organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Di­methyl­ammonio)naphthalene-1-sulfonate dihydrate

aSchool of Chemical Engineering and Food Science, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: blueice8250@yahoo.com.cn

(Received 21 October 2009; accepted 27 October 2009; online 7 November 2009)

There are two formula units in the asymmetric unit of the title compound, C12H13NO3S·2H2O. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For potential applications of the title compound, see: Chimiak & Polonski (1973[Chimiak, A. & Polonski, T. (1973). Org. Prep. Proc. Int. 5, 117-124. ]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO3S·2H2O

  • Mr = 287.33

  • Monoclinic, P 21

  • a = 8.1179 (7) Å

  • b = 7.7383 (7) Å

  • c = 21.4249 (19) Å

  • β = 91.527 (1)°

  • V = 1345.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.23 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.943, Tmax = 0.975

  • 10210 measured reflections

  • 6004 independent reflections

  • 5808 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.12

  • 6004 reflections

  • 377 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2440 Friedel pairs

  • Flack parameter: 0.09 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4Wi 1.00 (3) 1.73 (3) 2.689 (3) 159 (2)
N2—H2A⋯O1W 0.91 (3) 1.83 (3) 2.720 (3) 165 (2)
O1W—H1WA⋯O2W 0.65 (5) 2.07 (5) 2.702 (3) 165 (5)
O1W—H1WB⋯O1Bii 0.74 (4) 2.07 (5) 2.784 (3) 164 (5)
O2W—H2WA⋯O2A 0.74 (5) 2.10 (5) 2.828 (3) 169 (5)
O2W—H2WB⋯O3Biii 0.65 (4) 2.47 (5) 3.075 (3) 156 (7)
O3W—H3WA⋯O3A 0.73 (4) 2.12 (4) 2.844 (3) 173 (5)
O3W—H3WB⋯O2Biii 0.80 (4) 2.07 (4) 2.856 (3) 167 (4)
O4W—H4WA⋯O1A 0.71 (5) 2.14 (5) 2.820 (3) 162 (6)
O4W—H4WB⋯O3Wiv 0.86 (5) 1.89 (5) 2.732 (3) 165 (5)
C1A—H1A1⋯O1Av 0.96 2.47 3.117 (3) 125
C1A—H1A2⋯O1Wi 0.96 2.54 3.424 (4) 154
C2A—H2A1⋯O3Avi 0.96 2.43 3.382 (4) 170
C2A—H2A3⋯O2Avii 0.96 2.45 3.345 (4) 156
C6B—H6B⋯O3B 0.93 2.49 3.077 (3) 122
C1B—H1B1⋯O1Bviii 0.96 2.46 3.253 (3) 140
C1B—H1B2⋯O1Aix 0.96 2.57 3.475 (3) 157
C9A—H9A⋯O1A 0.93 2.40 2.824 (3) 108
C9B—H9B⋯O1B 0.93 2.39 2.815 (3) 108
C2B—H2B1⋯O2Bx 0.96 2.36 3.310 (3) 169
C2B—H2B3⋯O3Biii 0.96 2.43 3.286 (3) 149
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z]; (iii) [-x+1, y+{\script{1\over 2}}, -z]; (iv) x-1, y, z; (v) [-x+1, y-{\script{1\over 2}}, -z+1]; (vi) [-x+2, y-{\script{1\over 2}}, -z+1]; (vii) [-x+2, y+{\script{1\over 2}}, -z+1]; (viii) [-x, y-{\script{1\over 2}}, -z]; (ix) x, y-1, z; (x) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Dansyl acid (5-(dimethylamino)-1-naphthalenesulfonic acid) is an inermidiate that can be used in the preparation of dansyl chloride (Chimiak & Polonski, 1973; Mildenstein, 1971) and is used as a dye due to its good fluorescent property and water solublity. In order to obtain the pure standard sample, the title compound, (I), was crystallized from the technical grade dansyl acid, and we report the crystal stucture herein.

In the molecular structure (Fig. 1), the N atom of the dimethylamino group is protonated. There are two crystallographically independent molecules in the asymmetric unit. All bond lengths and bond angles are as expected. In the crystal structure (Fig.2), the molecules are linked by intermolecular O—H···O, N—H···O and weak C-H···O hydrogen bonds to form a three-dimensional network.

Related literature top

For potential applications of the title compound, see: Chimiak & Polonski (1973).

Experimental top

The title compound was crystallized from technical grade dansyl acid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in water at room temperature.

Refinement top

All H atoms were placed in idealized positions [C—H(methyl)=0.96 Å and C—H(aromatic) =0.93 Å] and included in the refinement in the riding-model approximation, with Uiso(Hmethyl)= 1.5Ueq(C) and Uiso(Haromatic) = 1.2Ueq(C). H atoms bonded to N and O atoms were located from the difference maps with the N-H and O-H distances refined freely and Uiso(H) = 1.2Ueq(N) and 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level and hydrogen bonds shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.
5-(Dimethylammonio)naphthalene-1-sulfonate dihydrate top
Crystal data top
C12H13NO3S·2H2OF(000) = 608
Mr = 287.33Dx = 1.419 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5479 reflections
a = 8.1179 (7) Åθ = 2.5–28.2°
b = 7.7383 (7) ŵ = 0.26 mm1
c = 21.4249 (19) ÅT = 298 K
β = 91.527 (1)°Block, colorless
V = 1345.4 (2) Å30.23 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
6004 independent reflections
Radiation source: fine-focus sealed tube5808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.943, Tmax = 0.975k = 109
10210 measured reflectionsl = 2822
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.057P)2 + 0.1577P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
6004 reflectionsΔρmax = 0.30 e Å3
377 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 2440 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (6)
Crystal data top
C12H13NO3S·2H2OV = 1345.4 (2) Å3
Mr = 287.33Z = 4
Monoclinic, P21Mo Kα radiation
a = 8.1179 (7) ŵ = 0.26 mm1
b = 7.7383 (7) ÅT = 298 K
c = 21.4249 (19) Å0.23 × 0.10 × 0.10 mm
β = 91.527 (1)°
Data collection top
Bruker SMART CCD
diffractometer
6004 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5808 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.975Rint = 0.016
10210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108Δρmax = 0.30 e Å3
S = 1.12Δρmin = 0.25 e Å3
6004 reflectionsAbsolute structure: Flack (1983), 2440 Friedel pairs
377 parametersAbsolute structure parameter: 0.09 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.8222 (4)0.7568 (4)0.67513 (13)0.0591 (7)
H1A10.71410.74380.65640.089*
H1A20.81340.77040.71950.089*
H1A30.88680.65610.66660.089*
C2A1.0672 (3)0.9425 (4)0.68158 (12)0.0510 (6)
H2A11.13330.84010.67870.077*
H2A21.04960.96860.72470.077*
H2A31.12301.03740.66250.077*
C3A0.9124 (2)0.8994 (3)0.57984 (9)0.0311 (4)
C4A1.0527 (3)0.8477 (3)0.55268 (11)0.0387 (5)
H4A1.14550.82120.57720.046*
C5A1.0577 (3)0.8341 (3)0.48737 (11)0.0392 (5)
H5A1.15490.80030.46880.047*
C6A0.9221 (2)0.8697 (3)0.45084 (10)0.0342 (4)
H6A0.92770.86000.40770.041*
C7A0.7725 (2)0.9213 (3)0.47795 (9)0.0279 (4)
C8A0.6262 (2)0.9610 (3)0.44142 (9)0.0297 (4)
C9A0.4851 (3)1.0130 (3)0.46934 (10)0.0360 (5)
H9A0.39141.03770.44500.043*
C10A0.4811 (2)1.0293 (3)0.53469 (11)0.0377 (5)
H10A0.38491.06620.55320.045*
C11A0.6160 (3)0.9919 (3)0.57093 (10)0.0353 (4)
H11A0.61071.00240.61410.042*
C12A0.7652 (2)0.9370 (3)0.54411 (9)0.0289 (4)
C1B0.3679 (4)0.0780 (4)0.17998 (12)0.0604 (8)
H1B10.26180.10690.16210.091*
H1B20.35780.05610.22380.091*
H1B30.44260.17230.17410.091*
C2B0.5991 (3)0.1247 (4)0.17579 (10)0.0431 (5)
H2B10.67330.03030.16900.065*
H2B20.59070.14490.21980.065*
H2B30.64020.22680.15610.065*
C3B0.4261 (2)0.0636 (3)0.07984 (9)0.0306 (4)
C4B0.5612 (3)0.0130 (3)0.04898 (10)0.0356 (4)
H4B0.65830.01420.07080.043*
C5B0.5531 (3)0.0021 (3)0.01663 (11)0.0391 (5)
H5B0.64620.03110.03800.047*
C6B0.4122 (3)0.0391 (3)0.04930 (10)0.0339 (4)
H6B0.41060.03350.09270.041*
C7B0.2664 (2)0.0865 (3)0.01780 (9)0.0287 (4)
C8B0.1143 (2)0.1267 (3)0.04992 (9)0.0324 (4)
C9B0.0215 (3)0.1749 (3)0.01754 (11)0.0403 (5)
H9B0.11950.20020.03900.048*
C10B0.0137 (3)0.1863 (3)0.04774 (12)0.0442 (6)
H10B0.10670.21970.06910.053*
C11B0.1280 (3)0.1491 (3)0.08027 (10)0.0376 (5)
H11B0.13060.15630.12360.045*
C12B0.2723 (2)0.0993 (3)0.04870 (9)0.0284 (4)
N10.9038 (2)0.9135 (3)0.64846 (8)0.0348 (4)
H10.839 (3)1.018 (4)0.6606 (13)0.042*
N20.4328 (2)0.0813 (2)0.14853 (8)0.0337 (4)
H2A0.376 (3)0.178 (4)0.1585 (12)0.040*
O1A0.4551 (2)0.9795 (3)0.33829 (8)0.0511 (5)
O2A0.6634 (2)0.7583 (2)0.34646 (8)0.0451 (4)
O3A0.7434 (2)1.0568 (3)0.33579 (8)0.0504 (5)
O1B0.0802 (2)0.1413 (3)0.14705 (9)0.0578 (5)
O2B0.1916 (3)0.2632 (3)0.15466 (10)0.0725 (7)
O3B0.1561 (2)0.0440 (3)0.15347 (8)0.0560 (5)
O1W0.3130 (3)0.3943 (3)0.18320 (12)0.0594 (6)
H1WA0.366 (5)0.429 (6)0.203 (2)0.089*
H1WB0.240 (5)0.445 (6)0.173 (2)0.089*
O2W0.5713 (3)0.5395 (4)0.24571 (12)0.0736 (8)
H2WA0.589 (6)0.606 (7)0.270 (2)0.110*
H2WB0.624 (6)0.549 (8)0.223 (2)0.110*
O3W0.9865 (3)0.9308 (4)0.25417 (11)0.0628 (6)
H3WA0.920 (5)0.957 (6)0.274 (2)0.094*
H3WB0.951 (5)0.880 (6)0.224 (2)0.094*
O4W0.2032 (3)0.7313 (3)0.32222 (13)0.0709 (7)
H4WA0.279 (5)0.776 (7)0.328 (2)0.106*
H4WB0.140 (6)0.783 (6)0.295 (2)0.106*
S10.62169 (6)0.93747 (7)0.35870 (2)0.03361 (13)
S20.09379 (7)0.11939 (7)0.13279 (2)0.03875 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.088 (2)0.0488 (16)0.0404 (13)0.0201 (15)0.0035 (13)0.0103 (12)
C2A0.0517 (13)0.0543 (16)0.0459 (13)0.0016 (12)0.0224 (10)0.0105 (13)
C3A0.0355 (10)0.0276 (10)0.0298 (9)0.0024 (7)0.0062 (7)0.0011 (7)
C4A0.0331 (10)0.0371 (12)0.0454 (12)0.0024 (9)0.0077 (9)0.0004 (10)
C5A0.0327 (10)0.0397 (12)0.0454 (12)0.0076 (9)0.0050 (9)0.0031 (10)
C6A0.0347 (10)0.0359 (11)0.0322 (10)0.0022 (8)0.0026 (8)0.0044 (8)
C7A0.0302 (8)0.0250 (9)0.0284 (9)0.0013 (7)0.0019 (7)0.0036 (8)
C8A0.0321 (9)0.0281 (11)0.0287 (9)0.0006 (7)0.0039 (7)0.0018 (8)
C9A0.0313 (10)0.0399 (12)0.0364 (11)0.0044 (8)0.0056 (8)0.0041 (9)
C10A0.0281 (9)0.0446 (13)0.0406 (11)0.0040 (8)0.0046 (8)0.0095 (10)
C11A0.0365 (10)0.0408 (12)0.0286 (9)0.0022 (8)0.0018 (8)0.0085 (9)
C12A0.0313 (9)0.0256 (9)0.0295 (9)0.0026 (8)0.0018 (7)0.0020 (8)
C1B0.092 (2)0.0495 (16)0.0395 (13)0.0247 (15)0.0014 (13)0.0128 (12)
C2B0.0447 (11)0.0458 (13)0.0381 (11)0.0033 (11)0.0125 (9)0.0074 (11)
C3B0.0349 (10)0.0286 (10)0.0281 (9)0.0030 (7)0.0031 (7)0.0017 (7)
C4B0.0310 (9)0.0380 (12)0.0376 (11)0.0052 (8)0.0056 (8)0.0001 (9)
C5B0.0333 (10)0.0448 (13)0.0393 (11)0.0032 (9)0.0043 (8)0.0047 (10)
C6B0.0351 (10)0.0377 (11)0.0288 (10)0.0002 (8)0.0007 (8)0.0022 (8)
C7B0.0313 (9)0.0257 (10)0.0291 (9)0.0014 (7)0.0020 (7)0.0004 (7)
C8B0.0349 (9)0.0275 (10)0.0344 (9)0.0016 (8)0.0053 (7)0.0003 (9)
C9B0.0275 (10)0.0431 (13)0.0497 (13)0.0037 (8)0.0083 (9)0.0034 (10)
C10B0.0295 (10)0.0514 (14)0.0520 (14)0.0012 (9)0.0081 (9)0.0140 (11)
C11B0.0337 (10)0.0445 (13)0.0347 (10)0.0046 (9)0.0034 (8)0.0077 (10)
C12B0.0299 (8)0.0255 (10)0.0298 (9)0.0012 (7)0.0013 (7)0.0007 (7)
N10.0424 (9)0.0313 (10)0.0302 (8)0.0014 (7)0.0079 (7)0.0011 (7)
N20.0409 (9)0.0335 (10)0.0265 (8)0.0008 (7)0.0050 (7)0.0012 (7)
O1A0.0496 (9)0.0619 (12)0.0411 (9)0.0064 (8)0.0152 (7)0.0019 (8)
O2A0.0619 (10)0.0390 (9)0.0343 (8)0.0010 (8)0.0032 (7)0.0086 (7)
O3A0.0625 (11)0.0479 (11)0.0408 (9)0.0135 (8)0.0005 (8)0.0049 (8)
O1B0.0517 (10)0.0594 (13)0.0607 (11)0.0024 (9)0.0275 (8)0.0005 (10)
O2B0.0861 (15)0.0787 (16)0.0514 (12)0.0402 (13)0.0250 (10)0.0286 (11)
O3B0.0684 (12)0.0618 (13)0.0372 (9)0.0117 (10)0.0103 (8)0.0072 (9)
O1W0.0548 (12)0.0457 (12)0.0763 (14)0.0097 (8)0.0231 (10)0.0161 (10)
O2W0.0552 (12)0.096 (2)0.0693 (16)0.0101 (12)0.0061 (10)0.0406 (14)
O3W0.0552 (11)0.0704 (14)0.0619 (12)0.0060 (11)0.0140 (9)0.0246 (12)
O4W0.0612 (13)0.0593 (14)0.0908 (17)0.0175 (10)0.0267 (12)0.0331 (12)
S10.0395 (3)0.0342 (3)0.0268 (2)0.0021 (2)0.00519 (18)0.0009 (2)
S20.0428 (3)0.0390 (3)0.0337 (3)0.0061 (2)0.0122 (2)0.0076 (2)
Geometric parameters (Å, º) top
C1A—N11.502 (3)C3B—C4B1.354 (3)
C1A—H1A10.9600C3B—C12B1.427 (3)
C1A—H1A20.9600C3B—N21.477 (3)
C1A—H1A30.9600C4B—C5B1.408 (3)
C2A—N11.505 (3)C4B—H4B0.9300
C2A—H2A10.9600C5B—C6B1.356 (3)
C2A—H2A20.9600C5B—H5B0.9300
C2A—H2A30.9600C6B—C7B1.426 (3)
C3A—C4A1.353 (3)C6B—H6B0.9300
C3A—C12A1.431 (3)C7B—C12B1.428 (3)
C3A—N11.478 (3)C7B—C8B1.432 (3)
C4A—C5A1.405 (3)C8B—C9B1.369 (3)
C4A—H4A0.9300C8B—S21.780 (2)
C5A—C6A1.362 (3)C9B—C10B1.401 (3)
C5A—H5A0.9300C9B—H9B0.9300
C6A—C7A1.418 (3)C10B—C11B1.360 (3)
C6A—H6A0.9300C10B—H10B0.9300
C7A—C12A1.425 (3)C11B—C12B1.421 (3)
C7A—C8A1.438 (3)C11B—H11B0.9300
C8A—C9A1.367 (3)N1—H11.00 (3)
C8A—S11.781 (2)N2—H2A0.91 (3)
C9A—C10A1.407 (3)O1A—S11.4474 (17)
C9A—H9A0.9300O2A—S11.4525 (18)
C10A—C11A1.357 (3)O3A—S11.4481 (18)
C10A—H10A0.9300O1B—S21.4473 (17)
C11A—C12A1.419 (3)O2B—S21.452 (2)
C11A—H11A0.9300O3B—S21.436 (2)
C1B—N21.507 (3)O1W—H1WA0.65 (5)
C1B—H1B10.9600O1W—H1WB0.74 (4)
C1B—H1B20.9600O2W—H2WA0.74 (5)
C1B—H1B30.9600O2W—H2WB0.65 (4)
C2B—N21.495 (3)O3W—H3WA0.73 (4)
C2B—H2B10.9600O3W—H3WB0.80 (4)
C2B—H2B20.9600O4W—H4WA0.71 (5)
C2B—H2B30.9600O4W—H4WB0.86 (5)
N1—C1A—H1A1109.5C12B—C3B—N2117.15 (17)
N1—C1A—H1A2109.5C3B—C4B—C5B119.20 (19)
H1A1—C1A—H1A2109.5C3B—C4B—H4B120.4
N1—C1A—H1A3109.5C5B—C4B—H4B120.4
H1A1—C1A—H1A3109.5C6B—C5B—C4B121.30 (19)
H1A2—C1A—H1A3109.5C6B—C5B—H5B119.3
N1—C2A—H2A1109.5C4B—C5B—H5B119.3
N1—C2A—H2A2109.5C5B—C6B—C7B120.63 (19)
H2A1—C2A—H2A2109.5C5B—C6B—H6B119.7
N1—C2A—H2A3109.5C7B—C6B—H6B119.7
H2A1—C2A—H2A3109.5C6B—C7B—C12B118.94 (17)
H2A2—C2A—H2A3109.5C6B—C7B—C8B122.98 (18)
C4A—C3A—C12A122.02 (19)C12B—C7B—C8B118.05 (16)
C4A—C3A—N1120.80 (18)C9B—C8B—C7B120.73 (19)
C12A—C3A—N1117.15 (17)C9B—C8B—S2117.31 (16)
C3A—C4A—C5A119.84 (19)C7B—C8B—S2121.95 (15)
C3A—C4A—H4A120.1C8B—C9B—C10B120.50 (19)
C5A—C4A—H4A120.1C8B—C9B—H9B119.8
C6A—C5A—C4A120.8 (2)C10B—C9B—H9B119.8
C6A—C5A—H5A119.6C11B—C10B—C9B120.9 (2)
C4A—C5A—H5A119.6C11B—C10B—H10B119.6
C5A—C6A—C7A120.7 (2)C9B—C10B—H10B119.6
C5A—C6A—H6A119.7C10B—C11B—C12B120.7 (2)
C7A—C6A—H6A119.7C10B—C11B—H11B119.7
C6A—C7A—C12A119.34 (17)C12B—C11B—H11B119.7
C6A—C7A—C8A122.78 (17)C11B—C12B—C3B123.50 (18)
C12A—C7A—C8A117.89 (16)C11B—C12B—C7B119.17 (17)
C9A—C8A—C7A120.95 (18)C3B—C12B—C7B117.32 (17)
C9A—C8A—S1118.06 (15)C3A—N1—C1A110.61 (17)
C7A—C8A—S1120.97 (14)C3A—N1—C2A114.57 (18)
C8A—C9A—C10A120.24 (19)C1A—N1—C2A109.5 (2)
C8A—C9A—H9A119.9C3A—N1—H1110.9 (17)
C10A—C9A—H9A119.9C1A—N1—H1108.1 (16)
C11A—C10A—C9A120.70 (19)C2A—N1—H1102.7 (16)
C11A—C10A—H10A119.6C3B—N2—C2B114.75 (16)
C9A—C10A—H10A119.6C3B—N2—C1B111.46 (17)
C10A—C11A—C12A121.12 (19)C2B—N2—C1B109.40 (19)
C10A—C11A—H11A119.4C3B—N2—H2A107.8 (17)
C12A—C11A—H11A119.4C2B—N2—H2A100.6 (17)
C11A—C12A—C7A119.11 (17)C1B—N2—H2A112.4 (17)
C11A—C12A—C3A123.59 (18)H1WA—O1W—H1WB119 (5)
C7A—C12A—C3A117.29 (17)H2WA—O2W—H2WB109 (6)
N2—C1B—H1B1109.5H3WA—O3W—H3WB111 (4)
N2—C1B—H1B2109.5H4WA—O4W—H4WB112 (5)
H1B1—C1B—H1B2109.5O1A—S1—O3A113.26 (12)
N2—C1B—H1B3109.5O1A—S1—O2A112.35 (11)
H1B1—C1B—H1B3109.5O3A—S1—O2A112.54 (11)
H1B2—C1B—H1B3109.5O1A—S1—C8A105.78 (10)
N2—C2B—H2B1109.5O3A—S1—C8A106.03 (10)
N2—C2B—H2B2109.5O2A—S1—C8A106.16 (10)
H2B1—C2B—H2B2109.5O3B—S2—O1B112.84 (12)
N2—C2B—H2B3109.5O3B—S2—O2B112.01 (14)
H2B1—C2B—H2B3109.5O1B—S2—O2B112.41 (14)
H2B2—C2B—H2B3109.5O3B—S2—C8B108.15 (11)
C4B—C3B—C12B122.54 (18)O1B—S2—C8B105.76 (10)
C4B—C3B—N2120.31 (18)O2B—S2—C8B105.06 (11)
C12A—C3A—C4A—C5A1.7 (3)C7B—C8B—C9B—C10B0.2 (4)
N1—C3A—C4A—C5A179.6 (2)S2—C8B—C9B—C10B178.97 (19)
C3A—C4A—C5A—C6A1.0 (4)C8B—C9B—C10B—C11B0.3 (4)
C4A—C5A—C6A—C7A0.0 (4)C9B—C10B—C11B—C12B0.6 (4)
C5A—C6A—C7A—C12A0.5 (3)C10B—C11B—C12B—C3B178.0 (2)
C5A—C6A—C7A—C8A179.8 (2)C10B—C11B—C12B—C7B0.8 (3)
C6A—C7A—C8A—C9A178.9 (2)C4B—C3B—C12B—C11B178.6 (2)
C12A—C7A—C8A—C9A0.4 (3)N2—C3B—C12B—C11B0.4 (3)
C6A—C7A—C8A—S13.0 (3)C4B—C3B—C12B—C7B2.5 (3)
C12A—C7A—C8A—S1177.72 (15)N2—C3B—C12B—C7B178.49 (17)
C7A—C8A—C9A—C10A0.3 (3)C6B—C7B—C12B—C11B179.1 (2)
S1—C8A—C9A—C10A178.41 (18)C8B—C7B—C12B—C11B0.7 (3)
C8A—C9A—C10A—C11A0.8 (4)C6B—C7B—C12B—C3B0.1 (3)
C9A—C10A—C11A—C12A0.6 (4)C8B—C7B—C12B—C3B178.23 (19)
C10A—C11A—C12A—C7A0.0 (3)C4A—C3A—N1—C1A99.3 (3)
C10A—C11A—C12A—C3A178.6 (2)C12A—C3A—N1—C1A78.7 (3)
C6A—C7A—C12A—C11A178.8 (2)C4A—C3A—N1—C2A25.0 (3)
C8A—C7A—C12A—C11A0.5 (3)C12A—C3A—N1—C2A157.0 (2)
C6A—C7A—C12A—C3A0.2 (3)C4B—C3B—N2—C2B28.3 (3)
C8A—C7A—C12A—C3A179.17 (19)C12B—C3B—N2—C2B152.7 (2)
C4A—C3A—C12A—C11A179.8 (2)C4B—C3B—N2—C1B96.8 (3)
N1—C3A—C12A—C11A2.2 (3)C12B—C3B—N2—C1B82.2 (3)
C4A—C3A—C12A—C7A1.2 (3)C9A—C8A—S1—O1A1.0 (2)
N1—C3A—C12A—C7A179.19 (18)C7A—C8A—S1—O1A177.14 (17)
C12B—C3B—C4B—C5B2.9 (3)C9A—C8A—S1—O3A119.53 (19)
N2—C3B—C4B—C5B178.1 (2)C7A—C8A—S1—O3A62.32 (19)
C3B—C4B—C5B—C6B0.9 (4)C9A—C8A—S1—O2A120.57 (18)
C4B—C5B—C6B—C7B1.5 (4)C7A—C8A—S1—O2A57.58 (19)
C5B—C6B—C7B—C12B1.8 (3)C9B—C8B—S2—O3B130.4 (2)
C5B—C6B—C7B—C8B179.9 (2)C7B—C8B—S2—O3B50.4 (2)
C6B—C7B—C8B—C9B178.7 (2)C9B—C8B—S2—O1B9.3 (2)
C12B—C7B—C8B—C9B0.4 (3)C7B—C8B—S2—O1B171.49 (18)
C6B—C7B—C8B—S20.4 (3)C9B—C8B—S2—O2B109.8 (2)
C12B—C7B—C8B—S2178.75 (15)C7B—C8B—S2—O2B69.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4Wi1.00 (3)1.73 (3)2.689 (3)159 (2)
N2—H2A···O1W0.91 (3)1.83 (3)2.720 (3)165 (2)
O1W—H1WA···O2W0.65 (5)2.07 (5)2.702 (3)165 (5)
O1W—H1WB···O1Bii0.74 (4)2.07 (5)2.784 (3)164 (5)
O2W—H2WA···O2A0.74 (5)2.10 (5)2.828 (3)169 (5)
O2W—H2WB···O3Biii0.65 (4)2.47 (5)3.075 (3)156 (7)
O3W—H3WA···O3A0.73 (4)2.12 (4)2.844 (3)173 (5)
O3W—H3WB···O2Biii0.80 (4)2.07 (4)2.856 (3)167 (4)
O4W—H4WA···O1A0.71 (5)2.14 (5)2.820 (3)162 (6)
O4W—H4WB···O3Wiv0.86 (5)1.89 (5)2.732 (3)165 (5)
C1A—H1A1···O1Av0.962.473.117 (3)125
C1A—H1A2···O1Wi0.962.543.424 (4)154
C2A—H2A1···O3Avi0.962.433.382 (4)170
C2A—H2A3···O2Avii0.962.453.345 (4)156
C6B—H6B···O3B0.932.493.077 (3)122
C1B—H1B1···O1Bviii0.962.463.253 (3)140
C1B—H1B2···O1Aix0.962.573.475 (3)157
C9A—H9A···O1A0.932.402.824 (3)108
C9B—H9B···O1B0.932.392.815 (3)108
C2B—H2B1···O2Bx0.962.363.310 (3)169
C11A—H11A···N10.932.572.894 (3)101
C11B—H11B···N20.932.562.888 (3)101
C2B—H2B3···O3Biii0.962.433.286 (3)149
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1/2, z; (iii) x+1, y+1/2, z; (iv) x1, y, z; (v) x+1, y1/2, z+1; (vi) x+2, y1/2, z+1; (vii) x+2, y+1/2, z+1; (viii) x, y1/2, z; (ix) x, y1, z; (x) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formulaC12H13NO3S·2H2O
Mr287.33
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)8.1179 (7), 7.7383 (7), 21.4249 (19)
β (°) 91.527 (1)
V3)1345.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.23 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.943, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
10210, 6004, 5808
Rint0.016
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.12
No. of reflections6004
No. of parameters377
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.25
Absolute structureFlack (1983), 2440 Friedel pairs
Absolute structure parameter0.09 (6)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4Wi1.00 (3)1.73 (3)2.689 (3)159 (2)
N2—H2A···O1W0.91 (3)1.83 (3)2.720 (3)165 (2)
O1W—H1WA···O2W0.65 (5)2.07 (5)2.702 (3)165 (5)
O1W—H1WB···O1Bii0.74 (4)2.07 (5)2.784 (3)164 (5)
O2W—H2WA···O2A0.74 (5)2.10 (5)2.828 (3)169 (5)
O2W—H2WB···O3Biii0.65 (4)2.47 (5)3.075 (3)156 (7)
O3W—H3WA···O3A0.73 (4)2.12 (4)2.844 (3)173 (5)
O3W—H3WB···O2Biii0.80 (4)2.07 (4)2.856 (3)167 (4)
O4W—H4WA···O1A0.71 (5)2.14 (5)2.820 (3)162 (6)
O4W—H4WB···O3Wiv0.86 (5)1.89 (5)2.732 (3)165 (5)
C1A—H1A1···O1Av0.962.473.117 (3)124.8
C1A—H1A2···O1Wi0.962.543.424 (4)153.8
C2A—H2A1···O3Avi0.962.433.382 (4)169.9
C2A—H2A3···O2Avii0.962.453.345 (4)155.7
C6B—H6B···O3B0.932.493.077 (3)121.6
C1B—H1B1···O1Bviii0.962.463.253 (3)140.0
C1B—H1B2···O1Aix0.962.573.475 (3)157.0
C9A—H9A···O1A0.932.402.824 (3)107.5
C9B—H9B···O1B0.932.392.815 (3)107.8
C2B—H2B1···O2Bx0.962.363.310 (3)168.5
C11A—H11A···N10.932.572.894 (3)101.2
C11B—H11B···N20.932.562.888 (3)100.9
C2B—H2B3···O3Biii0.962.433.286 (3)148.9
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1/2, z; (iii) x+1, y+1/2, z; (iv) x1, y, z; (v) x+1, y1/2, z+1; (vi) x+2, y1/2, z+1; (vii) x+2, y+1/2, z+1; (viii) x, y1/2, z; (ix) x, y1, z; (x) x+1, y1/2, z.
 

Acknowledgements

The authors are grateful to the Science Technology Research Programme of the Education Office of Hubei Province (grant No. Q20092503) for financial support.

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChimiak, A. & Polonski, T. (1973). Org. Prep. Proc. Int. 5, 117–124.   CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMildenstein, V. K. (1971). Acta Histochem. Bd, 40, 29–50.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds