metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(μ-2-hy­droxy­ethane­thiol­ato-κ2S:S)bis­­[di­nitro­syliron(II)](FeFe)

aDepartment of Chemistry, National Changhua University of Education, Changhua, Taiwan 50058, and bDepartment of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
*Correspondence e-mail: genechiou@mail.ncyu.edu.tw

(Received 26 October 2009; accepted 12 November 2009; online 18 November 2009)

The title complex, [Fe2(C2H5OS)2(NO)4], lies on a crystallographic inversion center. The Fe—Fe distance is characteristic of a metal–metal bond. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link complex mol­ecules into a two-dimensional network.

Related literature

For iron–nitrosyl complexes, see: Chiang et al. (2004[Chiang, C.-Y., Miller, M. L., Reibenspies, J. H. & Darensbourg, M. Y. (2004). J. Am. Chem. Soc. 126, 10867-10867.]); Dillinger et al. (2007[Dillinger, S. A. T., Schmalle, H. W., Berke, T. & Fox, H. (2007). Dalton Trans. pp. 3562-3571.]); Mazany et al. (1983[Mazany, A. M., Fackler, J. P. Jr, Gallagher, M. K. & Seyferth, D. (1983). Inorg. Chem. 22, 2593-2596.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C2H5OS)2(NO)4]

  • Mr = 385.98

  • Monoclinic, C 2/c

  • a = 16.943 (3) Å

  • b = 5.0070 (7) Å

  • c = 14.931 (2) Å

  • β = 94.327 (3)°

  • V = 1263.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.65 mm−1

  • T = 150 K

  • 0.21 × 0.18 × 0.02 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.606, Tmax = 0.949

  • 5708 measured reflections

  • 1597 independent reflections

  • 1240 reflections with I > 2σ

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.061

  • S = 0.94

  • 1597 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—N1 1.6650 (19)
Fe1—S1i 2.2555 (7)
Fe1—S1 2.2619 (6)
Fe1—Fe1i 2.7051 (6)
N1—Fe1—N2 117.44 (9)
N1—Fe1—S1 110.22 (6)
N2—Fe1—S1 106.00 (7)
Symmetry code: (i) -x+2, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O3ii 0.84 1.97 2.7950 (14) 166
Symmetry code: (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

Roussin's red esters (RREs) are photochemically active NO-release compounds and are expected to become potential NO donor drugs (Dillinger et al. 2007). The title compound is an air-stable and water soluble RRE compound. The molecular structure of the title complex is shown in Fig.1. The molecule lies on a crystallogrphic inversion center. The Fe-Fe distance is characteristic of a M-M bond (Dillinger et al. 2007). In the crystal structure, intermolecular O-H···O hydrogen bonds link complex molecules into a two-dimensional network.

Related literature top

For iron–nitrosyl complexes, see: Chiang et al. (2004); Dillinger et al. (2007); Mazany et al. (1983).

Experimental top

FeSO4.7H2O (5.0 g, 0.018 mol) was added to H2SO4 (4M, 50 ml) at 273K. To the resulting solution, the mixture of NaNO2 (2.0 g, 0.023 mol) and mercaptoethanol (5.0 ml, 0.071 mol) were added. After stirring for 10 min, the solution was kept in refrigerator (277K) for one week. Dark red crystals formed and one was used for this structure determination. Yield: 2.1 g (65%). FTIR (THF): 1809 (w), 1774 (vs), 1748 (s) cm-1 (νNO).

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with Cmethylene—H = 0.99, O—H = 0.84 Å while Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O) for all the H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 50% displacement ellipsoids for non-H atoms. The H atoms are depicted by circles of an arbitrary radius. Unlabeled atoms of the complex are related to labeled atoms by the symmetry operator (2 - x, -y, - z).
[Figure 2] Fig. 2. Part of the crystal structure showing intermolecular hydrogen bonds as dashed lines.
trans-Bis(µ-2-hydroxyethanethiolato- κ2S:S)bis[dinitrosyliron(II)](FeFe) top
Crystal data top
[Fe2(C2H5OS)2(NO)4]F(000) = 776
Mr = 385.98Dx = 2.030 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1286 reflections
a = 16.943 (3) Åθ = 2.4–26.8°
b = 5.0070 (7) ŵ = 2.65 mm1
c = 14.931 (2) ÅT = 150 K
β = 94.327 (3)°Plate, brown
V = 1263.1 (3) Å30.21 × 0.18 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
1597 independent reflections
Radiation source: fine-focus sealed tube1240 reflections with I > 2σ
Graphite monochromatorRint = 0.039
ω scansθmax = 28.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.606, Tmax = 0.949k = 66
5708 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0324P)2]
where P = (Fo2 + 2Fc2)/3
1597 reflections(Δ/σ)max = 0.003
83 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Fe2(C2H5OS)2(NO)4]V = 1263.1 (3) Å3
Mr = 385.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.943 (3) ŵ = 2.65 mm1
b = 5.0070 (7) ÅT = 150 K
c = 14.931 (2) Å0.21 × 0.18 × 0.02 mm
β = 94.327 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
1597 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1240 reflections with I > 2σ
Tmin = 0.606, Tmax = 0.949Rint = 0.039
5708 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 0.94Δρmax = 0.52 e Å3
1597 reflectionsΔρmin = 0.32 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.89173 (13)0.1311 (4)0.14871 (15)0.0189 (5)
H1A0.88100.06130.13850.023*
H1B0.91900.15230.20930.023*
C20.81447 (12)0.2848 (5)0.14308 (15)0.0219 (5)
H2A0.82530.47910.14490.026*
H2B0.78360.24360.08580.026*
Fe11.062332 (16)0.00956 (6)0.06209 (2)0.01677 (10)
N11.06466 (10)0.2257 (4)0.14697 (12)0.0200 (4)
N21.13967 (11)0.1950 (4)0.05687 (13)0.0216 (4)
O11.07764 (10)0.3658 (3)0.20944 (11)0.0306 (4)
O21.19777 (10)0.3213 (4)0.06634 (13)0.0370 (5)
O30.77015 (10)0.2112 (3)0.21691 (12)0.0302 (4)
H30.75910.34870.24560.045*
S10.95465 (3)0.25677 (10)0.06417 (4)0.01729 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0256 (11)0.0179 (11)0.0142 (12)0.0014 (9)0.0070 (8)0.0007 (9)
C20.0243 (11)0.0202 (12)0.0220 (13)0.0032 (9)0.0071 (9)0.0006 (10)
Fe10.01897 (16)0.01530 (17)0.01622 (17)0.00062 (13)0.00241 (11)0.00012 (13)
N10.0220 (9)0.0206 (10)0.0173 (10)0.0001 (8)0.0012 (7)0.0025 (8)
N20.0225 (9)0.0206 (10)0.0224 (11)0.0002 (8)0.0060 (8)0.0021 (8)
O10.0449 (10)0.0241 (9)0.0220 (10)0.0008 (8)0.0020 (8)0.0069 (7)
O20.0276 (9)0.0363 (11)0.0477 (12)0.0119 (8)0.0069 (8)0.0058 (9)
O30.0378 (9)0.0235 (9)0.0322 (11)0.0049 (8)0.0222 (8)0.0037 (7)
S10.0212 (2)0.0139 (3)0.0174 (3)0.0006 (2)0.00546 (19)0.0004 (2)
Geometric parameters (Å, º) top
C1—C21.515 (3)Fe1—N21.6696 (19)
C1—S11.824 (2)Fe1—S1i2.2555 (7)
C1—H1A0.9900Fe1—S12.2619 (6)
C1—H1B0.9900Fe1—Fe1i2.7051 (6)
C2—O31.428 (2)N1—O11.174 (2)
C2—H2A0.9900N2—O21.170 (2)
C2—H2B0.9900O3—H30.8400
Fe1—N11.6650 (19)S1—Fe1i2.2555 (7)
C2—C1—S1109.51 (15)N2—Fe1—S1i110.41 (7)
C2—C1—H1A109.8N1—Fe1—S1110.22 (6)
S1—C1—H1A109.8N2—Fe1—S1106.00 (7)
C2—C1—H1B109.8S1i—Fe1—S1106.43 (2)
S1—C1—H1B109.8N1—Fe1—Fe1i121.14 (6)
H1A—C1—H1B108.2N2—Fe1—Fe1i121.42 (7)
O3—C2—C1109.18 (18)S1i—Fe1—Fe1i53.324 (17)
O3—C2—H2A109.8S1—Fe1—Fe1i53.106 (18)
C1—C2—H2A109.8O1—N1—Fe1170.09 (16)
O3—C2—H2B109.8O2—N2—Fe1169.24 (18)
C1—C2—H2B109.8C2—O3—H3109.5
H2A—C2—H2B108.3C1—S1—Fe1i110.16 (7)
N1—Fe1—N2117.44 (9)C1—S1—Fe1108.68 (7)
N1—Fe1—S1i105.88 (7)Fe1i—S1—Fe173.57 (2)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O3ii0.841.972.7950 (14)166
Symmetry code: (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe2(C2H5OS)2(NO)4]
Mr385.98
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)16.943 (3), 5.0070 (7), 14.931 (2)
β (°) 94.327 (3)
V3)1263.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.65
Crystal size (mm)0.21 × 0.18 × 0.02
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.606, 0.949
No. of measured, independent and
observed (I > 2σ) reflections
5708, 1597, 1240
Rint0.039
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.061, 0.94
No. of reflections1597
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected geometric parameters (Å, º) top
Fe1—N11.6650 (19)Fe1—S12.2619 (6)
Fe1—S1i2.2555 (7)Fe1—Fe1i2.7051 (6)
N1—Fe1—N2117.44 (9)N2—Fe1—S1106.00 (7)
N1—Fe1—S1110.22 (6)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O3ii0.841.972.7950 (14)165.8
Symmetry code: (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the National Science Council of Taiwan for financial support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiang, C.-Y., Miller, M. L., Reibenspies, J. H. & Darensbourg, M. Y. (2004). J. Am. Chem. Soc. 126, 10867–10867.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDillinger, S. A. T., Schmalle, H. W., Berke, T. & Fox, H. (2007). Dalton Trans. pp. 3562–3571.  Web of Science CSD CrossRef Google Scholar
First citationMazany, A. M., Fackler, J. P. Jr, Gallagher, M. K. & Seyferth, D. (1983). Inorg. Chem. 22, 2593–2596.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds