metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­{4,4′-di­bromo-6,6′-dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}copper(II)

aCollege of Chemistry & Chemical Engineering, Shanxi Datong University, Shanxi 037009, People's Republic of China
*Correspondence e-mail: haixiedt@126.com

(Received 25 October 2009; accepted 3 November 2009; online 14 November 2009)

The title complex, [Cu(C18H16Br2N2O4)(H2O)], lies on a crystallographic mirror plane with the CuII ion coordinated by two N atoms and two O atoms of a tetra­dentate Schiff base ligand and one O atom from a water ligand in a slightly distorted square-pyramidal environment. The mirror plane, which coincides with the Cu—Owater bond, imposes disorder of the atoms of the ethyl­ene group. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link complex mol­ecules into extended chains along [100].

Related literature

For related structures, see: Nathan et al. (2003[Nathan, L. C., Koehne, J. E., Gilmore, J. M., Hannibal, K. A., Dewhirst, W. E. & Mai, T. D. (2003). Polyhedron, 22, 887-894.]); Saha et al. (2007[Saha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563-571.]); Xing (2009[Xing, J. (2009). Acta Cryst. E65, m469.]). For general background to Schiff base compounds, see: Yu et al. (2007[Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun. 10, 401-403.]); Ghosh et al. (2006[Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104-3112.]); Singh et al. (2007[Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394-402.]); Nayka et al. (2006[Nayka, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem.. 45, 10764-10773.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C18H16Br2N2O4)(H2O)]

  • Mr = 565.70

  • Orthorhombic, P n m a

  • a = 8.7299 (13) Å

  • b = 27.968 (4) Å

  • c = 7.9900 (12) Å

  • V = 1950.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.25 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.378, Tmax = 0.452

  • 8970 measured reflections

  • 1759 independent reflections

  • 1498 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.138

  • S = 1.13

  • 1759 reflections

  • 140 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.48 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.82 2.23 2.963 (5) 150
O3—H3A⋯O1i 0.82 2.27 2.936 (7) 139
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff-bases can readily form stable complexes with most transition metals, in which some may exhibit interesting properties (Yu et al., 2007; Ghosh et al., 2006; Singh et al., 2007; Nayka et al., 2006). Here, we report a Cu(II) complex based on the tetradentate Schiff-base ligand N,N'-ethylenebis(5-bromo-3-methoxysalicylaldimine.

The molecular structure of the title compound is shown in Fig. 1. The complex lies on a crystallographic mirror plane with the CuII ion coordinated in a slightly distorted square-pyramidal environment. The basal plane is occupied by two N atoms and two O atoms of the Schiff-base ligand, and the apical site is occupied by the O atom of the coordinated water molecule. The CuII ion is displaced towards the Cu—Owater bond from the plane formed by the two N atoms and two O atoms by 0.224 (4) Å. The Cu—N and Cu—O bond lengths are consistent with the corresponding distances found in other Cu Schiff base complexes (Nathan, et al., 2003; Saha, et al., 2007; Xing, 2009).

Related literature top

For related structures, see: Nathan et al. (2003); Saha et al. (2007); Xing (2009). For general background to Schiff base compounds, see: Yu et al. (2007); Ghosh et al. (2006); Singh et al. (2007); Nayka et al. (2006).

Experimental top

Condensation of ethyl diamine and 5-bromo-3-methoxyl-2-hydroxy-benzaldehyde with the ratio 1:2 in ethanol gave the Schiff base ligand. The title compound was synthesized by treatment Cu(ClO4)2.6H2O and the schiff-base ligand (1:1, molar ratio) in methanol. After the mixture was stirred for for about 30 min at room temperature, it was filtered and the filtrate was allowed to partial evaporate in air for one week to produce crystals suitable for X-ray diffraction with a yield about 52%.

Refinement top

H atoms were included using the HFIX command in SHELXL-97 (Sheldrick, 2008), with C—H = 0.96 and 0.93 Å; O—H = 0.82Å and were allowed for as riding atoms with Uiso(H) = 1.5Ueq(Cmethyl) and (Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All H-atoms are omitted for clarity. Only one disorder component is shown with open bonds [symmetry code (A): (x, -y+1/2, z).
Aqua{4,4'-dibromo-6,6'-dimethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}copper(II) top
Crystal data top
[Cu(C18H16Br2N2O4)(H2O)]F(000) = 1116
Mr = 565.70Dx = 1.926 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2580 reflections
a = 8.7299 (13) Åθ = 2.9–26.7°
b = 27.968 (4) ŵ = 5.25 mm1
c = 7.9900 (12) ÅT = 293 K
V = 1950.8 (5) Å3Block, blue
Z = 40.23 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
1759 independent reflections
Radiation source: fine-focus sealed tube1498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 710
Tmin = 0.378, Tmax = 0.452k = 3327
8970 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0394P)2 + 13.8845P]
where P = (Fo2 + 2Fc2)/3
1759 reflections(Δ/σ)max = 0.001
140 parametersΔρmax = 1.48 e Å3
1 restraintΔρmin = 1.02 e Å3
Crystal data top
[Cu(C18H16Br2N2O4)(H2O)]V = 1950.8 (5) Å3
Mr = 565.70Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.7299 (13) ŵ = 5.25 mm1
b = 27.968 (4) ÅT = 293 K
c = 7.9900 (12) Å0.23 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
1759 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1498 reflections with I > 2σ(I)
Tmin = 0.378, Tmax = 0.452Rint = 0.034
8970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.138H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0394P)2 + 13.8845P]
where P = (Fo2 + 2Fc2)/3
1759 reflectionsΔρmax = 1.48 e Å3
140 parametersΔρmin = 1.02 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.28985 (13)0.50680 (3)0.14560 (14)0.0802 (4)
Cu10.43677 (12)0.25000.01791 (14)0.0336 (3)
O10.2831 (5)0.29928 (14)0.0459 (6)0.0394 (11)
O20.0393 (5)0.35017 (16)0.0910 (7)0.0492 (12)
O30.5275 (7)0.25000.2889 (8)0.0446 (16)
H3A0.56560.27460.32570.067*
N10.5856 (6)0.2962 (2)0.0675 (8)0.0515 (16)
C10.4226 (7)0.3656 (2)0.0697 (8)0.0385 (15)
C20.2929 (7)0.3439 (2)0.0005 (8)0.0334 (13)
C30.1626 (7)0.3736 (2)0.0235 (8)0.0387 (15)
C40.1622 (8)0.4211 (2)0.0169 (9)0.0436 (16)
H40.07540.43970.00060.052*
C50.2941 (9)0.4410 (2)0.0848 (9)0.0472 (17)
C60.4200 (9)0.4150 (2)0.1124 (9)0.0484 (18)
H60.50620.42910.15960.058*
C70.5621 (8)0.3402 (2)0.1013 (9)0.0460 (17)
H70.64210.35710.15050.055*
C80.0958 (9)0.3769 (3)0.1200 (10)0.058 (2)
H8A0.07530.40150.20110.087*
H8B0.17460.35610.16150.087*
H8C0.12900.39130.01720.087*
C90.7175 (16)0.2701 (7)0.147 (2)0.054 (5)0.50
H9A0.69480.26430.26450.065*0.50
H9B0.80890.28970.14130.065*0.50
C9A0.7457 (13)0.2236 (7)0.061 (3)0.052 (5)0.50
H9A10.78120.22800.05270.063*0.50
H9A20.81770.20370.12220.063*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1002 (8)0.0319 (4)0.1084 (8)0.0054 (4)0.0121 (6)0.0259 (4)
Cu10.0301 (5)0.0275 (5)0.0433 (6)0.0000.0040 (5)0.000
O10.038 (2)0.024 (2)0.056 (3)0.0025 (18)0.006 (2)0.010 (2)
O20.038 (3)0.034 (2)0.076 (3)0.006 (2)0.014 (2)0.007 (2)
O30.053 (4)0.032 (3)0.049 (4)0.0000.011 (3)0.000
N10.035 (3)0.044 (3)0.076 (4)0.000 (3)0.013 (3)0.020 (3)
C10.041 (4)0.037 (4)0.038 (3)0.002 (3)0.001 (3)0.008 (3)
C20.039 (3)0.026 (3)0.035 (3)0.000 (3)0.000 (3)0.002 (3)
C30.041 (3)0.035 (3)0.040 (3)0.002 (3)0.001 (3)0.002 (3)
C40.049 (4)0.030 (3)0.051 (4)0.005 (3)0.004 (3)0.007 (3)
C50.065 (5)0.029 (3)0.048 (4)0.001 (3)0.005 (4)0.005 (3)
C60.054 (4)0.039 (4)0.052 (4)0.004 (3)0.000 (4)0.009 (3)
