metal-organic compounds
trans-Bis(μ-2-hydroxyethanethiolato-κ2S:S)bis[dinitrosyliron(II)](Fe—Fe)
aDepartment of Chemistry, National Changhua University of Education, Changhua, Taiwan 50058, and bDepartment of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
*Correspondence e-mail: genechiou@mail.ncyu.edu.tw
The title complex, [Fe2(C2H5OS)2(NO)4], lies on a crystallographic inversion center. The Fe—Fe distance is characteristic of a metal–metal bond. In the intermolecular O—H⋯O hydrogen bonds link complex molecules into a two-dimensional network.
Related literature
For iron–nitrosyl complexes, see: Chiang et al. (2004); Dillinger et al. (2007); Mazany et al. (1983).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: DIAMOND (Brandenburg, 1999).
Supporting information
10.1107/S1600536809048065/lh2939sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809048065/lh2939Isup2.hkl
FeSO4.7H2O (5.0 g, 0.018 mol) was added to H2SO4 (4M, 50 ml) at 273K. To the resulting solution, the mixture of NaNO2 (2.0 g, 0.023 mol) and mercaptoethanol (5.0 ml, 0.071 mol) were added. After stirring for 10 min, the solution was kept in refrigerator (277K) for one week. Dark red crystals formed and one was used for this νNO).
Yield: 2.1 g (65%). FTIR (THF): 1809 (w), 1774 (vs), 1748 (s) cm-1 (All H atoms were positioned geometrically and refined as riding atoms, with Cmethylene—H = 0.99, O—H = 0.84 Å while Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O) for all the H atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 1999).[Fe2(C2H5OS)2(NO)4] | F(000) = 776 |
Mr = 385.98 | Dx = 2.030 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1286 reflections |
a = 16.943 (3) Å | θ = 2.4–26.8° |
b = 5.0070 (7) Å | µ = 2.65 mm−1 |
c = 14.931 (2) Å | T = 150 K |
β = 94.327 (3)° | Plate, brown |
V = 1263.1 (3) Å3 | 0.21 × 0.18 × 0.02 mm |
Z = 4 |
Bruker SMART APEXII diffractometer | 1597 independent reflections |
Radiation source: fine-focus sealed tube | 1240 reflections with I > 2σ |
Graphite monochromator | Rint = 0.039 |
ω scans | θmax = 28.7°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −22→22 |
Tmin = 0.606, Tmax = 0.949 | k = −6→6 |
5708 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 0.94 | w = 1/[σ2(Fo2) + (0.0324P)2] where P = (Fo2 + 2Fc2)/3 |
1597 reflections | (Δ/σ)max = 0.003 |
83 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
[Fe2(C2H5OS)2(NO)4] | V = 1263.1 (3) Å3 |
Mr = 385.98 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.943 (3) Å | µ = 2.65 mm−1 |
b = 5.0070 (7) Å | T = 150 K |
c = 14.931 (2) Å | 0.21 × 0.18 × 0.02 mm |
β = 94.327 (3)° |
Bruker SMART APEXII diffractometer | 1597 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1240 reflections with I > 2σ |
Tmin = 0.606, Tmax = 0.949 | Rint = 0.039 |
5708 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.52 e Å−3 |
1597 reflections | Δρmin = −0.32 e Å−3 |
83 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.89173 (13) | 0.1311 (4) | 0.14871 (15) | 0.0189 (5) | |
H1A | 0.8810 | −0.0613 | 0.1385 | 0.023* | |
H1B | 0.9190 | 0.1523 | 0.2093 | 0.023* | |
C2 | 0.81447 (12) | 0.2848 (5) | 0.14308 (15) | 0.0219 (5) | |
H2A | 0.8253 | 0.4791 | 0.1449 | 0.026* | |
H2B | 0.7836 | 0.2436 | 0.0858 | 0.026* | |
Fe1 | 1.062332 (16) | −0.00956 (6) | 0.06209 (2) | 0.01677 (10) | |
N1 | 1.06466 (10) | −0.2257 (4) | 0.14697 (12) | 0.0200 (4) | |
N2 | 1.13967 (11) | 0.1950 (4) | 0.05687 (13) | 0.0216 (4) | |
O1 | 1.07764 (10) | −0.3658 (3) | 0.20944 (11) | 0.0306 (4) | |
O2 | 1.19777 (10) | 0.3213 (4) | 0.06634 (13) | 0.0370 (5) | |
O3 | 0.77015 (10) | 0.2112 (3) | 0.21691 (12) | 0.0302 (4) | |
H3 | 0.7591 | 0.3487 | 0.2456 | 0.045* | |
S1 | 0.95465 (3) | 0.25677 (10) | 0.06417 (4) | 0.01729 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0256 (11) | 0.0179 (11) | 0.0142 (12) | −0.0014 (9) | 0.0070 (8) | 0.0007 (9) |
C2 | 0.0243 (11) | 0.0202 (12) | 0.0220 (13) | −0.0032 (9) | 0.0071 (9) | 0.0006 (10) |
Fe1 | 0.01897 (16) | 0.01530 (17) | 0.01622 (17) | −0.00062 (13) | 0.00241 (11) | −0.00012 (13) |
N1 | 0.0220 (9) | 0.0206 (10) | 0.0173 (10) | −0.0001 (8) | 0.0012 (7) | −0.0025 (8) |
N2 | 0.0225 (9) | 0.0206 (10) | 0.0224 (11) | −0.0002 (8) | 0.0060 (8) | −0.0021 (8) |
O1 | 0.0449 (10) | 0.0241 (9) | 0.0220 (10) | −0.0008 (8) | −0.0020 (8) | 0.0069 (7) |
O2 | 0.0276 (9) | 0.0363 (11) | 0.0477 (12) | −0.0119 (8) | 0.0069 (8) | −0.0058 (9) |
O3 | 0.0378 (9) | 0.0235 (9) | 0.0322 (11) | −0.0049 (8) | 0.0222 (8) | −0.0037 (7) |
S1 | 0.0212 (2) | 0.0139 (3) | 0.0174 (3) | −0.0006 (2) | 0.00546 (19) | −0.0004 (2) |
C1—C2 | 1.515 (3) | Fe1—N2 | 1.6696 (19) |
C1—S1 | 1.824 (2) | Fe1—S1i | 2.2555 (7) |
C1—H1A | 0.9900 | Fe1—S1 | 2.2619 (6) |
C1—H1B | 0.9900 | Fe1—Fe1i | 2.7051 (6) |
C2—O3 | 1.428 (2) | N1—O1 | 1.174 (2) |
C2—H2A | 0.9900 | N2—O2 | 1.170 (2) |
C2—H2B | 0.9900 | O3—H3 | 0.8400 |
Fe1—N1 | 1.6650 (19) | S1—Fe1i | 2.2555 (7) |
C2—C1—S1 | 109.51 (15) | N2—Fe1—S1i | 110.41 (7) |
C2—C1—H1A | 109.8 | N1—Fe1—S1 | 110.22 (6) |
S1—C1—H1A | 109.8 | N2—Fe1—S1 | 106.00 (7) |
C2—C1—H1B | 109.8 | S1i—Fe1—S1 | 106.43 (2) |
S1—C1—H1B | 109.8 | N1—Fe1—Fe1i | 121.14 (6) |
H1A—C1—H1B | 108.2 | N2—Fe1—Fe1i | 121.42 (7) |
O3—C2—C1 | 109.18 (18) | S1i—Fe1—Fe1i | 53.324 (17) |
O3—C2—H2A | 109.8 | S1—Fe1—Fe1i | 53.106 (18) |
C1—C2—H2A | 109.8 | O1—N1—Fe1 | 170.09 (16) |
O3—C2—H2B | 109.8 | O2—N2—Fe1 | 169.24 (18) |
C1—C2—H2B | 109.8 | C2—O3—H3 | 109.5 |
H2A—C2—H2B | 108.3 | C1—S1—Fe1i | 110.16 (7) |
N1—Fe1—N2 | 117.44 (9) | C1—S1—Fe1 | 108.68 (7) |
N1—Fe1—S1i | 105.88 (7) | Fe1i—S1—Fe1 | 73.57 (2) |
Symmetry code: (i) −x+2, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O3ii | 0.84 | 1.97 | 2.7950 (14) | 166 |
Symmetry code: (ii) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Fe2(C2H5OS)2(NO)4] |
Mr | 385.98 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 150 |
a, b, c (Å) | 16.943 (3), 5.0070 (7), 14.931 (2) |
β (°) | 94.327 (3) |
V (Å3) | 1263.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.65 |
Crystal size (mm) | 0.21 × 0.18 × 0.02 |
Data collection | |
Diffractometer | Bruker SMART APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.606, 0.949 |
No. of measured, independent and observed (I > 2σ) reflections | 5708, 1597, 1240 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.675 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.061, 0.94 |
No. of reflections | 1597 |
No. of parameters | 83 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.52, −0.32 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
Fe1—N1 | 1.6650 (19) | Fe1—S1 | 2.2619 (6) |
Fe1—S1i | 2.2555 (7) | Fe1—Fe1i | 2.7051 (6) |
N1—Fe1—N2 | 117.44 (9) | N2—Fe1—S1 | 106.00 (7) |
N1—Fe1—S1 | 110.22 (6) |
Symmetry code: (i) −x+2, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O3ii | 0.84 | 1.97 | 2.7950 (14) | 165.8 |
Symmetry code: (ii) −x+3/2, y+1/2, −z+1/2. |
Acknowledgements
We are grateful to the National Science Council of Taiwan for financial support.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chiang, C.-Y., Miller, M. L., Reibenspies, J. H. & Darensbourg, M. Y. (2004). J. Am. Chem. Soc. 126, 10867–10867. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dillinger, S. A. T., Schmalle, H. W., Berke, T. & Fox, H. (2007). Dalton Trans. pp. 3562–3571. Web of Science CSD CrossRef Google Scholar
Mazany, A. M., Fackler, J. P. Jr, Gallagher, M. K. & Seyferth, D. (1983). Inorg. Chem. 22, 2593–2596. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Roussin's red esters (RREs) are photochemically active NO-release compounds and are expected to become potential NO donor drugs (Dillinger et al. 2007). The title compound is an air-stable and water soluble RRE compound. The molecular structure of the title complex is shown in Fig.1. The molecule lies on a crystallogrphic inversion center. The Fe-Fe distance is characteristic of a M-M bond (Dillinger et al. 2007). In the crystal structure, intermolecular O-H···O hydrogen bonds link complex molecules into a two-dimensional network.