metal-organic compounds
Aqua{4,4′-dibromo-6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}copper(II)
aCollege of Chemistry & Chemical Engineering, Shanxi Datong University, Shanxi 037009, People's Republic of China
*Correspondence e-mail: haixiedt@126.com
The title complex, [Cu(C18H16Br2N2O4)(H2O)], lies on a crystallographic mirror plane with the CuII ion coordinated by two N atoms and two O atoms of a tetradentate Schiff base ligand and one O atom from a water ligand in a slightly distorted square-pyramidal environment. The mirror plane, which coincides with the Cu—Owater bond, imposes disorder of the atoms of the ethylene group. In the intermolecular O—H⋯O hydrogen bonds link complex molecules into extended chains along [100].
Related literature
For related structures, see: Nathan et al. (2003); Saha et al. (2007); Xing (2009). For general background to Schiff base compounds, see: Yu et al. (2007); Ghosh et al. (2006); Singh et al. (2007); Nayka et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809046212/lh2938sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809046212/lh2938Isup2.hkl
Condensation of ethyl diamine and 5-bromo-3-methoxyl-2-hydroxy-benzaldehyde with the ratio 1:2 in ethanol gave the Schiff base ligand. The title compound was synthesized by treatment Cu(ClO4)2.6H2O and the schiff-base ligand (1:1, molar ratio) in methanol. After the mixture was stirred for for about 30 min at room temperature, it was filtered and the filtrate was allowed to partial evaporate in air for one week to produce crystals suitable for X-ray diffraction with a yield about 52%.
H atoms were included using the HFIX command in SHELXL-97 (Sheldrick, 2008), with C—H = 0.96 and 0.93 Å; O—H = 0.82Å and were allowed for as riding atoms with Uiso(H) = 1.5Ueq(Cmethyl) and (Uiso(H) = 1.2Ueq(C,O).
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C18H16Br2N2O4)(H2O)] | F(000) = 1116 |
Mr = 565.70 | Dx = 1.926 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 2580 reflections |
a = 8.7299 (13) Å | θ = 2.9–26.7° |
b = 27.968 (4) Å | µ = 5.25 mm−1 |
c = 7.9900 (12) Å | T = 293 K |
V = 1950.8 (5) Å3 | Block, blue |
Z = 4 | 0.23 × 0.20 × 0.18 mm |
Bruker APEXII CCD diffractometer | 1759 independent reflections |
Radiation source: fine-focus sealed tube | 1498 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→10 |
Tmin = 0.378, Tmax = 0.452 | k = −33→27 |
8970 measured reflections | l = −8→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0394P)2 + 13.8845P] where P = (Fo2 + 2Fc2)/3 |
1759 reflections | (Δ/σ)max = 0.001 |
140 parameters | Δρmax = 1.48 e Å−3 |
1 restraint | Δρmin = −1.02 e Å−3 |
[Cu(C18H16Br2N2O4)(H2O)] | V = 1950.8 (5) Å3 |
Mr = 565.70 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 8.7299 (13) Å | µ = 5.25 mm−1 |
b = 27.968 (4) Å | T = 293 K |
c = 7.9900 (12) Å | 0.23 × 0.20 × 0.18 mm |
Bruker APEXII CCD diffractometer | 1759 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1498 reflections with I > 2σ(I) |
Tmin = 0.378, Tmax = 0.452 | Rint = 0.034 |
8970 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 1 restraint |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0394P)2 + 13.8845P] where P = (Fo2 + 2Fc2)/3 |
1759 reflections | Δρmax = 1.48 e Å−3 |
140 parameters | Δρmin = −1.02 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.28985 (13) | 0.50680 (3) | −0.14560 (14) | 0.0802 (4) | |
Cu1 | 0.43677 (12) | 0.2500 | 0.01791 (14) | 0.0336 (3) | |
O1 | 0.2831 (5) | 0.29928 (14) | 0.0459 (6) | 0.0394 (11) | |
O2 | 0.0393 (5) | 0.35017 (16) | 0.0910 (7) | 0.0492 (12) | |
O3 | 0.5275 (7) | 0.2500 | 0.2889 (8) | 0.0446 (16) | |
H3A | 0.5656 | 0.2746 | 0.3257 | 0.067* | |
N1 | 0.5856 (6) | 0.2962 (2) | −0.0675 (8) | 0.0515 (16) | |
C1 | 0.4226 (7) | 0.3656 (2) | −0.0697 (8) | 0.0385 (15) | |
C2 | 0.2929 (7) | 0.3439 (2) | 0.0005 (8) | 0.0334 (13) | |
C3 | 0.1626 (7) | 0.3736 (2) | 0.0235 (8) | 0.0387 (15) | |
C4 | 0.1622 (8) | 0.4211 (2) | −0.0169 (9) | 0.0436 (16) | |
H4 | 0.0754 | 0.4397 | 0.0006 | 0.052* | |
C5 | 0.2941 (9) | 0.4410 (2) | −0.0848 (9) | 0.0472 (17) | |
C6 | 0.4200 (9) | 0.4150 (2) | −0.1124 (9) | 0.0484 (18) | |
H6 | 0.5062 | 0.4291 | −0.1596 | 0.058* | |
C7 | 0.5621 (8) | 0.3402 (2) | −0.1013 (9) | 0.0460 (17) | |
H7 | 0.6421 | 0.3571 | −0.1505 | 0.055* | |
C8 | −0.0958 (9) | 0.3769 (3) | 0.1200 (10) | 0.058 (2) | |
H8A | −0.0753 | 0.4015 | 0.2011 | 0.087* | |
H8B | −0.1746 | 0.3561 | 0.1615 | 0.087* | |
H8C | −0.1290 | 0.3913 | 0.0172 | 0.087* | |
C9 | 0.7175 (16) | 0.2701 (7) | −0.147 (2) | 0.054 (5) | 0.50 |
H9A | 0.6948 | 0.2643 | −0.2645 | 0.065* | 0.50 |
H9B | 0.8089 | 0.2897 | −0.1413 | 0.065* | 0.50 |
C9A | 0.7457 (13) | 0.2236 (7) | −0.061 (3) | 0.052 (5) | 0.50 |
H9A1 | 0.7812 | 0.2280 | 0.0527 | 0.063* | 0.50 |
H9A2 | 0.8177 | 0.2037 | −0.1222 | 0.063* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.1002 (8) | 0.0319 (4) | 0.1084 (8) | 0.0054 (4) | 0.0121 (6) | 0.0259 (4) |
Cu1 | 0.0301 (5) | 0.0275 (5) | 0.0433 (6) | 0.000 | 0.0040 (5) | 0.000 |
O1 | 0.038 (2) | 0.024 (2) | 0.056 (3) | 0.0025 (18) | 0.006 (2) | 0.010 (2) |
O2 | 0.038 (3) | 0.034 (2) | 0.076 (3) | 0.006 (2) | 0.014 (2) | 0.007 (2) |
O3 | 0.053 (4) | 0.032 (3) | 0.049 (4) | 0.000 | −0.011 (3) | 0.000 |
N1 | 0.035 (3) | 0.044 (3) | 0.076 (4) | 0.000 (3) | 0.013 (3) | 0.020 (3) |
C1 | 0.041 (4) | 0.037 (4) | 0.038 (3) | −0.002 (3) | 0.001 (3) | 0.008 (3) |
C2 | 0.039 (3) | 0.026 (3) | 0.035 (3) | 0.000 (3) | 0.000 (3) | 0.002 (3) |
C3 | 0.041 (3) | 0.035 (3) | 0.040 (3) | −0.002 (3) | −0.001 (3) | 0.002 (3) |
C4 | 0.049 (4) | 0.030 (3) | 0.051 (4) | 0.005 (3) | −0.004 (3) | 0.007 (3) |
C5 | 0.065 (5) | 0.029 (3) | 0.048 (4) | −0.001 (3) | −0.005 (4) | 0.005 (3) |
C6 | 0.054 (4) | 0.039 (4) | 0.052 (4) | −0.004 (3) | 0.000 (4) | 0.009 (3) |
C7 | 0.038 (4) | 0.043 (4) | 0.057 (4) | −0.005 (3) | 0.008 (3) | 0.013 (3) |
C8 | 0.052 (5) | 0.053 (5) | 0.069 (5) | 0.015 (4) | 0.011 (4) | 0.009 (4) |
C9 | 0.031 (8) | 0.053 (9) | 0.078 (14) | −0.001 (7) | 0.009 (9) | 0.021 (10) |
C9A | 0.023 (8) | 0.067 (11) | 0.066 (13) | 0.004 (7) | −0.006 (8) | −0.011 (11) |
Br1—C5 | 1.903 (7) | C2—C3 | 1.420 (9) |
Cu1—O1i | 1.937 (4) | C3—C4 | 1.367 (9) |
Cu1—O1 | 1.937 (4) | C4—C5 | 1.389 (10) |
Cu1—N1 | 1.954 (5) | C4—H4 | 0.9300 |
Cu1—N1i | 1.954 (5) | C5—C6 | 1.338 (10) |
Cu1—O3 | 2.305 (6) | C6—H6 | 0.9300 |
O1—C2 | 1.303 (7) | C7—H7 | 0.9300 |
O2—C3 | 1.371 (8) | C8—H8A | 0.9600 |
O2—C8 | 1.416 (8) | C8—H8B | 0.9600 |
O3—H3A | 0.8188 | C8—H8C | 0.9600 |
N1—C7 | 1.277 (9) | C9—C9A | 1.491 (19) |
N1—C9Ai | 1.504 (10) | C9—H9A | 0.9700 |
N1—C9 | 1.505 (10) | C9—H9B | 0.9700 |
C1—C2 | 1.402 (9) | C9A—N1i | 1.504 (10) |
C1—C6 | 1.421 (9) | C9A—H9A1 | 0.9700 |
C1—C7 | 1.433 (10) | C9A—H9A2 | 0.9700 |
O1i—Cu1—O1 | 90.8 (2) | C5—C4—H4 | 120.6 |
O1i—Cu1—N1 | 166.2 (3) | C6—C5—C4 | 121.8 (6) |
O1—Cu1—N1 | 91.8 (2) | C6—C5—Br1 | 120.1 (6) |
O1i—Cu1—N1i | 91.8 (2) | C4—C5—Br1 | 118.1 (5) |
O1—Cu1—N1i | 166.2 (3) | C5—C6—C1 | 120.2 (7) |
N1—Cu1—N1i | 82.7 (4) | C5—C6—H6 | 119.9 |
O1i—Cu1—O3 | 97.45 (18) | C1—C6—H6 | 119.9 |
O1—Cu1—O3 | 97.45 (18) | N1—C7—C1 | 125.3 (6) |
N1—Cu1—O3 | 95.7 (2) | N1—C7—H7 | 117.4 |
N1i—Cu1—O3 | 95.7 (2) | C1—C7—H7 | 117.4 |
C2—O1—Cu1 | 127.2 (4) | O2—C8—H8A | 109.5 |
C3—O2—C8 | 117.8 (5) | O2—C8—H8B | 109.5 |
Cu1—O3—H3A | 118.5 | H8A—C8—H8B | 109.5 |
C7—N1—C9Ai | 120.7 (10) | O2—C8—H8C | 109.5 |
C7—N1—C9 | 120.0 (9) | H8A—C8—H8C | 109.5 |
C7—N1—Cu1 | 127.2 (5) | H8B—C8—H8C | 109.5 |
C9Ai—N1—Cu1 | 111.3 (9) | C9A—C9—N1 | 110.7 (14) |
C9—N1—Cu1 | 109.7 (8) | C9A—C9—H9A | 109.5 |
C2—C1—C6 | 120.2 (6) | N1—C9—H9A | 109.5 |
C2—C1—C7 | 122.8 (6) | C9A—C9—H9B | 109.5 |
C6—C1—C7 | 117.0 (6) | N1—C9—H9B | 109.5 |
O1—C2—C1 | 125.4 (6) | H9A—C9—H9B | 108.1 |
O1—C2—C3 | 118.1 (6) | C9—C9A—N1i | 98.7 (12) |
C1—C2—C3 | 116.5 (6) | C9—C9A—H9A1 | 112.0 |
C4—C3—O2 | 123.7 (6) | N1i—C9A—H9A1 | 112.0 |
C4—C3—C2 | 122.6 (6) | C9—C9A—H9A2 | 112.0 |
O2—C3—C2 | 113.7 (5) | N1i—C9A—H9A2 | 112.0 |
C3—C4—C5 | 118.7 (7) | H9A1—C9A—H9A2 | 109.7 |
C3—C4—H4 | 120.6 |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O2ii | 0.82 | 2.23 | 2.963 (5) | 150 |
O3—H3A···O1ii | 0.82 | 2.27 | 2.936 (7) | 139 |
Symmetry code: (ii) x+1/2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C18H16Br2N2O4)(H2O)] |
Mr | 565.70 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 293 |
a, b, c (Å) | 8.7299 (13), 27.968 (4), 7.9900 (12) |
V (Å3) | 1950.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.25 |
Crystal size (mm) | 0.23 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.378, 0.452 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8970, 1759, 1498 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.138, 1.13 |
No. of reflections | 1759 |
No. of parameters | 140 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0394P)2 + 13.8845P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.48, −1.02 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O2i | 0.82 | 2.23 | 2.963 (5) | 149.6 |
O3—H3A···O1i | 0.82 | 2.27 | 2.936 (7) | 139.4 |
Symmetry code: (i) x+1/2, y, −z+1/2. |
Acknowledgements
This work was funded by a research grant from the Shanxi Datong University Foundation of Shanxi Province of the People's Republic of China (grant No. 2008 K1). We also thank Huazhong Normal University for supporting this study.
References
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112. Web of Science CSD CrossRef CAS Google Scholar
Nathan, L. C., Koehne, J. E., Gilmore, J. M., Hannibal, K. A., Dewhirst, W. E. & Mai, T. D. (2003). Polyhedron, 22, 887–894. Web of Science CSD CrossRef CAS Google Scholar
Nayka, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem.. 45, 10764–10773. Web of Science PubMed Google Scholar
Saha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563–571. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402. Web of Science CrossRef PubMed CAS Google Scholar
Xing, J. (2009). Acta Cryst. E65, m469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun. 10, 401–403. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff-bases can readily form stable complexes with most transition metals, in which some may exhibit interesting properties (Yu et al., 2007; Ghosh et al., 2006; Singh et al., 2007; Nayka et al., 2006). Here, we report a Cu(II) complex based on the tetradentate Schiff-base ligand N,N'-ethylenebis(5-bromo-3-methoxysalicylaldimine.
The molecular structure of the title compound is shown in Fig. 1. The complex lies on a crystallographic mirror plane with the CuII ion coordinated in a slightly distorted square-pyramidal environment. The basal plane is occupied by two N atoms and two O atoms of the Schiff-base ligand, and the apical site is occupied by the O atom of the coordinated water molecule. The CuII ion is displaced towards the Cu—Owater bond from the plane formed by the two N atoms and two O atoms by 0.224 (4) Å. The Cu—N and Cu—O bond lengths are consistent with the corresponding distances found in other Cu Schiff base complexes (Nathan, et al., 2003; Saha, et al., 2007; Xing, 2009).