C70.038 (4)0.043 (4)0.057 (4)0.005 (3)0.008 (3)0.013 (3)
C80.052 (5)0.053 (5)0.069 (5)0.015 (4)0.011 (4)0.009 (4)
C90.031 (8)0.053 (9)0.078 (14)0.001 (7)0.009 (9)0.021 (10)
C9A0.023 (8)0.067 (11)0.066 (13)0.004 (7)0.006 (8)0.011 (11)
Geometric parameters (Å, º) top
Br1—C51.903 (7)C2—C31.420 (9)
Cu1—O1i1.937 (4)C3—C41.367 (9)
Cu1—O11.937 (4)C4—C51.389 (10)
Cu1—N11.954 (5)C4—H40.9300
Cu1—N1i1.954 (5)C5—C61.338 (10)
Cu1—O32.305 (6)C6—H60.9300
O1—C21.303 (7)C7—H70.9300
O2—C31.371 (8)C8—H8A0.9600
O2—C81.416 (8)C8—H8B0.9600
O3—H3A0.8188C8—H8C0.9600
N1—C71.277 (9)C9—C9A1.491 (19)
N1—C9Ai1.504 (10)C9—H9A0.9700
N1—C91.505 (10)C9—H9B0.9700
C1—C21.402 (9)C9A—N1i1.504 (10)
C1—C61.421 (9)C9A—H9A10.9700
C1—C71.433 (10)C9A—H9A20.9700
O1i—Cu1—O190.8 (2)C5—C4—H4120.6
O1i—Cu1—N1166.2 (3)C6—C5—C4121.8 (6)
O1—Cu1—N191.8 (2)C6—C5—Br1120.1 (6)
O1i—Cu1—N1i91.8 (2)C4—C5—Br1118.1 (5)
O1—Cu1—N1i166.2 (3)C5—C6—C1120.2 (7)
N1—Cu1—N1i82.7 (4)C5—C6—H6119.9
O1i—Cu1—O397.45 (18)C1—C6—H6119.9
O1—Cu1—O397.45 (18)N1—C7—C1125.3 (6)
N1—Cu1—O395.7 (2)N1—C7—H7117.4
N1i—Cu1—O395.7 (2)C1—C7—H7117.4
C2—O1—Cu1127.2 (4)O2—C8—H8A109.5
C3—O2—C8117.8 (5)O2—C8—H8B109.5
Cu1—O3—H3A118.5H8A—C8—H8B109.5
C7—N1—C9Ai120.7 (10)O2—C8—H8C109.5
C7—N1—C9120.0 (9)H8A—C8—H8C109.5
C7—N1—Cu1127.2 (5)H8B—C8—H8C109.5
C9Ai—N1—Cu1111.3 (9)C9A—C9—N1110.7 (14)
C9—N1—Cu1109.7 (8)C9A—C9—H9A109.5
C2—C1—C6120.2 (6)N1—C9—H9A109.5
C2—C1—C7122.8 (6)C9A—C9—H9B109.5
C6—C1—C7117.0 (6)N1—C9—H9B109.5
O1—C2—C1125.4 (6)H9A—C9—H9B108.1
O1—C2—C3118.1 (6)C9—C9A—N1i98.7 (12)
C1—C2—C3116.5 (6)C9—C9A—H9A1112.0
C4—C3—O2123.7 (6)N1i—C9A—H9A1112.0
C4—C3—C2122.6 (6)C9—C9A—H9A2112.0
O2—C3—C2113.7 (5)N1i—C9A—H9A2112.0
C3—C4—C5118.7 (7)H9A1—C9A—H9A2109.7
C3—C4—H4120.6
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.822.232.963 (5)150
O3—H3A···O1ii0.822.272.936 (7)139
Symmetry code: (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C18H16Br2N2O4)(H2O)]
Mr565.70
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)8.7299 (13), 27.968 (4), 7.9900 (12)
V3)1950.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)5.25
Crystal size (mm)0.23 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.378, 0.452
No. of measured, independent and
observed [I > 2σ(I)] reflections
8970, 1759, 1498
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.138, 1.13
No. of reflections1759
No. of parameters140
No. of restraints1
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0394P)2 + 13.8845P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.48, 1.02

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.822.232.963 (5)149.6
O3—H3A···O1i0.822.272.936 (7)139.4
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

This work was funded by a research grant from the Shanxi Datong University Foundation of Shanxi Province of the People's Republic of China (grant No. 2008 K1). We also thank Huazhong Normal University for supporting this study.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.  Web of Science CSD CrossRef CAS Google Scholar
First citationNathan, L. C., Koehne, J. E., Gilmore, J. M., Hannibal, K. A., Dewhirst, W. E. & Mai, T. D. (2003). Polyhedron, 22, 887–894.  Web of Science CSD CrossRef CAS Google Scholar
First citationNayka, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem.. 45, 10764–10773.  Web of Science PubMed Google Scholar
First citationSaha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563–571.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXing, J. (2009). Acta Cryst. E65, m469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun. 10, 401–403.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds