metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1653-m1654

Chlorido(1-cyclo­pentyl­­idene-4-ethyl­thio­semicarbazidato-κ2N1,S)di­phenyl­tin(IV)

aDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: venkatraman04@yahoo.com

(Received 30 September 2009; accepted 9 November 2009; online 21 November 2009)

The Sn atom in the title compound, [Sn(C6H5)2(C8H14N3S)Cl], is penta­coordinated with a trigonal-bipyramidal coordination geometry. The 1-cyclo­pentyl­idene-4-ethyl­thio­semicarbazidate (cpetsc) ligand coordinates through the S atom and the N atom bonds to the cyclo­pentyl group, forming a five-membered ring with the Sn center. The chloride ligand and the coordinated N atom are in axial positions. In the crystal structure, inter­molecular N—H⋯Cl hydrogen bonds form chains along [101].

Related literature

For the biological activity of thio­semicarbazones, see: Dogmak et al. (1946[Dogmak, G., Behnisch, R., Meitzsch, F. & Scmidt, H. (1946). Naturwissenschaften, 33, 314-315.]); Klaymann et al. (1979[Klaymann, D. L., Bartosevich, J. F., Griffin, T. S., Mason, C. J. & Scovill, J. P. (1979). J. Med. Chem. 22, 855-862.]); Logan et al. (1975[Logan, J. C., Fox, M. P., Morgan, J. H., Makohon, A. M. & Pfay, C. J. J. (1975). Gen. Virol. 28, 271-283.]); Liberta & West (1992[Liberta, A. E. & West, D. X. (1992). Biometals, 5, 121-126.]). For their structural characteristics, see: Livingstone (1965[Livingstone, S. E. (1965). Quart. Rev. Chem. Soc. 19, 386-425.]); Akbar & Livingstone (1974[Akbar, A., & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101-132.]); Campbell (1975[Campbell, M. J. M. (1975). Coord. Chem. Rev. 15, 279-319.]); Padhey & Kauffman (1985[Padhey, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127-160.]); Haidue & Silverstru (1990[Haidue, I. & Silverstru, C. (1990). Coord. Chem. Rev. 99, 253-256.]); Huheey et al. (1993[Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry. Principles of Structure and Reactivity. 4th ed. New York: Harper Collins.]); West et al. (1990[West, D. X., Padhey, S. B., Sonawane, P. B. & Chikate, R. C. (1990). Asian J. Chem. Revs. 1, 125-137.], 1993[West, D. X., Liberta, A. E., Padhey, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. & Yernade, R. G. (1993). Coord. Chem. Rev. 123, 49-71.]); Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). For the anti­tumor activity of organotin(IV) complexes, see: Nath et al. (2001[Nath, M. S., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99-149.]); Pellerito & Nagy (2002[Pellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111-150.]). For related structures, see: Swesi et al. (2005[Swesi, A. T., Farina, Y. & Yamin, B. M. (2005). Acta Cryst. E61, m2421-m2423.], 2006[Swesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006). Acta Cryst. E62, m3016-m3017.]); Valente et al. (1998[Valente, E. J., Zubkowski, J. D., Jabalameli, A., Mazhari, S., Venkatraman, R. & Sullivan, R. H. (1998). J. Chem. Crystallogr. 28, 27-33.]); Huheey et al. (1993[Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry. Principles of Structure and Reactivity. 4th ed. New York: Harper Collins.]); Venkatraman et al. (1999[Venkatraman, R., Davis, K., Shelby, A., Zubkowski, J. D. & Valente, E. J. (1999). J. Chem. Crystallogr. 29, 429-434.]); Pal et al. (2002[Pal, I., Basuli, F. & Bhattacharya, S. (2002). Proc. Indian Acad. Sci. 114, 255-268.]); Teoh et al. (1999[Teoh, S.-G., Ang, S.-H., Fun, H.-K. & Ong, G. W. (1999). J. Organomet. Chem. 580, 17-21.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2(C8H14N3S)Cl]

  • Mr = 492.62

  • Monoclinic, P 21 /n

  • a = 8.9031 (9) Å

  • b = 22.951 (3) Å

  • c = 11.1381 (11) Å

  • β = 111.094 (4)°

  • V = 2123.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 90 K

  • 0.27 × 0.23 × 0.17 mm

Data collection
  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.698, Tmax = 0.792

  • 33496 measured reflections

  • 8756 independent reflections

  • 7543 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.062

  • S = 1.04

  • 8756 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −1.38 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C21 2.1331 (14)
Sn1—C31 2.1397 (14)
Sn1—N1 2.3123 (12)
Sn1—S1 2.4363 (4)
Sn1—Cl1 2.5095 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯Cl1i 0.80 (2) 2.71 (2) 3.4731 (15) 160 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiosemicarbazones can contain chemically active –N(H)C(S) or NN(H)C(S) chromophores which make them unique in their reactivity. They are also well known for biological activities (Klaymann et al., 1979; Logan et al., 1975) since the original discovery of their anti-tubercular activity by Dogmak et al. (1946). Many review articles have appeared in the literature highlighting their structural characteristics (Livingstone 1965; Akbar & Livingstone, 1974, Campbell, 1975; Padhey & Kauffman, 1985; Haidue & Silverstru, 1990; West et al., 1990; 1993; Lobana et al., 2009). Among the non-transition metallo-pharmaceuticals, organotin (IV) complexes have demonstrated relatively high antitumor activity (Nath et al., 2001, Pellerito & Nagy, 2002). The present report describes the structure of a diiorganotin(IV) complex with N4 ethyl-substituted cyclopentanothiosemicarbazone, cpetsc.

The reaction of cpetsc with SnPh2Cl2 formed a monomeric anionic complex (see Fig. 1). The geometry of the tin(IV) center is penta-coordinated with a distorted trigonal bipyramidal (TBP) geometry. The two phenyl carbons C21 and C31 are positioned at the equatorial plane, while the azomethine nitrogen N1 and chlorine atoms, Cl1 occupy the axial positions. The bond distances involving the Sn atom are comparable to the reported values for dimethyl and diphenyl tin(IV) complexes of acetone (Swesi et al., 2005, Swesi et al., 2006) and diphenyl tin(IV) dichloro thiophene-2-carboxaldehyde (Teoh et al. 1999).

Significant lengthening of the C S bond and shortening of the C—N bond is observed as compared with the parent ligand (Valente et al., 1998, Venkatraman et al., 1999). The C—S bond distance (1.7709 Å) is relatively shorter than a single bond distance (1.81 Å) but longer than a C—S double bond (1.62 Å) distance (Huheey et al., 1993). The nature of coordination exhibited by the thiosemicarbazones are mainly due to the E and Z configuration of the ligand and the mode of coordination depends on the steric bulk of the carbonylic carbon atom linked trans to the hydrazinic nitrogen. A stable five-membered ring will be formed if the carbonylic carbon carries a small group, or else a four membered ring with larger group (Pal et al., 2002). In the present case, the metal is bound by the thiosemicarbazone, forming a five-membered chelate ring.

N—H···Cl intermolecular hydrogen bonds form chains along [1 0 1], as shown in Figure 2.

Related literature top

For the biological activity of thiosemicarbazones, see: Dogmak et al. (1946); Klaymann et al. (1979); Logan et al. (1975); Liberta & West (1992). For their structural characteristics, see: Livingstone (1965); Akbar & Livingstone (1974); Campbell (1975); Padhey & Kauffman (1985); Haidue & Silverstru (1990); Huheey et al. (1993); West et al. (1990, 1993); Lobana et al. (2009). For the antitumor activity of organotin(IV) complexes, see: Nath et al. (2001); Pellerito & Nagy (2002). For related structures, see: Swesi et al. (2005, 2006); Valente et al. (1998); Huheey et al. (1993); Venkatraman et al. (1999); Pal et al. (2002); Teoh et al. (1999).

Experimental top

A solution of diphenyltindichloride (0.344 g, 1.0 mmol) in dry methanol (10 ml) was added slowly to a boiling solution of cyclopentano-4-ethyl-3-thiosemicarbazone (0.185 g, 1.0 mmol). in methanol (50 ml) (Valente et al., 1998, Venkatraman et al., 1999). The resulting mixture was refluxed for a period of 2 h and then allowed to cool to room temperature in presence of air. Colorless rods of the title complex were obtained on slow evaporation of the solvent (yield approx. 65%, mp 460–462 K) at room temperature (C20H24ClN3SSn, C, 47.55%, H, 5.45%, N, 8.48%, S, 6.45%). 1HNMR: 7.67ppm, 9.73ppm. Main IR peaks (KBr): νN—H 3400, 3305, 3080 cm-1, νC=S 820, 730, 705 cm-1.

Refinement top

Hydrogen atoms were placed in idealized positions, with C—H bond distances 0.95 - 0.99 Å, and thereafter treated as riding. Displacement parameters for H were assigned as Uiso = 1.2Ueq of the attached atom (1.5 for methyl). A torsional parameter was refined for the methyl group. The largest negative residual difference map peak is 0.74 Å from the Sn atom.

Computing details top

Data collection: COLLECT (Nonius 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the numbering scheme and ellipsoids at the 50% level.
[Figure 2] Fig. 2. A portion of the hydrogen-bonded chain extending in along [1 0 1]. Hydrogen bonds are shown as dotted lines.
Chlorido(1-cyclopentylidene-4-ethylthiosemicarbazidato- κ2N1,S)diphenyltin(IV) top
Crystal data top
[Sn(C6H5)2(C8H14N3S)Cl]F(000) = 992
Mr = 492.62Dx = 1.541 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8037 reflections
a = 8.9031 (9) Åθ = 2.5–34.8°
b = 22.951 (3) ŵ = 1.44 mm1
c = 11.1381 (11) ÅT = 90 K
β = 111.094 (4)°Fragment, colorless
V = 2123.4 (4) Å30.27 × 0.23 × 0.17 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
8756 independent reflections
Radiation source: fine-focus sealed tube7543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scansθmax = 34.8°, θmin = 3.0°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.698, Tmax = 0.792k = 3535
33496 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0232P)2 + 1.4419P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
8756 reflectionsΔρmax = 0.64 e Å3
240 parametersΔρmin = 1.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00150 (18)
Crystal data top
[Sn(C6H5)2(C8H14N3S)Cl]V = 2123.4 (4) Å3
Mr = 492.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9031 (9) ŵ = 1.44 mm1
b = 22.951 (3) ÅT = 90 K
c = 11.1381 (11) Å0.27 × 0.23 × 0.17 mm
β = 111.094 (4)°
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
8756 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
7543 reflections with I > 2σ(I)
Tmin = 0.698, Tmax = 0.792Rint = 0.022
33496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.64 e Å3
8756 reflectionsΔρmin = 1.38 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.542305 (11)0.626341 (4)0.258844 (9)0.01109 (3)
Cl10.25741 (4)0.662360 (15)0.18735 (4)0.01732 (7)
S10.58505 (5)0.680095 (16)0.45705 (4)0.01588 (7)
N10.80541 (14)0.60297 (5)0.38227 (11)0.0127 (2)
N20.88356 (16)0.63137 (5)0.49842 (12)0.0148 (2)
N30.86198 (18)0.69504 (6)0.64811 (13)0.0192 (2)
H3N0.817 (3)0.7237 (10)0.660 (2)0.023*
C10.79332 (18)0.66634 (6)0.53568 (14)0.0147 (2)
C31.0332 (2)0.68887 (7)0.72462 (17)0.0249 (3)
H3A1.06940.72300.78220.030*
H3B1.09510.68820.66650.030*
C41.0678 (3)0.63345 (8)0.8051 (2)0.0403 (6)
H4A1.01730.63600.86990.060*
H4B1.18440.62880.84800.060*
H4C1.02410.59980.74910.060*
C110.89645 (16)0.56885 (6)0.34655 (13)0.0125 (2)
C121.07472 (17)0.56124 (7)0.41598 (14)0.0154 (2)
H12A1.09830.54650.50450.018*
H12B1.13240.59850.42040.018*
C131.12338 (17)0.51630 (7)0.33416 (15)0.0167 (3)
H13A1.11910.47620.36560.020*
H13B1.23330.52410.33550.020*
C140.99740 (17)0.52473 (7)0.19811 (14)0.0161 (3)
H14A1.02320.55910.15530.019*
H14B0.99010.48980.14410.019*
C150.84068 (17)0.53416 (6)0.22362 (13)0.0140 (2)
H15A0.76100.55620.15270.017*
H15B0.79270.49660.23480.017*
C210.47816 (16)0.53643 (6)0.24833 (13)0.0128 (2)
C220.36518 (19)0.51214 (7)0.13708 (15)0.0179 (3)
H220.31480.53590.06360.021*
C230.3266 (2)0.45318 (7)0.13406 (16)0.0223 (3)
H230.25000.43680.05840.027*
C240.3997 (2)0.41813 (7)0.24138 (17)0.0215 (3)
H240.37320.37790.23880.026*
C250.51138 (19)0.44199 (7)0.35228 (16)0.0188 (3)
H250.56090.41820.42570.023*
C260.55061 (17)0.50098 (6)0.35548 (14)0.0152 (2)
H260.62730.51720.43130.018*
C310.60608 (17)0.67142 (6)0.11590 (14)0.0140 (2)
C320.4852 (2)0.69413 (7)0.00748 (15)0.0183 (3)
H320.37540.68840.00340.022*
C330.5245 (2)0.72517 (8)0.08492 (16)0.0243 (3)
H330.44140.74010.15860.029*
C340.6850 (2)0.73426 (8)0.06946 (17)0.0257 (3)
H340.71140.75590.13190.031*
C350.8061 (2)0.71168 (7)0.03722 (17)0.0235 (3)
H350.91570.71750.04750.028*
C360.76722 (18)0.68049 (6)0.12944 (15)0.0171 (3)
H360.85090.66520.20240.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01215 (4)0.00957 (4)0.01273 (5)0.00074 (3)0.00592 (3)0.00121 (3)
Cl10.01357 (14)0.01546 (15)0.02368 (16)0.00282 (11)0.00761 (12)0.00180 (12)
S10.01974 (16)0.01448 (15)0.01573 (15)0.00316 (12)0.00920 (13)0.00064 (12)
N10.0134 (5)0.0116 (5)0.0126 (5)0.0001 (4)0.0042 (4)0.0010 (4)
N20.0179 (5)0.0123 (5)0.0132 (5)0.0000 (4)0.0043 (4)0.0020 (4)
N30.0266 (7)0.0136 (5)0.0163 (6)0.0001 (5)0.0065 (5)0.0036 (4)
C10.0210 (6)0.0101 (5)0.0132 (6)0.0003 (5)0.0065 (5)0.0015 (4)
C30.0310 (9)0.0161 (7)0.0201 (7)0.0033 (6)0.0003 (6)0.0042 (6)
C40.0507 (13)0.0213 (8)0.0283 (9)0.0043 (8)0.0106 (9)0.0016 (7)
C110.0122 (5)0.0121 (5)0.0134 (6)0.0001 (4)0.0049 (4)0.0007 (4)
C120.0120 (6)0.0172 (6)0.0158 (6)0.0005 (5)0.0038 (5)0.0010 (5)
C130.0131 (6)0.0202 (7)0.0182 (6)0.0029 (5)0.0073 (5)0.0001 (5)
C140.0157 (6)0.0189 (6)0.0159 (6)0.0021 (5)0.0084 (5)0.0003 (5)
C150.0137 (6)0.0150 (6)0.0137 (6)0.0009 (5)0.0056 (5)0.0020 (5)
C210.0131 (6)0.0124 (5)0.0154 (6)0.0006 (4)0.0080 (5)0.0011 (5)
C220.0222 (7)0.0173 (6)0.0140 (6)0.0023 (5)0.0065 (5)0.0006 (5)
C230.0302 (8)0.0199 (7)0.0187 (7)0.0074 (6)0.0110 (6)0.0058 (6)
C240.0285 (8)0.0121 (6)0.0283 (8)0.0029 (5)0.0157 (6)0.0023 (6)
C250.0190 (7)0.0139 (6)0.0248 (7)0.0017 (5)0.0094 (6)0.0057 (5)
C260.0145 (6)0.0144 (6)0.0171 (6)0.0002 (5)0.0063 (5)0.0026 (5)
C310.0169 (6)0.0117 (5)0.0143 (6)0.0002 (5)0.0070 (5)0.0000 (5)
C320.0214 (7)0.0174 (6)0.0153 (6)0.0010 (5)0.0056 (5)0.0017 (5)
C330.0334 (9)0.0227 (7)0.0167 (7)0.0036 (6)0.0090 (6)0.0058 (6)
C340.0388 (10)0.0217 (8)0.0233 (8)0.0003 (7)0.0191 (7)0.0065 (6)
C350.0273 (8)0.0206 (7)0.0289 (8)0.0028 (6)0.0178 (7)0.0037 (6)
C360.0182 (6)0.0149 (6)0.0196 (7)0.0015 (5)0.0085 (5)0.0017 (5)
Geometric parameters (Å, º) top
Sn1—C212.1331 (14)C14—H14A0.9900
Sn1—C312.1397 (14)C14—H14B0.9900
Sn1—N12.3123 (12)C15—H15A0.9900
Sn1—S12.4363 (4)C15—H15B0.9900
Sn1—Cl12.5095 (4)C21—C261.396 (2)
S1—C11.7709 (16)C21—C221.400 (2)
N1—C111.2887 (18)C22—C231.394 (2)
N1—N21.3909 (17)C22—H220.9500
N2—C11.3047 (19)C23—C241.393 (2)
N3—C11.3508 (19)C23—H230.9500
N3—C31.461 (2)C24—C251.389 (2)
N3—H3N0.80 (2)C24—H240.9500
C3—C41.522 (3)C25—C261.395 (2)
C3—H3A0.9900C25—H250.9500
C3—H3B0.9900C26—H260.9500
C4—H4A0.9800C31—C321.397 (2)
C4—H4B0.9800C31—C361.403 (2)
C4—H4C0.9800C32—C331.396 (2)
C11—C121.5047 (19)C32—H320.9500
C11—C151.505 (2)C33—C341.392 (3)
C12—C131.538 (2)C33—H330.9500
C12—H12A0.9900C34—C351.386 (3)
C12—H12B0.9900C34—H340.9500
C13—C141.539 (2)C35—C361.394 (2)
C13—H13A0.9900C35—H350.9500
C13—H13B0.9900C36—H360.9500
C14—C151.536 (2)
C21—Sn1—C31124.36 (5)C15—C14—C13102.96 (12)
C21—Sn1—N190.12 (5)C15—C14—H14A111.2
C31—Sn1—N194.09 (5)C13—C14—H14A111.2
C21—Sn1—S1119.41 (4)C15—C14—H14B111.2
C31—Sn1—S1115.63 (4)C13—C14—H14B111.2
N1—Sn1—S177.54 (3)H14A—C14—H14B109.1
C21—Sn1—Cl194.66 (4)C11—C15—C14102.62 (11)
C31—Sn1—Cl196.50 (4)C11—C15—H15A111.2
N1—Sn1—Cl1163.15 (3)C14—C15—H15A111.2
S1—Sn1—Cl186.050 (13)C11—C15—H15B111.2
C1—S1—Sn198.75 (5)C14—C15—H15B111.2
C11—N1—N2114.34 (12)H15A—C15—H15B109.2
C11—N1—Sn1124.93 (9)C26—C21—C22119.24 (13)
N2—N1—Sn1120.33 (9)C26—C21—Sn1118.99 (10)
C1—N2—N1115.15 (12)C22—C21—Sn1121.77 (10)
C1—N3—C3121.50 (14)C23—C22—C21120.02 (14)
C1—N3—H3N117.8 (16)C23—C22—H22120.0
C3—N3—H3N117.2 (16)C21—C22—H22120.0
N2—C1—N3118.03 (14)C24—C23—C22120.34 (15)
N2—C1—S1127.40 (11)C24—C23—H23119.8
N3—C1—S1114.56 (11)C22—C23—H23119.8
N3—C3—C4111.85 (16)C25—C24—C23119.94 (14)
N3—C3—H3A109.2C25—C24—H24120.0
C4—C3—H3A109.2C23—C24—H24120.0
N3—C3—H3B109.2C24—C25—C26119.85 (14)
C4—C3—H3B109.2C24—C25—H25120.1
H3A—C3—H3B107.9C26—C25—H25120.1
C3—C4—H4A109.5C25—C26—C21120.61 (14)
C3—C4—H4B109.5C25—C26—H26119.7
H4A—C4—H4B109.5C21—C26—H26119.7
C3—C4—H4C109.5C32—C31—C36118.50 (14)
H4A—C4—H4C109.5C32—C31—Sn1119.69 (11)
H4B—C4—H4C109.5C36—C31—Sn1121.78 (11)
N1—C11—C12125.18 (13)C33—C32—C31120.55 (15)
N1—C11—C15124.34 (12)C33—C32—H32119.7
C12—C11—C15110.35 (12)C31—C32—H32119.7
C11—C12—C13104.07 (11)C34—C33—C32120.25 (16)
C11—C12—H12A110.9C34—C33—H33119.9
C13—C12—H12A110.9C32—C33—H33119.9
C11—C12—H12B110.9C35—C34—C33119.81 (15)
C13—C12—H12B110.9C35—C34—H34120.1
H12A—C12—H12B109.0C33—C34—H34120.1
C12—C13—C14103.78 (11)C34—C35—C36120.07 (16)
C12—C13—H13A111.0C34—C35—H35120.0
C14—C13—H13A111.0C36—C35—H35120.0
C12—C13—H13B111.0C35—C36—C31120.82 (15)
C14—C13—H13B111.0C35—C36—H36119.6
H13A—C13—H13B109.0C31—C36—H36119.6
C21—Sn1—S1—C189.47 (6)C31—Sn1—C21—C26131.64 (11)
C31—Sn1—S1—C182.09 (6)N1—Sn1—C21—C2636.61 (11)
N1—Sn1—S1—C16.48 (6)S1—Sn1—C21—C2639.13 (12)
Cl1—Sn1—S1—C1177.41 (5)Cl1—Sn1—C21—C26127.21 (11)
C21—Sn1—N1—C1159.16 (12)C31—Sn1—C21—C2248.53 (14)
C31—Sn1—N1—C1165.32 (12)N1—Sn1—C21—C22143.57 (12)
S1—Sn1—N1—C11179.32 (12)S1—Sn1—C21—C22140.69 (11)
Cl1—Sn1—N1—C11165.84 (8)Cl1—Sn1—C21—C2252.61 (12)
C21—Sn1—N1—N2128.54 (10)C26—C21—C22—C230.2 (2)
C31—Sn1—N1—N2106.99 (10)Sn1—C21—C22—C23180.00 (12)
S1—Sn1—N1—N28.38 (9)C21—C22—C23—C240.1 (3)
Cl1—Sn1—N1—N221.85 (18)C22—C23—C24—C250.2 (3)
C11—N1—N2—C1179.64 (13)C23—C24—C25—C260.3 (2)
Sn1—N1—N2—C16.56 (16)C24—C25—C26—C210.2 (2)
N1—N2—C1—N3179.70 (12)C22—C21—C26—C250.0 (2)
N1—N2—C1—S11.32 (19)Sn1—C21—C26—C25179.85 (11)
C3—N3—C1—N21.9 (2)C21—Sn1—C31—C3284.09 (13)
C3—N3—C1—S1179.53 (12)N1—Sn1—C31—C32177.03 (12)
Sn1—S1—C1—N27.17 (14)S1—Sn1—C31—C32104.83 (11)
Sn1—S1—C1—N3174.40 (10)Cl1—Sn1—C31—C3216.10 (12)
C1—N3—C3—C480.7 (2)C21—Sn1—C31—C3697.81 (13)
N2—N1—C11—C123.6 (2)N1—Sn1—C31—C364.86 (12)
Sn1—N1—C11—C12169.12 (10)S1—Sn1—C31—C3673.28 (12)
N2—N1—C11—C15178.95 (12)Cl1—Sn1—C31—C36162.00 (11)
Sn1—N1—C11—C156.2 (2)C36—C31—C32—C330.1 (2)
N1—C11—C12—C13179.96 (14)Sn1—C31—C32—C33178.09 (12)
C15—C11—C12—C134.12 (16)C31—C32—C33—C340.5 (3)
C11—C12—C13—C1427.08 (15)C32—C33—C34—C350.9 (3)
C12—C13—C14—C1539.94 (14)C33—C34—C35—C360.7 (3)
N1—C11—C15—C14155.55 (14)C34—C35—C36—C310.1 (3)
C12—C11—C15—C1420.40 (15)C32—C31—C36—C350.3 (2)
C13—C14—C15—C1136.64 (14)Sn1—C31—C36—C35177.83 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Cl1i0.80 (2)2.71 (2)3.4731 (15)160 (2)
Symmetry code: (i) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2(C8H14N3S)Cl]
Mr492.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)8.9031 (9), 22.951 (3), 11.1381 (11)
β (°) 111.094 (4)
V3)2123.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.27 × 0.23 × 0.17
Data collection
DiffractometerNonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.698, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
33496, 8756, 7543
Rint0.022
(sin θ/λ)max1)0.803
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.04
No. of reflections8756
No. of parameters240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 1.38

Computer programs: COLLECT (Nonius 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
Sn1—C212.1331 (14)Sn1—S12.4363 (4)
Sn1—C312.1397 (14)Sn1—Cl12.5095 (4)
Sn1—N12.3123 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Cl1i0.80 (2)2.71 (2)3.4731 (15)160 (2)
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

RV acknowledges the support for supplies by the Grant JSU RISE program (NIH grant No. 1RO25GM067122). The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAkbar, A., & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101–132.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCampbell, M. J. M. (1975). Coord. Chem. Rev. 15, 279–319.  CrossRef CAS Web of Science Google Scholar
First citationDogmak, G., Behnisch, R., Meitzsch, F. & Scmidt, H. (1946). Naturwissenschaften, 33, 314–315.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHaidue, I. & Silverstru, C. (1990). Coord. Chem. Rev. 99, 253–256.  Google Scholar
First citationHuheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry. Principles of Structure and Reactivity. 4th ed. New York: Harper Collins.  Google Scholar
First citationKlaymann, D. L., Bartosevich, J. F., Griffin, T. S., Mason, C. J. & Scovill, J. P. (1979). J. Med. Chem. 22, 855–862.  CrossRef PubMed Web of Science Google Scholar
First citationLiberta, A. E. & West, D. X. (1992). Biometals, 5, 121–126.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLivingstone, S. E. (1965). Quart. Rev. Chem. Soc. 19, 386–425.  CrossRef CAS Web of Science Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationLogan, J. C., Fox, M. P., Morgan, J. H., Makohon, A. M. & Pfay, C. J. J. (1975). Gen. Virol. 28, 271–283.  CrossRef CAS Web of Science Google Scholar
First citationNath, M. S., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99–149.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPadhey, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127–160.  Google Scholar
First citationPal, I., Basuli, F. & Bhattacharya, S. (2002). Proc. Indian Acad. Sci. 114, 255–268.  CrossRef CAS Google Scholar
First citationPellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111–150.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006). Acta Cryst. E62, m3016–m3017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSwesi, A. T., Farina, Y. & Yamin, B. M. (2005). Acta Cryst. E61, m2421–m2423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTeoh, S.-G., Ang, S.-H., Fun, H.-K. & Ong, G. W. (1999). J. Organomet. Chem. 580, 17–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationValente, E. J., Zubkowski, J. D., Jabalameli, A., Mazhari, S., Venkatraman, R. & Sullivan, R. H. (1998). J. Chem. Crystallogr. 28, 27–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationVenkatraman, R., Davis, K., Shelby, A., Zubkowski, J. D. & Valente, E. J. (1999). J. Chem. Crystallogr. 29, 429–434.  Web of Science CSD CrossRef CAS Google Scholar
First citationWest, D. X., Liberta, A. E., Padhey, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. & Yernade, R. G. (1993). Coord. Chem. Rev. 123, 49–71.  CrossRef CAS Web of Science Google Scholar
First citationWest, D. X., Padhey, S. B., Sonawane, P. B. & Chikate, R. C. (1990). Asian J. Chem. Revs. 1, 125–137.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1653-m1654
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds