2.2630 (12) Å]. In addition, the Cu⋯Cu distance is 3.622 (1) Å. The three-dimensional structrure is generated by N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds and ππ inter­actions [centroid–centroid distances = 3.658 (4) and 4.020 (4) Å].

Related literature

For the synthesis, see: Qi et al. (2008[Qi, Z.-P., Bai, Z.-S., Yuan, Q., Okamura, T., Cai, K., Su, Z., Sun, W.-Y. & Ueyama, N. (2008). Polyhedron, 27, 2672-2680.]). For the use of imidazole-containing tripodal ligands in supra­molecular chemistry and new functional materials, see: Higa et al. (2007[Higa, T., Moriya, M., Shimazaki, Y., Yajima, T., Tani, F., Karasawa, S., Nakano, M., Naruta, Y. & Yamauchi, O. (2007). Inorg. Chim. Acta, 360, 3304-3313.]); Kong et al. (2005[Kong, L.-Y., Zhang, Z.-H., Zhu, H.-F., Kawaguchi, H., Okamura, T., Doi, M., Chu, Q., Sun, W.-Y. & Ueyama, N. (2005). Angew. Chem. Int. Ed. 44, 4352-4355.]); Katsuki et al. (2002[Katsuki, I., Motoda, Y., Sunatsuki, Y., Matsumoto, N., Nakashima, T. & Kojima, M. (2002). J. Am. Chem. Soc. 124, 629-640.]). For a related structure with a similar coordination geometry around the metal atom, see: Yu et al. (2009[Yu, M.-M., Shi, Q.-Z., Zhang, Y.-N. & Li, Z.-X. (2009). Acta Cryst. E65, m744-m745.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl4(C24H21N5O4)2]

  • Mr = 1155.80

  • Monoclinic, P 21 /c

  • a = 8.4351 (9) Å

  • b = 14.6867 (16) Å

  • c = 20.1448 (19) Å

  • β = 105.593 (4)°

  • V = 2403.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 293 K

  • 0.2 × 0.1 × 0.1 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.86, Tmax = 0.89

  • 11745 measured reflections

  • 4218 independent reflections

  • 3394 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.150

  • S = 1.17

  • 4218 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N2 1.932 (4)
Cu1—N1 2.211 (4)
Cu1—Cl1 2.2431 (15)
Cu1—Cl2i 2.2630 (12)
Cu1—Cl2 2.7069 (13)
Symmetry code: (i) -x+2, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3ii 0.86 2.37 3.022 (6) 133
C3—H3B⋯Cl1iii 0.93 2.65 3.445 (6) 144
C4—H4A⋯O2ii 0.93 2.45 3.131 (7) 131
C6—H6B⋯O2 0.97 2.51 2.870 (7) 102
C15—H15A⋯Cl1i 0.97 2.82 3.769 (5) 165
C20—H20A⋯O1iv 0.93 2.53 3.218 (9) 131
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, imidazole-containing tripodal ligands have attracted much attention for their extensive use in supramolecular chemistry and new functional materials (Higa, et al., 2007; Kong et al., 2005; Katsuki, et al., 2002). Here, we synthesized a new tripodal ligand L, 3-(imidazole-4-yl-methyl)-1,5-diphthalimido-3-azapentane, and reported its CuII complex.

In this complex, the CuII ion is coordinated by two N atoms from the ligand, two bridging Cl atoms and one terminal Cl atom. The two bridging Cl atoms are quite different, the equatorial Cl atom exbits a Cu—Cl distance of 2.2630 (12) Å, while that of the axial Cl atom is much longer with 2.7069 (13) Å (Table 1). Thus, the CuII coordination can be better described as a transition state between 4 and 5 coordination. In addition, the Cu—Cu distance is about 3.622 Å. A dimer of two monomeric units bridged by two chlorido ions reveals an inversion centre in the middle of the molecule (Fig. 1). The dimers are further connected to form the three-dimensional packing by N—H···O, C—H···O, C—H···Cl hydrogen-bonds and ππ interactions involving neighbouring phthalamide rings [Cg1···Cg2(-x+2,y+1/2,-z+1/2) = 3.658 (4) and Cg1···Cg3(-x+1,y+1/2,-z+1/2 = 4.020 (4) Å where Cg1, Cg2 and Cg2 are the centroids of the N5/C17/C18/C23/C24, C18–C23 and N4/C7/C8/C13/C14 rings, respectively (Fig. 2)].

Related literature top

For the synthesis, see: Qi et al. (2008). For the use of imidazole-containing tripodal ligands in supramolecular chemistry and new functional materials, see: Higa et al. (2007); Kong et al. (2005); Katsuki et al. (2002). For a related structure with a simiar coordination geometry around the metal atom, see: Yu et al. (2009).

Experimental top

The tripodal ligand L, 3-(imidazole-4-yl-methyl)-1,5-diphthalimido-3-azapentane, was synthesized by a literature method (Qi et al., 2008). The title complex was synthesized as follows: a methanol solution (3 ml) of L (36.3 mg, 0.1 mmol) was added to a CH3CN solution (2 ml) of CuCl2.2H2O (17.0 mg, 0.1 mmol). Green crystals were obtained by slow evaporation of the solution in air for several days.

Refinement top

All H atoms were refined using a riding model. C—H values were set to 0.93 to 0.97 Å with Uiso(H) = 1.2 Ueq(C), and N—H values were set to 0.86 Å with Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labelling and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The three-dimensional packing of (I) viewed down the b axisrealized by N—H···O, C—H···O, C—H···Cl hydrogen-bonds (dashed lines) and ππ interactions.
Di-µ-chlorido-bis(chlorido{2,2'-[3-(1H-imidazol-4-ylmethyl)-3- azapentane-1,5-diyl]diphthalimide}copper(II)) top
Crystal data top
[Cu2Cl4(C24H21N5O4)2]F(000) = 1180
Mr = 1155.80Dx = 1.597 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1643 reflections
a = 8.4351 (9) Åθ = 2.5–21.3°
b = 14.6867 (16) ŵ = 1.17 mm1
c = 20.1448 (19) ÅT = 293 K
β = 105.593 (4)°Block, green
V = 2403.8 (4) Å30.2 × 0.1 × 0.1 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4218 independent reflections
Radiation source: fine-focus sealed tube3394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.86, Tmax = 0.89k = 179
11745 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.075P]
where P = (Fo2 + 2Fc2)/3
4218 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.30 e Å3
0 constraints
Crystal data top
[Cu2Cl4(C24H21N5O4)2]V = 2403.8 (4) Å3
Mr = 1155.80Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.4351 (9) ŵ = 1.17 mm1
b = 14.6867 (16) ÅT = 293 K
c = 20.1448 (19) Å0.2 × 0.1 × 0.1 mm
β = 105.593 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4218 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3394 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.89Rint = 0.047
11745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.17Δρmax = 0.61 e Å3
4218 reflectionsΔρmin = 0.30 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.93018 (7)0.11519 (4)0.50753 (3)0.0346 (2)
Cl11.12292 (17)0.19333 (11)0.58499 (8)0.0620 (4)
Cl20.89142 (14)0.05739 (8)0.54767 (6)0.0369 (3)
O10.7721 (7)0.4237 (3)0.4369 (2)0.0851 (15)
O20.9233 (5)0.2868 (3)0.26250 (19)0.0620 (11)
O30.6332 (6)0.1249 (3)0.1982 (2)0.0799 (14)
O40.5644 (5)0.1647 (3)0.2630 (2)0.0696 (12)
N10.7125 (5)0.1113 (2)0.41720 (19)0.0331 (9)
N20.7596 (5)0.1576 (3)0.54753 (19)0.0371 (9)
N30.5988 (6)0.2086 (3)0.6073 (2)0.0573 (13)
H3A0.56700.23390.64000.069*
N40.8396 (5)0.3347 (3)0.3553 (2)0.0426 (10)
N50.6000 (5)0.0116 (3)0.2470 (2)0.0445 (10)
C10.5748 (6)0.0876 (3)0.4473 (2)0.0372 (11)
H1A0.47040.10490.41580.045*
H1B0.57330.02250.45530.045*
C20.6000 (6)0.1372 (3)0.5129 (3)0.0374 (12)
C30.4990 (7)0.1690 (4)0.5504 (3)0.0496 (14)
H3B0.38490.16450.53920.060*
C40.7537 (7)0.2019 (4)0.6041 (3)0.0517 (14)
H4A0.84460.22500.63680.062*
C50.6910 (6)0.2056 (3)0.3885 (3)0.0395 (12)
H5A0.63330.24230.41460.047*
H5B0.62480.20370.34100.047*
C60.8551 (6)0.2485 (3)0.3918 (3)0.0489 (14)
H6A0.91440.25820.43960.059*
H6B0.91930.20690.37200.059*
C70.8081 (7)0.4161 (4)0.3837 (3)0.0510 (14)
C80.8283 (6)0.4883 (3)0.3344 (2)0.0424 (12)
C90.8152 (8)0.5819 (4)0.3369 (3)0.0586 (16)
H9A0.78580.61070.37300.070*
C100.8480 (8)0.6310 (4)0.2832 (3)0.0598 (16)
H10A0.84190.69420.28350.072*
C110.8889 (7)0.5882 (4)0.2298 (3)0.0557 (15)
H11A0.90830.62320.19430.067*
C120.9023 (7)0.4950 (4)0.2270 (3)0.0484 (13)
H12A0.93060.46640.19060.058*
C130.8722 (6)0.4459 (3)0.2804 (3)0.0410 (12)
C140.8824 (6)0.3467 (3)0.2942 (3)0.0412 (12)
C150.7243 (6)0.0443 (3)0.3632 (2)0.0383 (12)
H15A0.76590.01260.38570.046*
H15B0.80460.06650.34050.046*
C160.5645 (6)0.0249 (4)0.3085 (3)0.0477 (13)
H16A0.49940.01860.32610.057*
H16B0.50130.08060.29710.057*
C170.6355 (7)0.0435 (4)0.1965 (3)0.0555 (15)
C180.6740 (7)0.0193 (4)0.1452 (3)0.0559 (15)
C190.7175 (9)0.0007 (5)0.0860 (3)0.083 (2)
H19A0.72530.05870.07110.099*
C200.7496 (10)0.0755 (7)0.0492 (3)0.089 (2)
H20A0.78010.06590.00860.107*
C210.7373 (8)0.1627 (6)0.0710 (4)0.075 (2)
H21A0.76020.21120.04540.090*
C220.6916 (7)0.1796 (5)0.1305 (3)0.0638 (17)
H22A0.68350.23900.14530.077*
C230.6583 (7)0.1073 (4)0.1675 (3)0.0506 (14)
C240.6043 (7)0.1033 (4)0.2314 (3)0.0504 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0370 (4)0.0344 (4)0.0361 (4)0.0013 (3)0.0159 (3)0.0045 (3)
Cl10.0480 (8)0.0709 (11)0.0690 (10)0.0078 (7)0.0189 (7)0.0349 (8)
Cl20.0405 (7)0.0386 (7)0.0359 (7)0.0054 (5)0.0173 (5)0.0011 (5)
O10.145 (5)0.064 (3)0.068 (3)0.003 (3)0.067 (3)0.005 (2)
O20.099 (3)0.039 (2)0.054 (2)0.013 (2)0.031 (2)0.0029 (19)
O30.123 (4)0.044 (3)0.076 (3)0.005 (3)0.031 (3)0.005 (2)
O40.094 (3)0.056 (3)0.063 (3)0.016 (2)0.029 (2)0.002 (2)
N10.040 (2)0.030 (2)0.034 (2)0.0029 (17)0.0180 (18)0.0043 (17)
N20.038 (2)0.043 (2)0.034 (2)0.0052 (19)0.0167 (19)0.0045 (19)
N30.067 (3)0.064 (3)0.050 (3)0.016 (3)0.031 (3)0.010 (2)
N40.055 (3)0.028 (2)0.048 (3)0.001 (2)0.021 (2)0.008 (2)
N50.059 (3)0.039 (3)0.034 (2)0.007 (2)0.011 (2)0.004 (2)
C10.036 (3)0.036 (3)0.042 (3)0.007 (2)0.014 (2)0.005 (2)
C20.044 (3)0.034 (3)0.042 (3)0.004 (2)0.024 (2)0.007 (2)
C30.049 (3)0.052 (4)0.055 (4)0.010 (3)0.025 (3)0.007 (3)
C40.058 (4)0.056 (4)0.044 (3)0.006 (3)0.018 (3)0.011 (3)
C50.046 (3)0.036 (3)0.040 (3)0.006 (2)0.019 (2)0.005 (2)
C60.052 (3)0.036 (3)0.058 (4)0.000 (2)0.014 (3)0.016 (3)
C70.066 (4)0.046 (3)0.047 (3)0.000 (3)0.026 (3)0.009 (3)
C80.056 (3)0.034 (3)0.041 (3)0.000 (2)0.019 (3)0.002 (2)
C90.093 (5)0.035 (3)0.053 (4)0.007 (3)0.028 (3)0.006 (3)
C100.088 (5)0.027 (3)0.066 (4)0.009 (3)0.023 (4)0.003 (3)
C110.074 (4)0.045 (4)0.053 (4)0.008 (3)0.024 (3)0.015 (3)
C120.068 (4)0.042 (3)0.041 (3)0.005 (3)0.026 (3)0.005 (3)
C130.053 (3)0.028 (3)0.043 (3)0.006 (2)0.015 (2)0.001 (2)
C140.056 (3)0.032 (3)0.036 (3)0.000 (2)0.013 (2)0.001 (2)
C150.045 (3)0.034 (3)0.040 (3)0.001 (2)0.018 (2)0.006 (2)
C160.047 (3)0.053 (4)0.043 (3)0.000 (3)0.012 (2)0.006 (3)
C170.067 (4)0.046 (4)0.048 (3)0.001 (3)0.006 (3)0.003 (3)
C180.066 (4)0.062 (4)0.038 (3)0.005 (3)0.011 (3)0.004 (3)
C190.118 (6)0.080 (5)0.058 (4)0.005 (5)0.037 (4)0.010 (4)
C200.107 (6)0.123 (7)0.044 (4)0.010 (5)0.033 (4)0.012 (5)
C210.066 (4)0.097 (6)0.066 (5)0.009 (4)0.023 (4)0.031 (4)
C220.057 (4)0.065 (4)0.063 (4)0.007 (3)0.005 (3)0.018 (3)
C230.051 (3)0.049 (4)0.047 (3)0.005 (3)0.005 (3)0.008 (3)
C240.055 (3)0.052 (4)0.041 (3)0.009 (3)0.008 (3)0.006 (3)
Geometric parameters (Å, º) top
Cu1—N21.932 (4)C5—H5B0.9700
Cu1—N12.211 (4)C6—H6A0.9700
Cu1—Cl12.2431 (15)C6—H6B0.9700
Cu1—Cl2i2.2630 (12)C7—C81.493 (7)
Cu1—Cl22.7069 (13)C8—C91.382 (7)
Cl2—Cu1i2.2630 (12)C8—C131.386 (7)
O1—C71.196 (6)C9—C101.389 (8)
O2—C141.192 (6)C9—H9A0.9300
O3—C171.198 (6)C10—C111.368 (8)
O4—C241.202 (6)C10—H10A0.9300
N1—C11.489 (5)C11—C121.376 (7)
N1—C151.489 (5)C11—H11A0.9300
N1—C51.492 (6)C12—C131.375 (6)
N2—C41.325 (6)C12—H12A0.9300
N2—C21.373 (6)C13—C141.481 (7)
N3—C41.329 (6)C15—C161.522 (7)
N3—C31.358 (7)C15—H15A0.9700
N3—H3A0.8600C15—H15B0.9700
N4—C71.382 (7)C16—H16A0.9700
N4—C141.383 (6)C16—H16B0.9700
N4—C61.452 (6)C17—C181.485 (8)
N5—C241.385 (7)C18—C191.366 (7)
N5—C171.392 (7)C18—C231.387 (8)
N5—C161.453 (6)C19—C201.393 (10)
C1—C21.472 (7)C19—H19A0.9300
C1—H1A0.9700C20—C211.367 (10)
C1—H1B0.9700C20—H20A0.9300
C2—C31.364 (6)C21—C221.377 (8)
C3—H3B0.9300C21—H21A0.9300
C4—H4A0.9300C22—C231.368 (8)
C5—C61.506 (6)C22—H22A0.9300
C5—H5A0.9700C23—C241.479 (7)
N2—Cu1—N178.75 (15)N4—C7—C8105.7 (4)
N2—Cu1—Cl191.52 (13)C9—C8—C13121.1 (5)
N1—Cu1—Cl1150.69 (11)C9—C8—C7131.1 (5)
N2—Cu1—Cl2i173.87 (13)C13—C8—C7107.8 (5)
N1—Cu1—Cl2i95.78 (10)C8—C9—C10116.9 (5)
Cl1—Cu1—Cl2i94.61 (5)C8—C9—H9A121.5
N2—Cu1—Cl290.81 (12)C10—C9—H9A121.5
N1—Cu1—Cl294.67 (10)C11—C10—C9121.3 (5)
Cl1—Cu1—Cl2113.23 (6)C11—C10—H10A119.3
Cl2i—Cu1—Cl286.86 (4)C9—C10—H10A119.3
Cu1i—Cl2—Cu193.14 (4)C10—C11—C12122.0 (5)
C1—N1—C15110.8 (4)C10—C11—H11A119.0
C1—N1—C5110.3 (3)C12—C11—H11A119.0
C15—N1—C5110.8 (3)C13—C12—C11117.1 (5)
C1—N1—Cu1103.7 (3)C13—C12—H12A121.5
C15—N1—Cu1114.5 (3)C11—C12—H12A121.5
C5—N1—Cu1106.4 (3)C12—C13—C8121.5 (5)
C4—N2—C2106.6 (4)C12—C13—C14130.5 (5)
C4—N2—Cu1136.2 (4)C8—C13—C14108.0 (4)
C2—N2—Cu1117.1 (3)O2—C14—N4124.4 (5)
C4—N3—C3108.8 (4)O2—C14—C13129.5 (5)
C4—N3—H3A125.6N4—C14—C13106.1 (4)
C3—N3—H3A125.6N1—C15—C16115.7 (4)
C7—N4—C14112.5 (4)N1—C15—H15A108.4
C7—N4—C6123.2 (4)C16—C15—H15A108.4
C14—N4—C6123.5 (4)N1—C15—H15B108.4
C24—N5—C17112.1 (4)C16—C15—H15B108.4
C24—N5—C16125.1 (4)H15A—C15—H15B107.4
C17—N5—C16122.8 (5)N5—C16—C15110.0 (4)
C2—C1—N1108.0 (4)N5—C16—H16A109.7
C2—C1—H1A110.1C15—C16—H16A109.7
N1—C1—H1A110.1N5—C16—H16B109.7
C2—C1—H1B110.1C15—C16—H16B109.7
N1—C1—H1B110.1H16A—C16—H16B108.2
H1A—C1—H1B108.4O3—C17—N5123.4 (6)
C3—C2—N2108.4 (5)O3—C17—C18130.4 (6)
C3—C2—C1134.8 (5)N5—C17—C18106.1 (5)
N2—C2—C1116.8 (4)C19—C18—C23122.7 (6)
N3—C3—C2106.1 (5)C19—C18—C17130.1 (6)
N3—C3—H3B127.0C23—C18—C17107.2 (5)
C2—C3—H3B127.0C18—C19—C20116.3 (7)
N2—C4—N3110.1 (5)C18—C19—H19A121.8
N2—C4—H4A125.0C20—C19—H19A121.8
N3—C4—H4A125.0C21—C20—C19121.7 (6)
N1—C5—C6110.9 (4)C21—C20—H20A119.2
N1—C5—H5A109.5C19—C20—H20A119.2
C6—C5—H5A109.5C20—C21—C22120.8 (7)
N1—C5—H5B109.5C20—C21—H21A119.6
C6—C5—H5B109.5C22—C21—H21A119.6
H5A—C5—H5B108.0C23—C22—C21118.7 (7)
N4—C6—C5112.7 (4)C23—C22—H22A120.7
N4—C6—H6A109.0C21—C22—H22A120.7
C5—C6—H6A109.0C22—C23—C18119.8 (5)
N4—C6—H6B109.0C22—C23—C24131.4 (6)
C5—C6—H6B109.0C18—C23—C24108.8 (5)
H6A—C6—H6B107.8O4—C24—N5125.6 (5)
O1—C7—N4125.1 (5)O4—C24—C23128.8 (5)
O1—C7—C8129.2 (5)N5—C24—C23105.6 (5)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3ii0.862.373.022 (6)133
C3—H3B···Cl1iii0.932.653.445 (6)144
C4—H4A···O2ii0.932.453.131 (7)131
C6—H6B···O20.972.512.870 (7)102
C15—H15A···Cl1i0.972.823.769 (5)165
C20—H20A···O1iv0.932.533.218 (9)131
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2Cl4(C24H21N5O4)2]
Mr1155.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.4351 (9), 14.6867 (16), 20.1448 (19)
β (°) 105.593 (4)
V3)2403.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.2 × 0.1 × 0.1
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.86, 0.89
No. of measured, independent and
observed [I > 2σ(I)] reflections
11745, 4218, 3394
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.150, 1.17
No. of reflections4218
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N21.932 (4)Cu1—Cl2i2.2630 (12)
Cu1—N12.211 (4)Cu1—Cl22.7069 (13)
Cu1—Cl12.2431 (15)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3ii0.862.373.022 (6)133
C3—H3B···Cl1iii0.932.653.445 (6)144
C4—H4A···O2ii0.932.453.131 (7)131
C6—H6B···O20.972.512.870 (7)102
C15—H15A···Cl1i0.972.823.769 (5)165
C20—H20A···O1iv0.932.533.218 (9)131
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Project of Huangshan University (2008xkjq020).

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHiga, T., Moriya, M., Shimazaki, Y., Yajima, T., Tani, F., Karasawa, S., Nakano, M., Naruta, Y. & Yamauchi, O. (2007). Inorg. Chim. Acta, 360, 3304–3313.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatsuki, I., Motoda, Y., Sunatsuki, Y., Matsumoto, N., Nakashima, T. & Kojima, M. (2002). J. Am. Chem. Soc. 124, 629–640.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKong, L.-Y., Zhang, Z.-H., Zhu, H.-F., Kawaguchi, H., Okamura, T., Doi, M., Chu, Q., Sun, W.-Y. & Ueyama, N. (2005). Angew. Chem. Int. Ed. 44, 4352–4355.  Web of Science CSD CrossRef CAS Google Scholar
First citationQi, Z.-P., Bai, Z.-S., Yuan, Q., Okamura, T., Cai, K., Su, Z., Sun, W.-Y. & Ueyama, N. (2008). Polyhedron, 27, 2672–2680.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, M.-M., Shi, Q.-Z., Zhang, Y.-N. & Li, Z.-X. (2009). Acta Cryst. E65, m744–m745.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1507-m1508
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds