metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-O-Ethyl-N-(p-tol­yl)thio­carbamato-κS](tri­phenyl­phosphine)-κP]gold(I)

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 November 2009; accepted 10 November 2009; online 14 November 2009)

The title compound, [Au(C10H12NOS)(C18H15P)], features a linear S,P-donor set about the central Au atom. The thio­carbamate ligand is orientated to place the aryl ring in close proximity to Au [the closest Au⋯C distance is 3.238 (4) Å], which results in a small deviation from the ideal linear P—Au—S geometry.

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]). For gold⋯π interactions, see: Tiekink & Zukerman-Schpector (2009[Tiekink, E. R. T. & J. Zukerman-Schpector, J. (2009). CrystEngComm, 11, 1176-1186.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C10H12NOS)(C18H15P)]

  • Mr = 653.50

  • Triclinic, [P \overline 1]

  • a = 8.6676 (5) Å

  • b = 12.1397 (6) Å

  • c = 13.2378 (7) Å

  • α = 65.482 (1)°

  • β = 89.765 (1)°

  • γ = 80.635 (1)°

  • V = 1247.30 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.07 mm−1

  • T = 223 K

  • 0.31 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.311, Tmax = 1

  • 8852 measured reflections

  • 5702 independent reflections

  • 5380 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.074

  • S = 1.04

  • 5702 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 1.41 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au—S1 2.2964 (9)
Au—P1 2.2601 (9)
P1—Au—S1 177.07 (3)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Phosphinegold(I) thiocarbamides have proved relatively easy to crystallize making systematic structural investigations possible, such as monitoring the influence of phosphine and/or thiocarbamato ligands upon supramolecular aggregation patterns (Ho & Tiekink, 2007; Kuan et al., 2008) and luminescence (Ho et al. 2006). During these studies, the title compound, Ph3Au[SC(OEt)N(p-tolyl)], (I), was synthesized.

The gold atom in (I) exists in the expected linear geometry defined by a S,P donor set, Table 1 and Fig. 1. While the thiocarbamato anion shows the expected features, i.e. a Z-conformation about the C1-N1 bond and thiolate character [C1–S1 is 1.759 (3) Å and C1-N1 is 1.265 (5) Å], its orientation within the molecule is unusual. Normally in these type of phosphinegold(I) compounds, the orientation of the thiocarbamato ligand has the O1 atom in close proximity to the Au atom. However, in (I), the aryl ring is orientated towards Au [closest Au···C2 distance = 3.238 (4) Å, and Au···Cg(C2—C7) = 3.60 Å]. The close approach of the aryl ring is responsible for the small deviation from linearity of the S,P donor set, Table 1.

Electronic and steric effects have been cited as reasons for the variation in the coordination modes of thiocarbamato ligands in their phosphinegold(I) compounds, with N-bound p-tolyl groups known to promote Au···π interactions (Kuan et al., 2008).

Related literature top

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993). For related literature, see: Tiekink & Zukerman-Schpector (2009).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Ph3AuCl and EtOC(S)N(H)(p-tolyl) in the presence of base (Hall et al., 1993).

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.41 and 0.98 e Å-3, respectively, were located 0.83 Å and 0.81 Å, respectively, from the Au atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[(Z)-O-Ethyl-N-(p-tolyl)thiocarbamato- κS](triphenylphosphine)-κP]gold(I) top
Crystal data top
[Au(C10H12NOS)(C18H15P)]Z = 2
Mr = 653.50F(000) = 640
Triclinic, P1Dx = 1.740 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.6676 (5) ÅCell parameters from 6912 reflections
b = 12.1397 (6) Åθ = 2.4–29.9°
c = 13.2378 (7) ŵ = 6.07 mm1
α = 65.482 (1)°T = 223 K
β = 89.765 (1)°Block, colourless
γ = 80.635 (1)°0.31 × 0.16 × 0.16 mm
V = 1247.30 (12) Å3
Data collection top
Bruker SMART CCD
diffractometer
5702 independent reflections
Radiation source: fine-focus sealed tube5380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.311, Tmax = 1k = 1415
8852 measured reflectionsl = 1117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.0366P]
where P = (Fo2 + 2Fc2)/3
5702 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 1.41 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Au(C10H12NOS)(C18H15P)]γ = 80.635 (1)°
Mr = 653.50V = 1247.30 (12) Å3
Triclinic, P1Z = 2
a = 8.6676 (5) ÅMo Kα radiation
b = 12.1397 (6) ŵ = 6.07 mm1
c = 13.2378 (7) ÅT = 223 K
α = 65.482 (1)°0.31 × 0.16 × 0.16 mm
β = 89.765 (1)°
Data collection top
Bruker SMART CCD
diffractometer
5702 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5380 reflections with I > 2σ(I)
Tmin = 0.311, Tmax = 1Rint = 0.019
8852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.04Δρmax = 1.41 e Å3
5702 reflectionsΔρmin = 0.98 e Å3
299 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.133778 (13)0.439781 (10)0.172306 (9)0.03279 (6)
S10.03428 (11)0.61652 (8)0.06097 (8)0.03801 (18)
P10.28847 (10)0.26188 (8)0.28627 (7)0.03056 (17)
O10.1531 (3)0.8119 (2)0.0773 (2)0.0404 (5)
N10.0908 (4)0.7459 (3)0.1633 (3)0.0434 (7)
C10.0164 (4)0.7286 (3)0.1099 (3)0.0341 (6)
C20.2387 (4)0.6696 (3)0.2015 (3)0.0368 (7)
C30.3647 (5)0.6845 (4)0.1339 (4)0.0471 (8)
H30.34820.73870.05810.056*
C40.5130 (5)0.6205 (4)0.1775 (4)0.0473 (9)
H40.59660.63260.13080.057*
C50.5420 (4)0.5380 (3)0.2896 (3)0.0405 (8)
C60.4168 (5)0.5244 (3)0.3562 (3)0.0408 (8)
H60.43310.47050.43220.049*
C70.2677 (4)0.5889 (3)0.3127 (3)0.0400 (8)
H70.18440.57770.35960.048*
C80.7037 (5)0.4652 (4)0.3367 (4)0.0589 (11)
H8A0.72520.46450.40890.088*
H8B0.78100.50290.28670.088*
H8C0.70890.38150.34490.088*
C90.1632 (4)0.9157 (3)0.1064 (3)0.0400 (7)
H9A0.09210.97060.06390.048*
H9B0.13520.88720.18590.048*
C100.3300 (5)0.9812 (4)0.0780 (4)0.0523 (10)
H10A0.34321.05160.09640.078*
H10B0.39880.92560.12030.078*
H10C0.35581.00900.00090.078*
C110.4880 (4)0.2449 (3)0.2467 (3)0.0338 (6)
C120.5368 (4)0.3463 (3)0.1625 (3)0.0399 (7)
H120.46570.42040.12590.048*
C130.6905 (5)0.3367 (4)0.1334 (4)0.0540 (10)
H130.72410.40500.07780.065*
C140.7948 (5)0.2275 (5)0.1856 (4)0.0569 (11)
H140.89910.22210.16580.068*
C150.7465 (5)0.1256 (4)0.2670 (4)0.0559 (11)
H150.81750.05120.30190.067*
C160.5923 (5)0.1342 (4)0.2969 (3)0.0439 (8)
H160.55870.06510.35120.053*
C170.2276 (4)0.1190 (3)0.3033 (3)0.0321 (6)
C180.1892 (4)0.0357 (3)0.4049 (3)0.0383 (7)
H180.19240.05350.46750.046*
C190.1460 (5)0.0739 (3)0.4155 (4)0.0444 (8)
H190.11960.12990.48460.053*
C200.1424 (4)0.0992 (3)0.3228 (4)0.0456 (8)
H200.11450.17330.32910.055*
C210.1794 (5)0.0163 (4)0.2211 (4)0.0453 (8)
H210.17590.03440.15870.054*
C220.2216 (4)0.0927 (3)0.2101 (3)0.0400 (8)
H220.24610.14900.14040.048*
C230.2960 (4)0.2546 (3)0.4263 (3)0.0329 (6)
C240.1596 (4)0.3020 (3)0.4609 (3)0.0400 (7)
H240.06710.33310.41380.048*
C250.1605 (5)0.3033 (4)0.5653 (3)0.0483 (9)
H250.06780.33410.58920.058*
C260.2956 (5)0.2601 (4)0.6341 (3)0.0496 (9)
H260.29600.26430.70340.059*
C270.4302 (6)0.2107 (4)0.6016 (3)0.0505 (9)
H270.52140.17790.65000.061*
C280.4315 (4)0.2093 (3)0.4973 (3)0.0421 (8)
H280.52450.17740.47450.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.03425 (8)0.02878 (8)0.03499 (9)0.00471 (5)0.00208 (5)0.01337 (6)
S10.0414 (4)0.0333 (4)0.0401 (4)0.0021 (3)0.0074 (3)0.0178 (4)
P10.0324 (4)0.0270 (4)0.0332 (4)0.0056 (3)0.0028 (3)0.0134 (3)
O10.0382 (12)0.0349 (12)0.0474 (14)0.0010 (10)0.0073 (10)0.0193 (11)
N10.0396 (16)0.0362 (15)0.0541 (19)0.0010 (13)0.0107 (14)0.0214 (14)
C10.0376 (16)0.0299 (15)0.0355 (16)0.0050 (13)0.0019 (13)0.0147 (13)
C20.0347 (16)0.0320 (16)0.0493 (19)0.0045 (13)0.0058 (14)0.0229 (15)
C30.048 (2)0.0419 (19)0.048 (2)0.0037 (16)0.0011 (17)0.0176 (17)
C40.042 (2)0.048 (2)0.053 (2)0.0086 (17)0.0077 (17)0.0216 (18)
C50.0341 (16)0.0389 (18)0.056 (2)0.0046 (14)0.0038 (15)0.0279 (17)
C60.0454 (19)0.0317 (16)0.0439 (19)0.0042 (15)0.0082 (15)0.0153 (15)
C70.0358 (17)0.0353 (17)0.051 (2)0.0082 (14)0.0031 (15)0.0194 (16)
C80.041 (2)0.058 (3)0.080 (3)0.0024 (19)0.013 (2)0.034 (2)
C90.0420 (18)0.0328 (16)0.0432 (19)0.0000 (14)0.0002 (14)0.0162 (15)
C100.047 (2)0.046 (2)0.056 (2)0.0086 (17)0.0033 (18)0.0202 (19)
C110.0319 (15)0.0360 (16)0.0370 (16)0.0052 (13)0.0041 (12)0.0190 (14)
C120.0380 (17)0.0413 (18)0.0412 (18)0.0096 (14)0.0066 (14)0.0173 (15)
C130.046 (2)0.065 (3)0.059 (3)0.0207 (19)0.0164 (19)0.029 (2)
C140.039 (2)0.082 (3)0.059 (3)0.010 (2)0.0087 (19)0.039 (3)
C150.046 (2)0.066 (3)0.053 (2)0.009 (2)0.0006 (18)0.028 (2)
C160.045 (2)0.0393 (19)0.045 (2)0.0010 (15)0.0049 (16)0.0185 (16)
C170.0294 (14)0.0291 (15)0.0396 (17)0.0053 (12)0.0002 (12)0.0161 (13)
C180.0412 (17)0.0340 (17)0.0427 (18)0.0081 (14)0.0037 (14)0.0186 (15)
C190.045 (2)0.0335 (17)0.051 (2)0.0118 (15)0.0093 (16)0.0134 (16)
C200.0419 (19)0.0358 (18)0.067 (2)0.0097 (15)0.0022 (17)0.0280 (18)
C210.047 (2)0.047 (2)0.053 (2)0.0094 (16)0.0005 (16)0.0313 (18)
C220.0443 (19)0.0389 (18)0.0398 (18)0.0078 (15)0.0010 (15)0.0191 (15)
C230.0380 (16)0.0286 (15)0.0352 (16)0.0098 (12)0.0043 (13)0.0149 (13)
C240.0390 (17)0.0413 (18)0.0453 (19)0.0116 (14)0.0076 (14)0.0222 (16)
C250.054 (2)0.052 (2)0.049 (2)0.0184 (18)0.0194 (18)0.0282 (19)
C260.071 (3)0.050 (2)0.0357 (18)0.026 (2)0.0125 (18)0.0202 (17)
C270.065 (3)0.041 (2)0.0396 (19)0.0112 (18)0.0068 (17)0.0106 (16)
C280.0433 (19)0.0403 (18)0.0423 (19)0.0064 (15)0.0006 (15)0.0171 (15)
Geometric parameters (Å, º) top
Au—S12.2964 (9)C12—C131.385 (5)
Au—P12.2601 (9)C12—H120.9400
S1—C11.759 (3)C13—C141.381 (7)
P1—C111.810 (3)C13—H130.9400
P1—C171.819 (3)C14—C151.387 (7)
P1—C231.820 (3)C14—H140.9400
O1—C11.365 (4)C15—C161.392 (6)
O1—C91.453 (4)C15—H150.9400
N1—C11.265 (5)C16—H160.9400
N1—C21.409 (4)C17—C181.386 (5)
C2—C71.385 (5)C17—C221.400 (5)
C2—C31.395 (5)C18—C191.392 (5)
C3—C41.378 (6)C18—H180.9400
C3—H30.9400C19—C201.386 (6)
C4—C51.400 (6)C19—H190.9400
C4—H40.9400C20—C211.380 (6)
C5—C61.383 (6)C20—H200.9400
C5—C81.510 (5)C21—C221.380 (5)
C6—C71.385 (5)C21—H210.9400
C6—H60.9400C22—H220.9400
C7—H70.9400C23—C241.390 (5)
C8—H8A0.9700C23—C281.391 (5)
C8—H8B0.9700C24—C251.389 (5)
C8—H8C0.9700C24—H240.9400
C9—C101.498 (5)C25—C261.374 (6)
C9—H9A0.9800C25—H250.9400
C9—H9B0.9800C26—C271.374 (6)
C10—H10A0.9700C26—H260.9400
C10—H10B0.9700C27—C281.388 (6)
C10—H10C0.9700C27—H270.9400
C11—C161.390 (5)C28—H280.9400
C11—C121.401 (5)
P1—Au—S1177.07 (3)C13—C12—C11119.6 (4)
C1—S1—Au107.44 (12)C13—C12—H12120.2
C11—P1—C17103.77 (15)C11—C12—H12120.2
C11—P1—C23107.57 (15)C14—C13—C12120.4 (4)
C17—P1—C23104.35 (15)C14—C13—H13119.8
C11—P1—Au114.08 (12)C12—C13—H13119.8
C17—P1—Au117.45 (11)C13—C14—C15120.4 (4)
C23—P1—Au108.81 (11)C13—C14—H14119.8
C1—O1—C9116.6 (3)C15—C14—H14119.8
C1—N1—C2125.5 (3)C14—C15—C16119.7 (4)
N1—C1—O1118.6 (3)C14—C15—H15120.2
N1—C1—S1134.4 (3)C16—C15—H15120.2
O1—C1—S1107.0 (2)C11—C16—C15120.1 (4)
C7—C2—C3118.0 (3)C11—C16—H16119.9
C7—C2—N1119.7 (3)C15—C16—H16119.9
C3—C2—N1121.7 (3)C18—C17—C22119.4 (3)
C4—C3—C2120.6 (4)C18—C17—P1122.3 (3)
C4—C3—H3119.7C22—C17—P1118.3 (3)
C2—C3—H3119.7C17—C18—C19120.9 (3)
C3—C4—C5121.4 (4)C17—C18—H18119.6
C3—C4—H4119.3C19—C18—H18119.6
C5—C4—H4119.3C20—C19—C18119.0 (4)
C6—C5—C4117.6 (3)C20—C19—H19120.5
C6—C5—C8120.9 (4)C18—C19—H19120.5
C4—C5—C8121.5 (4)C21—C20—C19120.5 (3)
C5—C6—C7121.0 (4)C21—C20—H20119.8
C5—C6—H6119.5C19—C20—H20119.8
C7—C6—H6119.5C20—C21—C22120.7 (4)
C2—C7—C6121.4 (4)C20—C21—H21119.6
C2—C7—H7119.3C22—C21—H21119.6
C6—C7—H7119.3C21—C22—C17119.5 (4)
C5—C8—H8A109.5C21—C22—H22120.2
C5—C8—H8B109.5C17—C22—H22120.2
H8A—C8—H8B109.5C24—C23—C28119.1 (3)
C5—C8—H8C109.5C24—C23—P1117.3 (3)
H8A—C8—H8C109.5C28—C23—P1123.5 (3)
H8B—C8—H8C109.5C25—C24—C23119.7 (4)
O1—C9—C10106.2 (3)C25—C24—H24120.2
O1—C9—H9A110.5C23—C24—H24120.2
C10—C9—H9A110.5C26—C25—C24120.7 (4)
O1—C9—H9B110.5C26—C25—H25119.7
C10—C9—H9B110.5C24—C25—H25119.7
H9A—C9—H9B108.7C27—C26—C25120.0 (4)
C9—C10—H10A109.5C27—C26—H26120.0
C9—C10—H10B109.5C25—C26—H26120.0
H10A—C10—H10B109.5C26—C27—C28120.0 (4)
C9—C10—H10C109.5C26—C27—H27120.0
H10A—C10—H10C109.5C28—C27—H27120.0
H10B—C10—H10C109.5C27—C28—C23120.4 (4)
C16—C11—C12119.7 (3)C27—C28—H28119.8
C16—C11—P1121.7 (3)C23—C28—H28119.8
C12—C11—P1118.6 (3)
C2—N1—C1—O1179.2 (3)P1—C11—C16—C15177.8 (3)
C2—N1—C1—S10.6 (7)C14—C15—C16—C111.1 (6)
C9—O1—C1—N10.6 (5)C11—P1—C17—C18116.3 (3)
C9—O1—C1—S1178.4 (2)C23—P1—C17—C183.7 (3)
Au—S1—C1—N125.4 (4)Au—P1—C17—C18116.8 (3)
Au—S1—C1—O1155.85 (19)C11—P1—C17—C2262.9 (3)
C1—N1—C2—C7102.7 (5)C23—P1—C17—C22175.5 (3)
C1—N1—C2—C386.4 (5)Au—P1—C17—C2264.0 (3)
C7—C2—C3—C40.1 (6)C22—C17—C18—C190.5 (5)
N1—C2—C3—C4171.0 (4)P1—C17—C18—C19178.8 (3)
C2—C3—C4—C50.8 (6)C17—C18—C19—C200.3 (6)
C3—C4—C5—C61.2 (6)C18—C19—C20—C210.7 (6)
C3—C4—C5—C8178.3 (4)C19—C20—C21—C220.4 (6)
C4—C5—C6—C71.0 (6)C20—C21—C22—C170.4 (6)
C8—C5—C6—C7178.5 (4)C18—C17—C22—C210.8 (5)
C3—C2—C7—C60.1 (5)P1—C17—C22—C21178.5 (3)
N1—C2—C7—C6171.4 (4)C11—P1—C23—C24160.8 (3)
C5—C6—C7—C20.4 (6)C17—P1—C23—C2489.4 (3)
C1—O1—C9—C10171.3 (3)Au—P1—C23—C2436.7 (3)
C17—P1—C11—C1641.1 (3)C11—P1—C23—C2816.4 (3)
C23—P1—C11—C1669.1 (3)C17—P1—C23—C2893.4 (3)
Au—P1—C11—C16170.1 (3)Au—P1—C23—C28140.5 (3)
C17—P1—C11—C12138.3 (3)C28—C23—C24—C250.1 (5)
C23—P1—C11—C12111.5 (3)P1—C23—C24—C25177.4 (3)
Au—P1—C11—C129.3 (3)C23—C24—C25—C261.1 (6)
C16—C11—C12—C132.7 (5)C24—C25—C26—C272.4 (6)
P1—C11—C12—C13177.8 (3)C25—C26—C27—C282.7 (6)
C11—C12—C13—C141.0 (6)C26—C27—C28—C231.7 (6)
C12—C13—C14—C150.6 (7)C24—C23—C28—C270.4 (5)
C13—C14—C15—C160.6 (7)P1—C23—C28—C27177.6 (3)
C12—C11—C16—C152.7 (6)

Experimental details

Crystal data
Chemical formula[Au(C10H12NOS)(C18H15P)]
Mr653.50
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)8.6676 (5), 12.1397 (6), 13.2378 (7)
α, β, γ (°)65.482 (1), 89.765 (1), 80.635 (1)
V3)1247.30 (12)
Z2
Radiation typeMo Kα
µ (mm1)6.07
Crystal size (mm)0.31 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.311, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
8852, 5702, 5380
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.074, 1.04
No. of reflections5702
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.41, 0.98

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Au—S12.2964 (9)Au—P12.2601 (9)
P1—Au—S1177.07 (3)
 

Acknowledgements

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. & J. Zukerman-Schpector, J. (2009). CrystEngComm, 11, 1176–1186.  Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds