organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-[Piperazine-1,4-diylbis(propyl­ene­nitrilo­methyl­­idyne)]diphenol

aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, bHuaiyin Institute of Technology, Huaian 223003, People's Republic of China, and cMaterials Chemistry Laboratory, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
*Correspondence e-mail: xuruibo9125@163.com

(Received 25 October 2009; accepted 30 October 2009; online 4 November 2009)

In the title mol­ecule, C24H32N4O2, the piperazine ring adopts a chair conformation and the dihedral angle between the two benzene rings is 35.4 (1)°. In the crystal structure, inter­molecular O—H⋯N hydrogen bonds link mol­ecules into chains along [001].

Related literature

For the properties of piperazine derivatives, see: Keypour et al. (2008[Keypour, H., Rezaeivala, M., Valencia, L. & Pérez-Lourido, P. (2008). Polyhedron, 27, 3172-3176.], 2009[Keypour, H., Rezaeivala, M., Valencia, L., Pérez-Lourido, P. & Mahmoudkhani, A. H. (2009). Polyhedron, doi:10.1016/j.poly.2009,07.012.]); Paital et al. (2009[Paital, A. R., Mandal, D., Huang, X., Li, J., Aromic, G. & Ray, D. (2009). Dalton Trans. pp. 1352-1362.]). For related structures, see: Thirumurugan et al. (1998[Thirumurugan, R., Shanmuga Sundara Raj, S., Shanmugam, G., Fun, H.-K., Marappan, M. & Kandaswamy, M. (1998). Acta Cryst. C54, 644-645.]); Yogavel et al. (2003[Yogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. & Kandaswamy, M. (2003). Acta Cryst. E59, o83-o85.]).

[Scheme 1]

Experimental

Crystal data
  • C24H32N4O2

  • Mr = 408.54

  • Monoclinic, C c

  • a = 5.9701 (10) Å

  • b = 30.159 (3) Å

  • c = 12.8348 (18) Å

  • β = 97.558 (2)°

  • V = 2290.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.11 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.987, Tmax = 0.992

  • 5997 measured reflections

  • 2016 independent reflections

  • 1387 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.103

  • S = 0.96

  • 2016 reflections

  • 271 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1i 0.82 1.98 2.762 (4) 159
O1—H1⋯N2ii 0.82 2.00 2.780 (4) 159
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Piperazine derivatives possesses interesting structures and properties (Yogavel et al., 2003; Thirumurugan et al., 1998; Keypour et al., 2008,2009; Paital et al., 2009), therefore, our group have designed and prepared series of Schiff bases and complexes derived from substituted piperazines. As part of our work, the title compound (I) a potential hexadentate Schiff base ligand, was synthesized in our group and herein we report the crystal structure.

The molecular structure of (I) is shown in Fig. 1. In (I), the C8—N3 and C18—N4 double bond lengths are comparable to reported values (Yogavel et al., 2003; Thirumurugan et al., 1998). The dihedral angle between the two benzene rings (C9—C14 and C19—C24) is 35.4 (1) °. In the piperazine ring, atoms C1/C2/C3/C4 are essentially planar (the mean deviation from the plane is 0.0032 Å), and atoms N1 and N2 atom lie 0.6936 and 0.6693 Å either side of this plane. This four atom plane makes a dihedral angle of 50.9 (3)° with the plane of atoms C2/N2/C3 and 52.7 (3) ° with atoms C1/N1/C4, respectively, in accordance with the chair conformation of the piperazine ring. In the crystal structure, intermolecular O—H···N hydrogen bonds link molecules into one-dimensional chains along [001](Fig.2).

Related literature top

For the properties of piperazine derivatives, see: Keypour et al. (2008, 2009); Paital et al. (2009). For related structures, see: Thirumurugan et al. (1998); Yogavel et al. (2003).

Experimental top

A solution of N,N'-bis(N-aminopropyl)-piperazine (1.5 mmol in 10 ml anhydrous methanol) was added dropwise with constant stirring to a solution of parahydroxybenzaldehyde (3 mmol in 15 ml anhydrous methanol) at 325 K for 3 h. The resulting mixture was filtered. After cooling, the filtrate was evaporated at ambient environment. Several days later, pink crystals suitable for X-ray analysis were collected and washed with small amount of methanol and dried at room temperature.

Refinement top

H atoms were placed in calculated positions with C—H = 0.97 Å(piperazinyl), 0.93 Å(benzene), 0.82 Å(hydroxyl) and 0.97 Å(methylene), and refined in riding mode with Uiso(H)= 1.5 Ueq(O) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. One-dimensional chain structure of (1) constructed by O—H···N intermolecular hydrogen bonds (dashed lines) along [001].
4,4'-[Piperazine-1,4-diylbis(propylenenitrilomethylidyne)]diphenol top
Crystal data top
C24H32N4O2F(000) = 880
Mr = 408.54Dx = 1.185 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1760 reflections
a = 5.9701 (10) Åθ = 2.7–24.9°
b = 30.159 (3) ŵ = 0.08 mm1
c = 12.8348 (18) ÅT = 298 K
β = 97.558 (2)°Lamellate, pink
V = 2290.9 (6) Å30.17 × 0.15 × 0.11 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
2016 independent reflections
Radiation source: fine-focus sealed tube1387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 76
Tmin = 0.987, Tmax = 0.992k = 3035
5997 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0507P)2]
where P = (Fo2 + 2Fc2)/3
2016 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = 0.19 e Å3
Crystal data top
C24H32N4O2V = 2290.9 (6) Å3
Mr = 408.54Z = 4
Monoclinic, CcMo Kα radiation
a = 5.9701 (10) ŵ = 0.08 mm1
b = 30.159 (3) ÅT = 298 K
c = 12.8348 (18) Å0.17 × 0.15 × 0.11 mm
β = 97.558 (2)°
Data collection top
Siemens SMART CCD
diffractometer
2016 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1387 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.992Rint = 0.068
5997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 0.96Δρmax = 0.14 e Å3
2016 reflectionsΔρmin = 0.19 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6528 (5)0.39796 (9)0.5395 (2)0.0440 (7)
N20.6327 (5)0.34403 (9)0.7270 (2)0.0450 (7)
N30.6917 (7)0.47133 (10)0.2563 (2)0.0619 (9)
N40.5753 (7)0.26995 (10)1.0120 (2)0.0604 (9)
O11.0094 (5)0.38009 (9)0.1521 (2)0.0684 (8)
H10.89810.36530.17440.103*
O20.2701 (4)0.37289 (8)1.40788 (19)0.0592 (7)
H20.38800.37351.44860.089*
C10.5611 (7)0.41527 (12)0.6330 (3)0.0509 (10)
H1A0.44390.43690.61130.061*
H1B0.68040.43000.67890.061*
C20.4643 (7)0.37801 (12)0.6919 (3)0.0524 (10)
H2A0.40430.39010.75260.063*
H2B0.34030.36440.64670.063*
C30.7284 (7)0.32708 (12)0.6338 (3)0.0510 (10)
H3A0.61110.31220.58710.061*
H3B0.84640.30570.65600.061*
C40.8247 (6)0.36472 (12)0.5762 (3)0.0504 (10)
H4A0.94530.37880.62260.060*
H4B0.88900.35300.51630.060*
C50.7518 (7)0.43362 (13)0.4807 (3)0.0552 (10)
H5A0.82020.42030.42370.066*
H5B0.87120.44790.52730.066*
C60.5862 (8)0.46839 (13)0.4356 (3)0.0628 (11)
H6A0.54900.48730.49200.075*
H6B0.44810.45400.40440.075*
C70.6779 (9)0.49699 (13)0.3524 (3)0.0680 (12)
H7A0.57960.52240.33610.082*
H7B0.82680.50790.37980.082*
C80.8797 (8)0.46994 (12)0.2204 (3)0.0555 (11)
H81.00220.48500.25630.067*
C90.9117 (7)0.44553 (11)0.1246 (3)0.0479 (9)
C101.1116 (7)0.44905 (13)0.0817 (3)0.0608 (10)
H101.22800.46640.11530.073*
C111.1427 (7)0.42709 (14)0.0112 (3)0.0584 (10)
H111.27740.43040.03950.070*
C120.9734 (6)0.40044 (12)0.0611 (3)0.0471 (9)
C130.7736 (6)0.39566 (12)0.0171 (3)0.0501 (10)
H130.65920.37750.04970.060*
C140.7435 (6)0.41775 (12)0.0751 (3)0.0472 (9)
H140.61000.41400.10410.057*
C150.5266 (7)0.30844 (12)0.7830 (3)0.0566 (10)
H15A0.41590.29330.73320.068*
H15B0.44650.32190.83600.068*
C160.6907 (8)0.27448 (12)0.8355 (3)0.0591 (11)
H16A0.82200.28960.87130.071*
H16B0.74110.25550.78210.071*
C170.5864 (9)0.24597 (14)0.9141 (3)0.0703 (13)
H17A0.43530.23720.88410.084*
H17B0.67590.21930.92860.084*
C180.3869 (7)0.28242 (12)1.0347 (3)0.0530 (10)
H180.25840.27600.98790.064*
C190.3598 (7)0.30661 (11)1.1315 (3)0.0446 (9)
C200.5407 (7)0.31283 (13)1.2093 (3)0.0563 (11)
H200.68200.30191.19940.068*
C210.5156 (7)0.33506 (13)1.3016 (3)0.0566 (10)
H210.63920.33871.35300.068*
C220.3063 (6)0.35184 (11)1.3173 (3)0.0462 (9)
C230.1256 (7)0.34603 (12)1.2404 (3)0.0517 (9)
H230.01500.35741.25010.062*
C240.1506 (7)0.32352 (12)1.1488 (3)0.0545 (10)
H240.02600.31961.09800.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0460 (18)0.0507 (17)0.0371 (16)0.0038 (15)0.0126 (15)0.0067 (14)
N20.0486 (18)0.0493 (17)0.0378 (16)0.0054 (15)0.0086 (14)0.0041 (14)
N30.086 (3)0.053 (2)0.047 (2)0.0058 (19)0.0136 (19)0.0030 (17)
N40.084 (3)0.0542 (19)0.045 (2)0.0001 (19)0.0140 (19)0.0078 (16)
O10.0580 (18)0.092 (2)0.0577 (17)0.0007 (15)0.0161 (15)0.0221 (16)
O20.0517 (17)0.0707 (18)0.0567 (17)0.0012 (14)0.0131 (14)0.0143 (14)
C10.060 (2)0.054 (2)0.041 (2)0.0106 (19)0.0137 (19)0.0060 (18)
C20.049 (2)0.067 (2)0.043 (2)0.012 (2)0.0145 (19)0.0047 (19)
C30.057 (2)0.054 (2)0.043 (2)0.0123 (19)0.0086 (19)0.0054 (18)
C40.045 (2)0.065 (3)0.042 (2)0.0102 (18)0.0110 (18)0.0056 (19)
C50.063 (3)0.058 (2)0.046 (2)0.007 (2)0.014 (2)0.0035 (19)
C60.083 (3)0.052 (2)0.056 (3)0.003 (2)0.019 (2)0.002 (2)
C70.105 (4)0.049 (2)0.052 (2)0.004 (2)0.019 (2)0.008 (2)
C80.070 (3)0.049 (2)0.047 (2)0.005 (2)0.004 (2)0.0016 (18)
C90.055 (2)0.043 (2)0.044 (2)0.0047 (18)0.0010 (19)0.0022 (17)
C100.054 (3)0.069 (3)0.057 (2)0.009 (2)0.001 (2)0.007 (2)
C110.046 (2)0.073 (3)0.056 (2)0.001 (2)0.008 (2)0.003 (2)
C120.047 (2)0.051 (2)0.042 (2)0.0076 (18)0.0023 (19)0.0014 (19)
C130.052 (2)0.049 (2)0.049 (2)0.0023 (18)0.003 (2)0.0043 (18)
C140.049 (2)0.049 (2)0.045 (2)0.0014 (18)0.0081 (18)0.0016 (18)
C150.059 (2)0.064 (2)0.048 (2)0.008 (2)0.0096 (19)0.005 (2)
C160.083 (3)0.050 (2)0.045 (2)0.012 (2)0.012 (2)0.0052 (19)
C170.113 (4)0.052 (2)0.048 (2)0.001 (3)0.018 (3)0.005 (2)
C180.066 (3)0.049 (2)0.042 (2)0.011 (2)0.001 (2)0.0043 (18)
C190.055 (2)0.045 (2)0.0339 (19)0.0059 (18)0.0061 (17)0.0028 (16)
C200.052 (2)0.068 (3)0.051 (2)0.000 (2)0.014 (2)0.010 (2)
C210.047 (2)0.077 (3)0.046 (2)0.006 (2)0.005 (2)0.016 (2)
C220.050 (2)0.046 (2)0.044 (2)0.0031 (19)0.010 (2)0.0013 (18)
C230.047 (2)0.055 (2)0.053 (2)0.0088 (19)0.006 (2)0.0049 (19)
C240.054 (2)0.058 (2)0.047 (2)0.001 (2)0.0086 (19)0.0080 (19)
Geometric parameters (Å, º) top
N1—C41.467 (5)C8—C91.466 (5)
N1—C11.478 (4)C8—H80.9300
N1—C51.481 (4)C9—C101.383 (5)
N2—C21.465 (5)C9—C141.395 (5)
N2—C151.479 (4)C10—C111.398 (5)
N2—C31.483 (4)C10—H100.9300
N3—C81.269 (5)C11—C121.381 (6)
N3—C71.467 (5)C11—H110.9300
N4—C181.256 (5)C12—C131.392 (5)
N4—C171.458 (5)C13—C141.390 (5)
O1—C121.361 (4)C13—H130.9300
O1—H10.8200C14—H140.9300
O2—C221.367 (4)C15—C161.513 (6)
O2—H20.8200C15—H15A0.9700
C1—C21.511 (5)C15—H15B0.9700
C1—H1A0.9700C16—C171.520 (5)
C1—H1B0.9700C16—H16A0.9700
C2—H2A0.9700C16—H16B0.9700
C2—H2B0.9700C17—H17A0.9700
C3—C41.509 (5)C17—H17B0.9700
C3—H3A0.9700C18—C191.468 (5)
C3—H3B0.9700C18—H180.9300
C4—H4A0.9700C19—C201.384 (5)
C4—H4B0.9700C19—C241.394 (5)
C5—C61.504 (6)C20—C211.386 (5)
C5—H5A0.9700C20—H200.9300
C5—H5B0.9700C21—C221.387 (5)
C6—C71.529 (6)C21—H210.9300
C6—H6A0.9700C22—C231.374 (5)
C6—H6B0.9700C23—C241.382 (5)
C7—H7A0.9700C23—H230.9300
C7—H7B0.9700C24—H240.9300
C4—N1—C1107.4 (3)C10—C9—C8120.7 (4)
C4—N1—C5110.5 (3)C14—C9—C8121.2 (4)
C1—N1—C5111.9 (3)C9—C10—C11121.5 (4)
C2—N2—C15109.7 (3)C9—C10—H10119.3
C2—N2—C3108.3 (3)C11—C10—H10119.3
C15—N2—C3112.1 (3)C12—C11—C10120.0 (4)
C8—N3—C7118.2 (4)C12—C11—H11120.0
C18—N4—C17119.5 (4)C10—C11—H11120.0
C12—O1—H1109.5O1—C12—C11118.1 (3)
C22—O2—H2109.5O1—C12—C13122.8 (3)
N1—C1—C2110.5 (3)C11—C12—C13119.1 (3)
N1—C1—H1A109.5C14—C13—C12120.6 (3)
C2—C1—H1A109.5C14—C13—H13119.7
N1—C1—H1B109.5C12—C13—H13119.7
C2—C1—H1B109.5C13—C14—C9120.7 (3)
H1A—C1—H1B108.1C13—C14—H14119.7
N2—C2—C1112.5 (3)C9—C14—H14119.7
N2—C2—H2A109.1N2—C15—C16114.4 (3)
C1—C2—H2A109.1N2—C15—H15A108.7
N2—C2—H2B109.1C16—C15—H15A108.7
C1—C2—H2B109.1N2—C15—H15B108.7
H2A—C2—H2B107.8C16—C15—H15B108.7
N2—C3—C4110.4 (3)H15A—C15—H15B107.6
N2—C3—H3A109.6C15—C16—C17112.4 (4)
C4—C3—H3A109.6C15—C16—H16A109.1
N2—C3—H3B109.6C17—C16—H16A109.1
C4—C3—H3B109.6C15—C16—H16B109.1
H3A—C3—H3B108.1C17—C16—H16B109.1
N1—C4—C3112.1 (3)H16A—C16—H16B107.9
N1—C4—H4A109.2N4—C17—C16111.1 (3)
C3—C4—H4A109.2N4—C17—H17A109.4
N1—C4—H4B109.2C16—C17—H17A109.4
C3—C4—H4B109.2N4—C17—H17B109.4
H4A—C4—H4B107.9C16—C17—H17B109.4
N1—C5—C6114.6 (3)H17A—C17—H17B108.0
N1—C5—H5A108.6N4—C18—C19123.2 (4)
C6—C5—H5A108.6N4—C18—H18118.4
N1—C5—H5B108.6C19—C18—H18118.4
C6—C5—H5B108.6C20—C19—C24117.8 (3)
H5A—C5—H5B107.6C20—C19—C18121.0 (4)
C5—C6—C7112.6 (4)C24—C19—C18121.2 (4)
C5—C6—H6A109.1C19—C20—C21121.3 (4)
C7—C6—H6A109.1C19—C20—H20119.3
C5—C6—H6B109.1C21—C20—H20119.3
C7—C6—H6B109.1C20—C21—C22120.1 (4)
H6A—C6—H6B107.8C20—C21—H21120.0
N3—C7—C6110.8 (3)C22—C21—H21120.0
N3—C7—H7A109.5O2—C22—C23118.2 (3)
C6—C7—H7A109.5O2—C22—C21122.6 (3)
N3—C7—H7B109.5C23—C22—C21119.1 (3)
C6—C7—H7B109.5C22—C23—C24120.7 (3)
H7A—C7—H7B108.1C22—C23—H23119.6
N3—C8—C9122.7 (4)C24—C23—H23119.6
N3—C8—H8118.6C23—C24—C19120.9 (4)
C9—C8—H8118.6C23—C24—H24119.5
C10—C9—C14118.1 (3)C19—C24—H24119.5
C4—N1—C1—C257.8 (4)O1—C12—C13—C14178.9 (3)
C5—N1—C1—C2179.3 (3)C11—C12—C13—C140.7 (6)
C15—N2—C2—C1179.4 (3)C12—C13—C14—C90.8 (5)
C3—N2—C2—C156.8 (4)C10—C9—C14—C132.5 (5)
N1—C1—C2—N259.2 (4)C8—C9—C14—C13178.4 (3)
C2—N2—C3—C456.1 (4)C2—N2—C15—C16172.3 (3)
C15—N2—C3—C4177.3 (3)C3—N2—C15—C1667.3 (4)
C1—N1—C4—C359.4 (4)N2—C15—C16—C17165.2 (3)
C5—N1—C4—C3178.3 (3)C18—N4—C17—C16109.1 (5)
N2—C3—C4—N160.0 (4)C15—C16—C17—N477.3 (5)
C4—N1—C5—C6177.5 (3)C17—N4—C18—C19179.8 (3)
C1—N1—C5—C662.9 (4)N4—C18—C19—C207.1 (5)
N1—C5—C6—C7164.6 (3)N4—C18—C19—C24173.7 (3)
C8—N3—C7—C6125.9 (4)C24—C19—C20—C210.1 (5)
C5—C6—C7—N370.6 (5)C18—C19—C20—C21179.0 (3)
C7—N3—C8—C9179.6 (3)C19—C20—C21—C220.4 (6)
N3—C8—C9—C10172.5 (4)C20—C21—C22—O2178.0 (3)
N3—C8—C9—C148.3 (5)C20—C21—C22—C230.1 (5)
C14—C9—C10—C112.7 (6)O2—C22—C23—C24177.6 (3)
C8—C9—C10—C11178.1 (3)C21—C22—C23—C240.4 (5)
C9—C10—C11—C121.3 (6)C22—C23—C24—C190.7 (5)
C10—C11—C12—O1179.2 (3)C20—C19—C24—C230.4 (5)
C10—C11—C12—C130.4 (6)C18—C19—C24—C23179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.821.982.762 (4)159
O1—H1···N2ii0.822.002.780 (4)159
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC24H32N4O2
Mr408.54
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)5.9701 (10), 30.159 (3), 12.8348 (18)
β (°) 97.558 (2)
V3)2290.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.17 × 0.15 × 0.11
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.987, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5997, 2016, 1387
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.103, 0.96
No. of reflections2016
No. of parameters271
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.821.982.762 (4)159.3
O1—H1···N2ii0.822.002.780 (4)159.1
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
 

Acknowledgements

This project was supported by the Key Project for Fundamental Research of the Jiangsu Provincial Educational Committee (07KJA150011), the Opened Funds of Jiangsu Key Laboratory of Marine Biotechnology of Huaihai Institute of Technology (2009HS06) and the QingLan Project of Jiangsu Province (2008).

References

First citationKeypour, H., Rezaeivala, M., Valencia, L. & Pérez-Lourido, P. (2008). Polyhedron, 27, 3172–3176.  Web of Science CSD CrossRef CAS Google Scholar
First citationKeypour, H., Rezaeivala, M., Valencia, L., Pérez-Lourido, P. & Mahmoudkhani, A. H. (2009). Polyhedron, doi:10.1016/j.poly.2009,07.012.  Google Scholar
First citationPaital, A. R., Mandal, D., Huang, X., Li, J., Aromic, G. & Ray, D. (2009). Dalton Trans. pp. 1352–1362.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationThirumurugan, R., Shanmuga Sundara Raj, S., Shanmugam, G., Fun, H.-K., Marappan, M. & Kandaswamy, M. (1998). Acta Cryst. C54, 644–645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. & Kandaswamy, M. (2003). Acta Cryst. E59, o83–o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds