metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­aqua­bis­(μ3-1H-benzimidazole-5,6-di­carboxyl­ato)dicobalt(II)] trihydrate]

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wyh@zjnu.edu.cn

(Received 5 November 2009; accepted 18 November 2009; online 21 November 2009)

The title complex, {[Co2(C9H4N2O4)2(H2O)4]·3H2O}n, was synthesized hydro­thermally. The unique CoII ion is coordin­ated in a distorted octa­hedral coordination environment by two water mol­ecules and three symmetry-related 1H-benzimid­azole-5,6-dicarboxyl­ate (Hbidc) ligands. The Hbidc ligands coordinate via a bis-chelating and mono-chelating carboxyl­ate group and by an imidazole group N atom, bridging the CoII ions and forming an extended two-dimensional structure in the ab plane. In the crystal structure, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds connect complex and solvent water mol­ecules, forming a three-dimensional supermolecular network. One of the solvent water mol­ecules lies on a twofold rotation axis.

Related literature

For background information on carboxyl­ate ligands in coordination chemistry, see: Laduca (2009[Laduca, R. L. (2009). Coord. Chem. Rev. 253, 1759-1792.]); Grodzicki et al. (2005[Grodzicki, A., Lakomsk, I., Piszczek, P., Szymanska, I. & Szlyk, Z. (2005). Coord. Chem. Rev. 249, 2232-2258.]). For the isostructural Ni(II) complex, see: Yao et al. (2008[Yao, Y. L., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2299-2306.]). For related structures, see: Wei et al. (2008[Wei, Y. Q., Yu, Y. F. & Wu, K. C. (2008). Cryst. Growth Des. 8, 2087-2089.]); Xu & Yu (2009[Xu, K. & Yu, L.-P. (2009). Acta Cryst. E65, m295.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C9H4N2O4)2(H2O)4]·3H2O

  • Mr = 652.26

  • Monoclinic, C 2/c

  • a = 22.4085 (18) Å

  • b = 9.1564 (7) Å

  • c = 13.0907 (10) Å

  • β = 121.006 (4)°

  • V = 2302.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 296 K

  • 0.43 × 0.25 × 0.07 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.63, Tmax = 0.90

  • 9315 measured reflections

  • 2656 independent reflections

  • 2402 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.087

  • S = 1.03

  • 2656 reflections

  • 174 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3W—H3WA⋯O1i 0.84 1.97 2.798 (2) 170
N1—H1A⋯O1Wi 0.86 2.45 3.130 (2) 136
O2W—H2WA⋯O4i 0.84 1.99 2.786 157
O3W—H3WB⋯O3ii 0.84 1.85 2.641 (2) 158
O4W—H4WB⋯O3iii 0.84 2.60 3.095 (2) 119
O4W—H4WA⋯O2iii 0.84 1.86 2.679 (2) 165
O4W—H4WB⋯O2Wiv 0.84 2.02 2.769 148
N1—H1A⋯O2W 0.86 2.31 2.899 125
O1W—H1W⋯O3v 0.84 1.98 2.8218 (18) 180
O2W—H2WB⋯O3Wvi 0.84 2.16 2.949 157
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z; (iii) [-x, y, -z-{\script{1\over 2}}]; (iv) x, y-1, z; (v) [x, -y, z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well known that carboxylate ligands play an important role in coordination chemistry (Grodzicki et al. , 2005; Laduca, 2009). In recent years, the interaction of Hbidc with several metal ions has been studied, due to its unique ability to form stable chelates in diverse coordination modes such as bidentate, meridian and bridging (Wei et al., 2008; Yao et al., 2008). Herein we report the synthesis and crystal structure of the title two-dimensional complex of Hbidc (I).

Part of the 2-D structure of (I) is shown in Fig.1. The unique CoII ion is six-coordinated by one N atom and three O atoms from from three symmetry related Hbidc ligands and two oxygen atoms from two water molecules. Each Hbidc ligand coordinates via a chelating carboxylate group and a single oxygen atom of another carboxylate group bridging two CoII ions to form a one-dimensional chain along the b-axis with a Co···Co separation of 5.4374 (5) Å. In addition, Hbidc ligands coordinate through a N atom to connect the adjacent chains forming a two-dimensional network with chains separated by ca. 7.06 Å (see Fig. 2a). In the crystal structure, intermolecular N-H···O and O-H···O hydrogen bonds connect complex and solvent water molecules to form a three-dimensional supermolecular network (see Table 1 and Fig. 2b).

Related literature top

For background information on carboxylate ligands in coordination chemistry, see: Laduca (2009); Grodzicki et al. (2005). For the isostructural Ni(II) complex, see: Yao et al. (2008). For related structures, see: Wei et al. (2008); Xu & Yu (2009).

Experimental top

A mixture of CoSO4.7H2O(0.141 g, 0.5 mmol), benzimidazole-5,6-dicarboxylic acid(0.103 g, 0.5 mmol), H2O(16 ml)and 4-sulfophthalic(1 ml)(solution pH = 5) was sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 393 k for 3 d. On completion of the reaction, the reactor was cooled slowly to room temperature and the mixture was filtered, giving red single crystals suitable for X-ray analysis in 30% yield.

Refinement top

H-atoms were positioned geometrically and included in the refinement using a riding-model approximation [C–H = 0.93, O–H = 0.84 and N-H = 0.86Å] with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the 2-D structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (A)-x, -y, -z; (B)x + 1/2, -y + 1/2, z + 1/2; (c)x - 1/2,-y + 1/2, z - 1/2.
[Figure 2] Fig. 2. (a) Part of the 2-D structure of (I) viewed along the crystallographic c-axis. (b) Part of the crystal structure showing the donor···acceptor atom distances of hydrogen bonds as dashed lines.
Poly[[tetraaquabis(µ3-1H-benzimidazole-5,6-dicarboxylato)dicobalt(II)] trihydrate] top
Crystal data top
[Co2(C9H4N2O4)2(H2O)4]·3H2OF(000) = 1328
Mr = 652.26Dx = 1.882 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5695 reflections
a = 22.4085 (18) Åθ = 2.1–27.6°
b = 9.1564 (7) ŵ = 1.53 mm1
c = 13.0907 (10) ÅT = 296 K
β = 121.006 (4)°Block, red
V = 2302.2 (3) Å30.43 × 0.25 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2656 independent reflections
Radiation source: fine-focus sealed tube2402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2927
Tmin = 0.63, Tmax = 0.90k = 1111
9315 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0533P)2 + 3.4124P]
where P = (Fo2 + 2Fc2)/3
2656 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.81 e Å3
6 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Co2(C9H4N2O4)2(H2O)4]·3H2OV = 2302.2 (3) Å3
Mr = 652.26Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.4085 (18) ŵ = 1.53 mm1
b = 9.1564 (7) ÅT = 296 K
c = 13.0907 (10) Å0.43 × 0.25 × 0.07 mm
β = 121.006 (4)°
Data collection top
Bruker APEXII
diffractometer
2656 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2402 reflections with I > 2σ(I)
Tmin = 0.63, Tmax = 0.90Rint = 0.018
9315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0296 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.03Δρmax = 0.81 e Å3
2656 reflectionsΔρmin = 0.63 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.199951 (12)0.14498 (3)0.12124 (2)0.01825 (10)
O10.19686 (7)0.44398 (15)0.25564 (13)0.0239 (3)
O20.20916 (7)0.22564 (15)0.33254 (12)0.0216 (3)
O30.10064 (8)0.07292 (17)0.23544 (16)0.0335 (4)
O3W0.20211 (8)0.25089 (16)0.26967 (13)0.0277 (3)
H3WA0.19740.34190.26900.042*
H3WB0.17060.20710.27420.042*
O40.14121 (7)0.02445 (15)0.12688 (12)0.0224 (3)
O4W0.20838 (8)0.03724 (17)0.01154 (13)0.0302 (3)
H4WA0.20190.08850.06960.045*
H4WB0.18630.04150.03650.045*
N10.07455 (8)0.50513 (18)0.06630 (15)0.0222 (3)
H1A0.07160.59760.07940.027*
N20.12237 (8)0.28672 (18)0.00087 (15)0.0225 (3)
C10.09320 (9)0.3057 (2)0.19386 (16)0.0181 (4)
C20.06298 (9)0.1649 (2)0.15733 (16)0.0175 (4)
C30.00868 (10)0.1468 (2)0.09321 (18)0.0207 (4)
H3A0.02850.05440.07000.025*
C40.05016 (9)0.2710 (2)0.06466 (17)0.0195 (4)
C50.01982 (10)0.4091 (2)0.10514 (17)0.0189 (4)
C60.05185 (9)0.4293 (2)0.16866 (17)0.0195 (4)
H6A0.07140.52160.19330.023*
C70.17032 (9)0.3262 (2)0.26428 (16)0.0177 (3)
C80.10569 (9)0.0287 (2)0.17727 (16)0.0194 (4)
C90.13324 (10)0.4278 (2)0.00439 (18)0.0240 (4)
H9A0.17740.46910.03150.029*
O1W0.00000.24202 (17)0.25000.1066 (18)
H1W0.03000.19170.25430.160*
O2W0.16430.75912 (17)0.00160.0530 (5)
H2WA0.14920.80720.03820.080*
H2WB0.20530.74030.05580.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01193 (15)0.01637 (16)0.02247 (16)0.00183 (8)0.00601 (11)0.00077 (9)
O10.0152 (6)0.0189 (7)0.0326 (7)0.0021 (5)0.0086 (6)0.0031 (6)
O20.0145 (6)0.0201 (7)0.0250 (7)0.0001 (5)0.0064 (5)0.0035 (5)
O30.0321 (8)0.0251 (8)0.0530 (10)0.0099 (6)0.0289 (8)0.0140 (7)
O3W0.0269 (8)0.0208 (7)0.0381 (8)0.0053 (6)0.0186 (7)0.0047 (6)
O40.0197 (6)0.0207 (7)0.0290 (7)0.0043 (5)0.0139 (6)0.0005 (5)
O4W0.0398 (9)0.0241 (7)0.0287 (7)0.0068 (6)0.0191 (7)0.0012 (6)
N10.0166 (8)0.0159 (8)0.0313 (9)0.0036 (6)0.0104 (7)0.0003 (6)
N20.0118 (7)0.0221 (8)0.0271 (8)0.0023 (6)0.0054 (6)0.0023 (7)
C10.0134 (8)0.0187 (9)0.0201 (8)0.0002 (7)0.0072 (7)0.0008 (7)
C20.0138 (8)0.0164 (9)0.0202 (8)0.0008 (6)0.0072 (7)0.0011 (7)
C30.0148 (9)0.0162 (9)0.0263 (9)0.0010 (6)0.0072 (7)0.0029 (7)
C40.0123 (8)0.0212 (9)0.0219 (9)0.0009 (7)0.0067 (7)0.0021 (7)
C50.0171 (9)0.0161 (9)0.0225 (9)0.0024 (7)0.0095 (7)0.0000 (7)
C60.0163 (8)0.0159 (9)0.0244 (9)0.0015 (7)0.0091 (7)0.0023 (7)
C70.0135 (8)0.0176 (8)0.0208 (9)0.0006 (7)0.0079 (7)0.0026 (7)
C80.0119 (8)0.0173 (9)0.0237 (9)0.0013 (7)0.0054 (7)0.0017 (7)
C90.0150 (9)0.0241 (10)0.0289 (10)0.0037 (7)0.0084 (8)0.0001 (8)
O1W0.103 (3)0.0399 (18)0.247 (6)0.0000.140 (4)0.000
O2W0.0709 (14)0.0310 (10)0.0514 (11)0.0099 (9)0.0275 (10)0.0037 (8)
Geometric parameters (Å, º) top
Co1—O4i2.0603 (14)N1—C51.376 (2)
Co1—N22.0898 (16)N1—H1A0.8598
Co1—O4W2.0901 (15)N2—C91.322 (3)
Co1—O3W2.1497 (15)N2—C41.395 (2)
Co1—O2ii2.1560 (13)C1—C61.390 (3)
Co1—O1ii2.1837 (14)C1—C21.420 (3)
Co1—C7ii2.5057 (18)C1—C71.493 (2)
O1—C71.265 (2)C2—C31.386 (3)
O1—Co1iii2.1837 (14)C2—C81.511 (2)
O2—C71.266 (2)C3—C41.393 (3)
O2—Co1iii2.1560 (13)C3—H3A0.9300
O3—C81.244 (2)C4—C51.404 (3)
O3W—H3WA0.8399C5—C61.389 (3)
O3W—H3WB0.8399C6—H6A0.9300
O4—C81.269 (2)C7—Co1iii2.5057 (18)
O4—Co1i2.0603 (14)C9—H9A0.9300
O4W—H4WA0.8401O1W—H1W0.8401
O4W—H4WB0.8393O2W—H2WA0.8400
N1—C91.338 (3)O2W—H2WB0.8401
O4i—Co1—N2101.30 (6)C9—N2—Co1122.80 (13)
O4i—Co1—O4W90.43 (6)C4—N2—Co1130.58 (13)
N2—Co1—O4W93.58 (7)C6—C1—C2121.02 (16)
O4i—Co1—O3W91.41 (6)C6—C1—C7117.55 (16)
N2—Co1—O3W91.38 (6)C2—C1—C7121.40 (16)
O4W—Co1—O3W174.27 (6)C3—C2—C1121.02 (16)
O4i—Co1—O2ii158.80 (5)C3—C2—C8116.03 (16)
N2—Co1—O2ii99.73 (6)C1—C2—C8122.80 (16)
O4W—Co1—O2ii90.90 (6)C2—C3—C4118.00 (17)
O3W—Co1—O2ii85.43 (5)C2—C3—H3A121.0
O4i—Co1—O1ii98.39 (5)C4—C3—H3A121.0
N2—Co1—O1ii160.30 (6)C3—C4—N2130.70 (18)
O4W—Co1—O1ii85.57 (6)C3—C4—C5120.52 (17)
O3W—Co1—O1ii88.79 (6)N2—C4—C5108.77 (16)
O2ii—Co1—O1ii60.64 (5)N1—C5—C6132.21 (18)
O4i—Co1—C7ii128.59 (6)N1—C5—C4105.67 (16)
N2—Co1—C7ii130.06 (6)C6—C5—C4122.11 (17)
O4W—Co1—C7ii88.46 (6)C5—C6—C1117.23 (17)
O3W—Co1—C7ii86.15 (6)C5—C6—H6A121.4
O2ii—Co1—C7ii30.33 (6)C1—C6—H6A121.4
O1ii—Co1—C7ii30.31 (6)O1—C7—O2119.96 (16)
C7—O1—Co1iii89.07 (11)O1—C7—C1119.97 (16)
C7—O2—Co1iii90.30 (11)O2—C7—C1120.07 (16)
Co1—O3W—H3WA119.7O1—C7—Co1iii60.62 (9)
Co1—O3W—H3WB102.7O2—C7—Co1iii59.36 (9)
H3WA—O3W—H3WB111.6C1—C7—Co1iii178.35 (14)
C8—O4—Co1i128.68 (13)O3—C8—O4125.06 (18)
Co1—O4W—H4WA116.2O3—C8—C2118.29 (17)
Co1—O4W—H4WB116.2O4—C8—C2116.53 (17)
H4WA—O4W—H4WB109.6N2—C9—N1113.50 (17)
C9—N1—C5107.24 (16)N2—C9—H9A123.3
C9—N1—H1A126.4N1—C9—H9A123.3
C5—N1—H1A126.4H2WA—O2W—H2WB102.3
C9—N2—C4104.80 (16)
O4i—Co1—N2—C9158.93 (16)C3—C4—C5—N1177.40 (18)
O4W—Co1—N2—C9109.92 (17)N2—C4—C5—N11.9 (2)
O3W—Co1—N2—C967.21 (17)C3—C4—C5—C63.7 (3)
O2ii—Co1—N2—C918.39 (18)N2—C4—C5—C6177.00 (18)
O1ii—Co1—N2—C923.1 (3)N1—C5—C6—C1179.8 (2)
C7ii—Co1—N2—C918.9 (2)C4—C5—C6—C11.6 (3)
O4i—Co1—N2—C43.25 (19)C2—C1—C6—C50.9 (3)
O4W—Co1—N2—C487.90 (18)C7—C1—C6—C5178.77 (17)
O3W—Co1—N2—C494.97 (18)Co1iii—O1—C7—O21.72 (18)
O2ii—Co1—N2—C4179.43 (17)Co1iii—O1—C7—C1178.23 (15)
O1ii—Co1—N2—C4174.76 (16)Co1iii—O2—C7—O11.74 (18)
C7ii—Co1—N2—C4178.90 (16)Co1iii—O2—C7—C1178.21 (15)
C6—C1—C2—C31.4 (3)C6—C1—C7—O130.8 (3)
C7—C1—C2—C3179.21 (18)C2—C1—C7—O1151.34 (18)
C6—C1—C2—C8176.81 (17)C6—C1—C7—O2149.27 (18)
C7—C1—C2—C85.4 (3)C2—C1—C7—O228.6 (3)
C1—C2—C3—C40.6 (3)Co1i—O4—C8—O30.8 (3)
C8—C2—C3—C4175.08 (17)Co1i—O4—C8—C2175.08 (12)
C2—C3—C4—N2177.8 (2)C3—C2—C8—O362.2 (2)
C2—C3—C4—C53.1 (3)C1—C2—C8—O3122.2 (2)
C9—N2—C4—C3177.6 (2)C3—C2—C8—O4114.0 (2)
Co1—N2—C4—C317.9 (3)C1—C2—C8—O461.7 (2)
C9—N2—C4—C51.6 (2)C4—N2—C9—N10.7 (2)
Co1—N2—C4—C5162.99 (14)Co1—N2—C9—N1165.38 (14)
C9—N1—C5—C6177.3 (2)C5—N1—C9—N20.4 (2)
C9—N1—C5—C41.4 (2)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3WA···O1iv0.841.972.798 (2)170
N1—H1A···O1Wiv0.862.453.130 (2)136
O2W—H2WA···O4iv0.841.992.7855157
O3W—H3WB···O3i0.841.852.641 (2)158
O4W—H4WB···O3v0.842.603.095 (2)119
O4W—H4WA···O2v0.841.862.679 (2)165
O4W—H4WB···O2Wvi0.842.022.7686148
N1—H1A···O2W0.862.312.8986125
O1W—H1W···O3vii0.841.982.8218 (18)180
O2W—H2WB···O3Wviii0.842.162.9492157
Symmetry codes: (i) x, y, z; (iv) x, y+1, z; (v) x, y, z1/2; (vi) x, y1, z; (vii) x, y, z+1/2; (viii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co2(C9H4N2O4)2(H2O)4]·3H2O
Mr652.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)22.4085 (18), 9.1564 (7), 13.0907 (10)
β (°) 121.006 (4)
V3)2302.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.43 × 0.25 × 0.07
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.63, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
9315, 2656, 2402
Rint0.018
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.087, 1.03
No. of reflections2656
No. of parameters174
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.63

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3WA···O1i0.841.972.798 (2)169.9
N1—H1A···O1Wi0.862.453.130 (2)135.9
O2W—H2WA···O4i0.841.992.78546157.1
O3W—H3WB···O3ii0.841.852.641 (2)157.5
O4W—H4WB···O3iii0.842.603.095 (2)118.7
O4W—H4WA···O2iii0.841.862.679 (2)164.8
O4W—H4WB···O2Wiv0.842.022.76864148.2
N1—H1A···O2W0.862.312.89857125.4
O1W—H1W···O3v0.841.982.8218 (18)180.0
O2W—H2WB···O3Wvi0.842.162.94922157.3
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x, y, z1/2; (iv) x, y1, z; (v) x, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrodzicki, A., Lakomsk, I., Piszczek, P., Szymanska, I. & Szlyk, Z. (2005). Coord. Chem. Rev. 249, 2232–2258.  Web of Science CrossRef CAS Google Scholar
First citationLaduca, R. L. (2009). Coord. Chem. Rev. 253, 1759–1792.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y. Q., Yu, Y. F. & Wu, K. C. (2008). Cryst. Growth Des. 8, 2087–2089.  Web of Science CrossRef CAS Google Scholar
First citationXu, K. & Yu, L.-P. (2009). Acta Cryst. E65, m295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYao, Y. L., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2299–2306.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds