organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Fluoro­phen­yl)-1-(4-meth­oxy­phen­yl)prop-2-en-1-one

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 27 October 2009; accepted 31 October 2009; online 7 November 2009)

The title compound, C16H13FO2, was prepared from 4-methoxy­hypnone and 2-fluoro­benzophenone by a Claisen–Schmidt condensation reaction. The dihedral angle between the two benzene rings is 31.99 (2)°. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds along [010].

Related literature

For the biological activity of chalcones, see: Hsieh et al. (1998[Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39-46.]); Anto et al. (1994[Anto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73-80.]); De Vincenzo et al. (2000[De Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305-312.]); Dimmock et al. (1998[Dimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014-1026.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Chantrapromma, S., Patil, P. S., D'Silva, E. D. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o954-o955.]); Zhao et al. (2009[Zhao, P.-S., Wang, X., Guo, H.-M. & Jian, F.-F. (2009). Acta Cryst. E65, o1402.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13FO2

  • Mr = 256.26

  • Orthorhombic, P b c a

  • a = 7.4511 (6) Å

  • b = 11.0541 (8) Å

  • c = 31.031 (3) Å

  • V = 2555.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 15509 measured reflections

  • 3162 independent reflections

  • 2162 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.05

  • 3162 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2i 0.93 2.51 3.3679 (18) 153
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones have been identified as interesting compounds having multiple biological activities which include antiinflammatory (Hsieh et al.,1998) and antioxidant (Anto et al.,1994). The effectiveness of chalcone compounds against cancer has been investigated (De Vincenzo et al.,2000;Dimmock et al.,1998). As part of our search for new biologically active compounds we synthesized the title compound (I) and report its crystal structure herein.

The molecular structure of (I) is shown in Fig.1. The dihedral angle between the two benzene rings (C1—C6 and C7—C12) is 31.99 (2)°. The bond lengths and bond angles are within normal ranges and comparable to those in a related structures (Fun et al., 2008; Zhao et al., 2009). In the crystal structure, molecules are linked by weak intermolecular C-H···O hydrogen bonds into one-dimensional chains along [010] (Fig. 2).

Related literature top

For the biological activity of chalcones, see: Hsieh et al. (1998); Anto et al. (1994); De Vincenzo et al. (2000); Dimmock et al. (1998). For related structures, see: Fun et al. (2008); Zhao et al. (2009).

Experimental top

A mixture of 4-methoxyhypnone (0.02 mol) and 2-fluorobenzophenone (0.02 mol) and 10% NaOH (10ml) was stirred in ethanol (30 ml) for 2 h to afford the title compound (yield 85%). Single crystals suitable for X-ray measurements were obtailed by recrystallization of an ethyl acetate solution of the title compound at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
3-(2-Fluorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H13FO2F(000) = 1072
Mr = 256.26Dx = 1.332 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2162 reflections
a = 7.4511 (6) Åθ = 2.6–28.4°
b = 11.0541 (8) ŵ = 0.10 mm1
c = 31.031 (3) ÅT = 298 K
V = 2555.9 (3) Å3Bar, yellow
Z = 80.30 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
2162 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.4°, θmin = 2.6°
ϕ and ω scansh = 89
15509 measured reflectionsk = 1314
3162 independent reflectionsl = 3936
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.3713P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3162 reflectionsΔρmax = 0.16 e Å3
173 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0083 (9)
Crystal data top
C16H13FO2V = 2555.9 (3) Å3
Mr = 256.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.4511 (6) ŵ = 0.10 mm1
b = 11.0541 (8) ÅT = 298 K
c = 31.031 (3) Å0.30 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
2162 reflections with I > 2σ(I)
15509 measured reflectionsRint = 0.026
3162 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
3162 reflectionsΔρmin = 0.19 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C90.14251 (16)0.07378 (11)0.24089 (4)0.0474 (3)
C160.16025 (17)0.04544 (11)0.19449 (5)0.0530 (3)
O20.20708 (16)0.05586 (9)0.18272 (3)0.0723 (3)
C110.06705 (19)0.20676 (12)0.30007 (4)0.0539 (3)
H11A0.02710.28170.30970.065*
C100.08333 (18)0.18431 (11)0.25647 (4)0.0507 (3)
H10A0.05370.24510.23700.061*
C120.11063 (18)0.11693 (12)0.32916 (4)0.0548 (3)
C150.0866 (2)0.11137 (13)0.12171 (5)0.0598 (4)
H15A0.10290.03070.11420.072*
C140.11574 (19)0.13923 (12)0.16225 (5)0.0565 (4)
H14A0.10820.21970.17090.068*
O10.09938 (16)0.12870 (10)0.37267 (3)0.0747 (3)
C40.03134 (19)0.19281 (13)0.08723 (4)0.0567 (4)
C80.1842 (2)0.01562 (12)0.27107 (5)0.0597 (4)
H8A0.22320.09090.26160.072*
F0.04947 (18)0.02464 (10)0.04543 (3)0.1056 (4)
C70.1688 (2)0.00549 (13)0.31425 (5)0.0656 (4)
H7A0.19750.05530.33380.079*
C50.0374 (2)0.31898 (13)0.09031 (5)0.0638 (4)
H5A0.08620.35460.11480.077*
C30.0402 (2)0.14689 (15)0.04940 (5)0.0698 (4)
C60.0271 (3)0.39113 (16)0.05794 (5)0.0783 (5)
H6A0.02270.47480.06080.094*
C130.0495 (2)0.24277 (16)0.39010 (5)0.0743 (5)
H13A0.04650.23760.42100.112*
H13B0.06710.26490.37960.112*
H13C0.13540.30280.38150.112*
C20.1052 (3)0.21693 (19)0.01653 (5)0.0822 (5)
H2A0.15250.18180.00820.099*
C10.0987 (3)0.3404 (2)0.02105 (5)0.0849 (5)
H1A0.14260.39000.00080.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.0380 (6)0.0385 (6)0.0657 (8)0.0049 (5)0.0016 (5)0.0041 (5)
C160.0447 (7)0.0411 (7)0.0731 (9)0.0071 (5)0.0028 (6)0.0035 (6)
O20.0834 (8)0.0458 (6)0.0876 (8)0.0051 (5)0.0089 (6)0.0080 (5)
C110.0565 (8)0.0436 (7)0.0616 (8)0.0001 (6)0.0029 (6)0.0026 (6)
C100.0531 (8)0.0393 (6)0.0597 (8)0.0011 (6)0.0050 (6)0.0066 (5)
C120.0481 (7)0.0579 (8)0.0585 (8)0.0039 (6)0.0017 (6)0.0110 (6)
C150.0627 (9)0.0495 (7)0.0672 (9)0.0063 (7)0.0071 (7)0.0087 (6)
C140.0617 (9)0.0461 (7)0.0616 (8)0.0032 (6)0.0036 (6)0.0055 (6)
O10.0864 (8)0.0769 (7)0.0608 (7)0.0062 (6)0.0007 (5)0.0141 (5)
C40.0545 (8)0.0621 (8)0.0535 (8)0.0062 (7)0.0087 (6)0.0085 (6)
C80.0562 (8)0.0419 (7)0.0809 (10)0.0065 (6)0.0026 (7)0.0073 (6)
F0.1581 (12)0.0820 (7)0.0768 (7)0.0307 (7)0.0027 (6)0.0256 (5)
C70.0654 (9)0.0541 (8)0.0773 (10)0.0088 (7)0.0005 (8)0.0223 (7)
C50.0702 (10)0.0624 (9)0.0587 (8)0.0028 (8)0.0039 (7)0.0065 (7)
C30.0782 (11)0.0721 (10)0.0592 (9)0.0144 (8)0.0106 (8)0.0159 (8)
C60.0958 (13)0.0692 (10)0.0698 (10)0.0077 (9)0.0080 (9)0.0008 (8)
C130.0755 (11)0.0871 (12)0.0604 (9)0.0049 (9)0.0012 (8)0.0005 (8)
C20.0839 (12)0.1103 (15)0.0525 (9)0.0108 (11)0.0016 (8)0.0104 (9)
C10.0877 (13)0.1064 (15)0.0607 (10)0.0128 (11)0.0051 (9)0.0075 (10)
Geometric parameters (Å, º) top
C9—C101.3859 (18)C4—C51.399 (2)
C9—C81.3964 (18)C8—C71.365 (2)
C9—C161.4794 (19)C8—H8A0.9300
C16—O21.2285 (15)F—C31.3587 (19)
C16—C141.478 (2)C7—H7A0.9300
C11—C121.3807 (18)C5—C61.370 (2)
C11—C101.3808 (19)C5—H5A0.9300
C11—H11A0.9300C3—C21.369 (2)
C10—H10A0.9300C6—C11.382 (2)
C12—O11.3591 (17)C6—H6A0.9300
C12—C71.385 (2)C13—H13A0.9600
C15—C141.3134 (19)C13—H13B0.9600
C15—C41.457 (2)C13—H13C0.9600
C15—H15A0.9300C2—C11.373 (3)
C14—H14A0.9300C2—H2A0.9300
O1—C131.421 (2)C1—H1A0.9300
C4—C31.386 (2)
C10—C9—C8117.44 (13)C7—C8—H8A119.4
C10—C9—C16123.68 (12)C9—C8—H8A119.4
C8—C9—C16118.87 (12)C8—C7—C12120.40 (13)
O2—C16—C14120.11 (13)C8—C7—H7A119.8
O2—C16—C9120.52 (13)C12—C7—H7A119.8
C14—C16—C9119.34 (11)C6—C5—C4121.29 (15)
C12—C11—C10119.38 (13)C6—C5—H5A119.4
C12—C11—H11A120.3C4—C5—H5A119.4
C10—C11—H11A120.3F—C3—C2118.48 (15)
C11—C10—C9121.88 (12)F—C3—C4117.44 (15)
C11—C10—H10A119.1C2—C3—C4124.06 (16)
C9—C10—H10A119.1C5—C6—C1120.44 (17)
O1—C12—C11124.49 (13)C5—C6—H6A119.8
O1—C12—C7115.86 (12)C1—C6—H6A119.8
C11—C12—C7119.65 (13)O1—C13—H13A109.5
C14—C15—C4127.23 (13)O1—C13—H13B109.5
C14—C15—H15A116.4H13A—C13—H13B109.5
C4—C15—H15A116.4O1—C13—H13C109.5
C15—C14—C16121.39 (13)H13A—C13—H13C109.5
C15—C14—H14A119.3H13B—C13—H13C109.5
C16—C14—H14A119.3C3—C2—C1118.28 (16)
C12—O1—C13118.62 (12)C3—C2—H2A120.9
C3—C4—C5115.82 (14)C1—C2—H2A120.9
C3—C4—C15120.28 (14)C2—C1—C6120.11 (17)
C5—C4—C15123.83 (13)C2—C1—H1A119.9
C7—C8—C9121.24 (13)C6—C1—H1A119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.932.513.3679 (18)153
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13FO2
Mr256.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)7.4511 (6), 11.0541 (8), 31.031 (3)
V3)2555.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15509, 3162, 2162
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.05
No. of reflections3162
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.932.513.3679 (18)152.6
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The author would like to thank the Natural Science Foundation of Shandong Province (Y2008B29) and the Yuan-Du Scholar Fund of Weifang City.

References

First citationAnto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73–80.  CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305–312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014–1026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Chantrapromma, S., Patil, P. S., D'Silva, E. D. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o954–o955.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39–46.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, P.-S., Wang, X., Guo, H.-M. & Jian, F.-F. (2009). Acta Cryst. E65, o1402.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds