organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1-Naphth­yl)benzoic acid

aCentro de Investigação em Química, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169_007 Porto, Portugal, bREQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169_007 Porto, Portugal, and cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: jnlow111@googlemail.com

(Received 2 November 2009; accepted 3 November 2009; online 7 November 2009)

In the title mol­ecule, C17H12O2, the dihedral angle between the mean plane of the benzene ring and that of the naphthalene ring system is 49.09 (6)°. In the crystal structure, mol­ecules are linked to form centrosymmetric dimers via inter­molecular O—H⋯O hydrogen bonds. The hydr­oxy H atom is disordered over two sites with refined occupancies of 0.62 (3) and 0.38 (3).

Related literature

For a description of supra­molecular structures formed via hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, I. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12O2

  • Mr = 248.27

  • Monoclinic, P 21 /c

  • a = 3.8972 (6) Å

  • b = 40.511 (6) Å

  • c = 7.6106 (12) Å

  • β = 99.323 (3)°

  • V = 1185.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.30 × 0.18 × 0.02 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.998

  • 4700 measured reflections

  • 2412 independent reflections

  • 1954 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.107

  • S = 1.04

  • 2412 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O41—H41⋯O42i 0.84 1.79 2.6161 (18) 170
O42—H42⋯O41i 0.88 1.75 2.6161 (18) 168
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Technical Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the crystal structure, molecules of the title compound form typical carboxylic acid R22(8), (Bernstein et al. 1995), dimers across inversion centers. The hydroxy H atom is disordered over two sites. Figure 1 shows a centrosymmetric dimer of the title compound.

Related literature top

For a description of supramolecular structures formed via hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

A solution of K2CO3(20 mmol,4 mol/eq) in 20 ml of water was added to a solution of 1-bromonaphthalene(5 mmol, 1 mol/eq), 4-carboxyphenylboronic acid (8 mmol of water, 1.6 mol/eq) and Pd(OAc)2 (2mol%) in 20 ml of water. The resultant mixture was heated at 95°C, with constant stirring, for 6 h. The final solution was allowed to cool to room temperature, acidified to pH < 5 and extracted with ethyl acetate. The organic layer was washed with aqueous 0.1MHCl, dried over anhydrous sodium sulfate and evaporated. The resulting precipitate was washed with ether yielding 0.73 g of white flakes, (yield 59%, purity 99.9%). Crystals suitable for X-ray diffraction were obtained by crystallization from a 50/50 mixture of chloroform and acetone.

Refinement top

H atoms positions were calulated and refined as riding atoms with C—H(aromatic), 0.95 Å. The OH(hydroxy) was located in a difference Fourier map and identified as disordered over two sites, one H atom attached to O41 with a distance of 0.84Å and a site occupancy of 0.62 (3), the other attached to O42 with a distance of 0.88Å and a site occupancy of 0.38 (3). These atoms were refined as riding atoms. These positions were confirmed by examination of a difference map with hydroxy H atoms omitted form the structure model after the final refinement cycle (see Fig 2). The reflections 020 and 040 were omitted from the refinement since they were obscured by the beam-stop. The asymmetric unit was selected so that the centre of the dimer lies at (1/2, 1/2, 1/2).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A centrosymmetric dimer of the title compound. Atoms labelled with an 'a' are related by the symmetry operator (1 - x,1 - y,1 - z). Displacement ellipsoids are drawn at the 30% probability level. Only the major component of the disorder is shown.
[Figure 2] Fig. 2. A difference map with hydroxy H atoms not included in the structure model, showing a section in the plane of the disordered hydroxy H atoms and the C atom of the carboxyl group.
4-(1-Naphthyl)benzoic acid top
Crystal data top
C17H12O2F(000) = 520
Mr = 248.27Dx = 1.391 Mg m3
Monoclinic, P21/cMelting point: 509 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 3.8972 (6) ÅCell parameters from 1563 reflections
b = 40.511 (6) Åθ = 6.3–26.4°
c = 7.6106 (12) ŵ = 0.09 mm1
β = 99.323 (3)°T = 150 K
V = 1185.7 (3) Å3Plate, colorless
Z = 40.30 × 0.18 × 0.02 mm
Data collection top
Bruker SMART APEXII
diffractometer
2412 independent reflections
Radiation source: fine-focus sealed tube1954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.333 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 24
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
k = 4550
Tmin = 0.973, Tmax = 0.998l = 99
4700 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.4999P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2412 reflectionsΔρmax = 0.25 e Å3
174 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C17H12O2V = 1185.7 (3) Å3
Mr = 248.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.8972 (6) ŵ = 0.09 mm1
b = 40.511 (6) ÅT = 150 K
c = 7.6106 (12) Å0.30 × 0.18 × 0.02 mm
β = 99.323 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
2412 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1954 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.998Rint = 0.023
4700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
2412 reflectionsΔρmin = 0.17 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O410.5693 (4)0.50335 (3)0.73150 (17)0.0320 (3)
H410.48320.49230.64190.048*0.62 (3)
O420.7354 (4)0.53531 (3)0.52203 (16)0.0330 (3)
H420.65020.52020.44400.050*0.38 (3)
C11.1807 (4)0.62769 (4)1.2149 (2)0.0187 (4)
C21.3777 (4)0.61873 (4)1.3748 (2)0.0214 (4)
H21.43580.59611.39610.026*
C31.4950 (4)0.64219 (5)1.5074 (2)0.0248 (4)
H31.62960.63531.61660.030*
C41.4159 (5)0.67478 (5)1.4795 (2)0.0260 (4)
H41.50150.69051.56830.031*
C51.1179 (5)0.71913 (4)1.2917 (2)0.0266 (4)
H51.20600.73491.37970.032*
C60.9075 (5)0.72919 (4)1.1408 (2)0.0288 (4)
H60.84910.75191.12420.035*
C70.7765 (5)0.70599 (4)1.0094 (2)0.0267 (4)
H70.62810.71310.90470.032*
C80.8613 (4)0.67326 (4)1.0313 (2)0.0224 (4)
H80.76890.65790.94140.027*
C91.2078 (4)0.68535 (4)1.3196 (2)0.0216 (4)
C101.0846 (4)0.66168 (4)1.1855 (2)0.0190 (4)
C111.0745 (4)0.60175 (4)1.0782 (2)0.0180 (4)
C121.1205 (4)0.60601 (4)0.9008 (2)0.0197 (4)
H121.22560.62570.86700.024*
C131.0158 (4)0.58211 (4)0.7744 (2)0.0196 (4)
H131.04970.58540.65480.024*
C140.8601 (4)0.55312 (4)0.8215 (2)0.0192 (4)
C150.8267 (4)0.54788 (4)0.9991 (2)0.0209 (4)
H150.72940.52781.03340.025*
C160.9353 (4)0.57188 (4)1.1253 (2)0.0203 (4)
H160.91470.56801.24620.024*
C410.7169 (4)0.52934 (4)0.6815 (2)0.0215 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O410.0478 (8)0.0241 (7)0.0241 (7)0.0120 (6)0.0064 (6)0.0021 (5)
O420.0525 (9)0.0286 (7)0.0179 (6)0.0113 (6)0.0056 (6)0.0031 (5)
C10.0165 (8)0.0231 (9)0.0172 (8)0.0026 (7)0.0047 (6)0.0008 (6)
C20.0207 (8)0.0243 (9)0.0193 (8)0.0012 (7)0.0042 (6)0.0003 (7)
C30.0238 (9)0.0331 (10)0.0166 (8)0.0004 (8)0.0008 (6)0.0005 (7)
C40.0260 (9)0.0323 (10)0.0196 (9)0.0054 (8)0.0035 (7)0.0075 (7)
C50.0301 (10)0.0227 (9)0.0290 (9)0.0060 (8)0.0110 (8)0.0065 (7)
C60.0341 (10)0.0208 (9)0.0350 (10)0.0031 (8)0.0156 (8)0.0023 (8)
C70.0274 (10)0.0290 (10)0.0242 (9)0.0041 (8)0.0060 (7)0.0045 (7)
C80.0225 (9)0.0249 (9)0.0199 (8)0.0024 (7)0.0034 (6)0.0008 (7)
C90.0197 (9)0.0247 (9)0.0217 (8)0.0033 (7)0.0072 (7)0.0021 (7)
C100.0171 (8)0.0218 (9)0.0193 (8)0.0024 (7)0.0064 (6)0.0006 (6)
C110.0147 (8)0.0198 (8)0.0189 (8)0.0030 (6)0.0014 (6)0.0001 (6)
C120.0190 (8)0.0206 (9)0.0193 (8)0.0013 (7)0.0023 (6)0.0025 (7)
C130.0203 (8)0.0220 (9)0.0165 (8)0.0012 (7)0.0027 (6)0.0016 (6)
C140.0186 (8)0.0194 (8)0.0189 (8)0.0019 (7)0.0011 (6)0.0008 (6)
C150.0226 (9)0.0188 (9)0.0211 (8)0.0000 (7)0.0028 (6)0.0034 (7)
C160.0221 (9)0.0226 (9)0.0163 (8)0.0019 (7)0.0035 (6)0.0035 (6)
C410.0231 (9)0.0200 (9)0.0217 (8)0.0018 (7)0.0042 (6)0.0014 (7)
Geometric parameters (Å, º) top
O41—C411.286 (2)C6—H60.9500
O41—H410.8400C7—C81.370 (2)
O42—C411.251 (2)C7—H70.9500
O42—H420.8806C8—C101.423 (2)
C1—C21.379 (2)C8—H80.9500
C1—C101.435 (2)C9—C101.426 (2)
C1—C111.489 (2)C11—C161.396 (2)
C2—C31.407 (2)C11—C121.401 (2)
C2—H20.9500C12—C131.379 (2)
C3—C41.365 (3)C12—H120.9500
C3—H30.9500C13—C141.395 (2)
C4—C91.415 (2)C13—H130.9500
C4—H40.9500C14—C151.395 (2)
C5—C61.361 (3)C14—C411.477 (2)
C5—C91.420 (2)C15—C161.384 (2)
C5—H50.9500C15—H150.9500
C6—C71.407 (3)C16—H160.9500
C41—O41—H41109.6C4—C9—C10119.45 (16)
C41—O42—H42116.4C5—C9—C10119.66 (16)
C2—C1—C10118.95 (15)C8—C10—C9117.32 (15)
C2—C1—C11118.87 (15)C8—C10—C1123.64 (15)
C10—C1—C11122.17 (14)C9—C10—C1119.00 (15)
C1—C2—C3121.67 (16)C16—C11—C12118.02 (15)
C1—C2—H2119.2C16—C11—C1120.51 (14)
C3—C2—H2119.2C12—C11—C1121.44 (14)
C4—C3—C2120.18 (16)C13—C12—C11121.06 (15)
C4—C3—H3119.9C13—C12—H12119.5
C2—C3—H3119.9C11—C12—H12119.5
C3—C4—C9120.68 (16)C12—C13—C14120.24 (15)
C3—C4—H4119.7C12—C13—H13119.9
C9—C4—H4119.7C14—C13—H13119.9
C6—C5—C9121.00 (17)C13—C14—C15119.33 (15)
C6—C5—H5119.5C13—C14—C41119.53 (14)
C9—C5—H5119.5C15—C14—C41121.06 (15)
C5—C6—C7119.97 (17)C16—C15—C14119.96 (15)
C5—C6—H6120.0C16—C15—H15120.0
C7—C6—H6120.0C14—C15—H15120.0
C8—C7—C6120.50 (17)C15—C16—C11121.24 (14)
C8—C7—H7119.8C15—C16—H16119.4
C6—C7—H7119.8C11—C16—H16119.4
C7—C8—C10121.51 (16)O42—C41—O41122.96 (15)
C7—C8—H8119.2O42—C41—C14119.94 (15)
C10—C8—H8119.2O41—C41—C14117.08 (14)
C4—C9—C5120.89 (16)
C10—C1—C2—C31.9 (2)C11—C1—C10—C9177.44 (14)
C11—C1—C2—C3178.11 (14)C2—C1—C11—C1646.9 (2)
C1—C2—C3—C40.3 (3)C10—C1—C11—C16133.14 (16)
C2—C3—C4—C91.7 (3)C2—C1—C11—C12131.12 (17)
C9—C5—C6—C70.2 (3)C10—C1—C11—C1248.9 (2)
C5—C6—C7—C80.5 (3)C16—C11—C12—C133.1 (2)
C6—C7—C8—C100.5 (3)C1—C11—C12—C13178.82 (15)
C3—C4—C9—C5178.49 (16)C11—C12—C13—C140.2 (2)
C3—C4—C9—C101.0 (2)C12—C13—C14—C153.0 (2)
C6—C5—C9—C4177.62 (16)C12—C13—C14—C41173.74 (15)
C6—C5—C9—C101.9 (2)C13—C14—C15—C162.5 (2)
C7—C8—C10—C92.1 (2)C41—C14—C15—C16174.24 (15)
C7—C8—C10—C1179.89 (15)C14—C15—C16—C110.9 (2)
C4—C9—C10—C8176.77 (15)C12—C11—C16—C153.7 (2)
C5—C9—C10—C82.7 (2)C1—C11—C16—C15178.25 (15)
C4—C9—C10—C11.2 (2)C13—C14—C41—O420.1 (2)
C5—C9—C10—C1179.34 (15)C15—C14—C41—O42176.61 (17)
C2—C1—C10—C8175.23 (15)C13—C14—C41—O41178.49 (15)
C11—C1—C10—C84.8 (2)C15—C14—C41—O411.8 (2)
C2—C1—C10—C92.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O41—H41···O42i0.841.792.6161 (18)170
O42—H42···O41i0.881.752.6161 (18)168
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H12O2
Mr248.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)3.8972 (6), 40.511 (6), 7.6106 (12)
β (°) 99.323 (3)
V3)1185.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.18 × 0.02
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.973, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
4700, 2412, 1954
Rint0.023
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.04
No. of reflections2412
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O41—H41···O42i0.841.792.6161 (18)170
O42—H42···O41i0.881.752.6161 (18)168
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

CFRACL thanks FCT and the European Social Fund (ESF) under the third Community Support Framework (CSF) for the award of a PhD Research Grant (SRFH/BD/29394/2006). LRG thanks Fundação para o Ensino e Cultura Fernando Pessoa.

References

First citationBernstein, J., Davis, R. E., Shimoni, I. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Technical Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds