metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(2,9-di­methyl-1,10-phenanthroline)manganese(II) hemihydrate

aDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: dzxfwang@yahoo.com.cn

(Received 12 November 2009; accepted 18 November 2009; online 21 November 2009)

In the title compound, [MnCl2(C14H12N2)]·0.5H2O, all of the non-H atoms apart from the Cl atom lie on a mirror plane and the methyl H atoms are disordered over two sites of equal occupancy about the mirror plane. The MnII ion is coordinated in a distorted tetra­hedral environment by two N atoms of the phenanthroline ligand and two chloride ions. A half-occupancy solvent water mol­ecule lies on a mirror plane and close to an inversion center.

Related literature

For related crystal structures, see: McCann et al. (1998[McCann, S., McCann, M., Casey, M. T., Jackman, M., Devereux, M. & Mckee, V. (1998). Inorg. Chim. Acta, 279, 24-29.]); Pan & Xu (2005[Pan, T.-T. & Xu, D.-J. (2005). Acta Cryst. E61, m740-m742.]); Xu et al. (2009[Xu, M.-L., Sun, S.-B., Li, X.-Y. & Che, G.-B. (2009). Acta Cryst. E65, m136.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C14H12N2)]·0.5H2O

  • Mr = 343.10

  • Monoclinic, C 2/m

  • a = 18.763 (4) Å

  • b = 7.7343 (15) Å

  • c = 11.362 (2) Å

  • β = 101.532 (3)°

  • V = 1615.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 293 K

  • 0.31 × 0.23 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.719, Tmax = 0.813

  • 4794 measured reflections

  • 1511 independent reflections

  • 1199 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.134

  • S = 1.01

  • 1511 reflections

  • 120 parameters

  • .

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,10-phenanthroline is a good bidentate chelating ligand and here, we present the crystal structure of the title complex based on 2,9-dimethyl-1,10-phenanthroline.

The crystal structure of the title compound is shown in Fig. 1. The coordination environment of the MnII ion is distorted tetrahedral, in which two sites are occupied by the two N atoms of the chelating 2,9-dimethyl-1,10-phenanthroline ligand and the other two from two chloride ions. For Mn—N and Mn—Cl bond lengths in other manganese biphenanthroline complexes, see e.g. McCann, et al. (1998); Pan & Xu (2005); Xu et al. (2009). The location of the water H atoms is such that they are disordered over several sites imposed by the crystal symmetry and hence any potential hydrogen bonding is not discussed.

Related literature top

For related crystal structures, see: McCann et al. (1998); Pan & Xu (2005); Xu et al. (2009).

Experimental top

A mixture of 2,9-dimethyl-1,10-phenanthroline, MnCl2.4H2O (1:2, molar ratio) and water (20 ml) was sealed in a Teflon-lined autoclave (25 ml) and heated 393 K for two days. Upon cooling slowly and opening the bomb, yellow crystals suitable for X-ray diffraction were obtained with a yield about 40% (based on phenanthroline).

Refinement top

All H atoms bonded to C atoms were included using the HFIX commands in SHELXL-97 (Sheldrick, 2008b/i>) with C—H distances of 0.93 and 0.96 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). The H atoms of the disordered water molecule were found in a difference Fourier map and were refined as riding with O-H fixed at 0.85 Å and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The disordered water molecule and all the H-atoms are omitted for clarity.
Dichlorido(2,9-dimethyl-1,10-phenanthroline)manganese(II) hemihydrate top
Crystal data top
[MnCl2(C14H12N2)]·0.5H2OF(000) = 696
Mr = 343.10Dx = 1.411 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 1089 reflections
a = 18.763 (4) Åθ = 2.9–26.8°
b = 7.7343 (15) ŵ = 1.14 mm1
c = 11.362 (2) ÅT = 293 K
β = 101.532 (3)°Block, yellow
V = 1615.5 (5) Å30.31 × 0.23 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1511 independent reflections
Radiation source: fine-focus sealed tube1199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2222
Tmin = 0.719, Tmax = 0.813k = 89
4794 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.1015P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
1511 reflectionsΔρmax = 0.59 e Å3
120 parametersΔρmin = 0.31 e Å3
0 restraints
Crystal data top
[MnCl2(C14H12N2)]·0.5H2OV = 1615.5 (5) Å3
Mr = 343.10Z = 4
Monoclinic, C2/mMo Kα radiation
a = 18.763 (4) ŵ = 1.14 mm1
b = 7.7343 (15) ÅT = 293 K
c = 11.362 (2) Å0.31 × 0.23 × 0.19 mm
β = 101.532 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1511 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1199 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 0.813Rint = 0.020
4794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044120 parameters
wR(F2) = 0.1340 restraints
S = 1.01Δρmax = 0.59 e Å3
1511 reflectionsΔρmin = 0.31 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.35177 (3)0.00000.27709 (5)0.0558 (3)
Cl10.40493 (4)0.25282 (10)0.24304 (8)0.0815 (3)
O10.5351 (5)1.00000.0528 (9)0.155 (4)0.50
H2A0.52570.94260.11280.186*0.25
H1A0.57450.95580.03990.186*0.25
N10.30817 (15)0.00000.4374 (3)0.0555 (8)
N20.24030 (17)0.00000.2034 (3)0.0601 (8)
C10.3433 (2)0.00000.5521 (4)0.0625 (10)
C20.3066 (2)0.00000.6486 (4)0.0715 (12)
H20.33290.00000.72720.086*
C30.2337 (2)0.00000.6273 (4)0.0715 (12)
H30.20890.00000.69050.086*
C40.1951 (2)0.00000.5056 (3)0.0604 (10)
C50.1191 (2)0.00000.4745 (4)0.0781 (13)
H50.09190.00000.53460.094*
C60.0848 (2)0.00000.3584 (4)0.0768 (13)
H60.03420.00000.33990.092*
C70.1240 (2)0.00000.2635 (4)0.0655 (11)
C80.0910 (3)0.00000.1374 (4)0.0840 (15)
H80.04060.00000.11360.101*
C90.1330 (3)0.00000.0535 (4)0.0875 (15)
H90.11130.00000.02760.105*
C100.2073 (3)0.00000.0872 (4)0.0703 (11)
C110.1985 (2)0.00000.2896 (3)0.0562 (9)
C120.2350 (2)0.00000.4153 (3)0.0532 (9)
C130.4239 (2)0.00000.5734 (4)0.0819 (14)
H13A0.43970.07240.51500.123*0.50
H13B0.44310.04340.65250.123*0.50
H13C0.44100.11580.56660.123*0.50
C140.2542 (3)0.00000.0069 (4)0.0933 (17)
H14A0.27130.11520.01630.140*0.50
H14B0.22600.03950.08200.140*0.50
H14C0.29500.07560.01810.140*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0481 (4)0.0703 (5)0.0501 (4)0.0000.0127 (3)0.000
Cl10.0781 (6)0.0818 (7)0.0876 (6)0.0094 (4)0.0235 (4)0.0054 (4)
O10.108 (7)0.226 (12)0.134 (9)0.0000.031 (6)0.000
N10.0413 (15)0.074 (2)0.0503 (17)0.0000.0063 (13)0.000
N20.0572 (17)0.073 (2)0.0483 (17)0.0000.0069 (14)0.000
C10.056 (2)0.076 (3)0.053 (2)0.0000.0032 (17)0.000
C20.061 (2)0.100 (4)0.049 (2)0.0000.0002 (18)0.000
C30.064 (2)0.101 (4)0.050 (2)0.0000.0127 (19)0.000
C40.053 (2)0.077 (3)0.052 (2)0.0000.0100 (17)0.000
C50.055 (2)0.112 (4)0.071 (3)0.0000.020 (2)0.000
C60.045 (2)0.110 (4)0.073 (3)0.0000.006 (2)0.000
C70.047 (2)0.080 (3)0.064 (3)0.0000.0017 (18)0.000
C80.062 (3)0.111 (4)0.070 (3)0.0000.008 (2)0.000
C90.078 (3)0.120 (4)0.056 (3)0.0000.010 (2)0.000
C100.078 (3)0.076 (3)0.054 (2)0.0000.006 (2)0.000
C110.051 (2)0.070 (3)0.0456 (19)0.0000.0040 (16)0.000
C120.053 (2)0.054 (2)0.052 (2)0.0000.0073 (16)0.000
C130.049 (2)0.127 (4)0.064 (3)0.0000.000 (2)0.000
C140.095 (3)0.133 (5)0.052 (2)0.0000.014 (2)0.000
Geometric parameters (Å, º) top
Mn1—N22.092 (3)C5—C61.347 (6)
Mn1—N12.140 (3)C5—H50.9300
Mn1—Cl12.2633 (9)C6—C71.421 (6)
Mn1—Cl1i2.2633 (9)C6—H60.9300
O1—O1ii1.59 (2)C7—C111.371 (5)
O1—H2A0.8610C7—C81.443 (6)
O1—H1A0.8530C8—C91.353 (7)
N1—C11.338 (5)C8—H80.9300
N1—C121.345 (5)C9—C101.370 (7)
N2—C101.342 (5)C9—H90.9300
N2—C111.371 (5)C10—C141.514 (7)
C1—C21.407 (6)C11—C121.454 (5)
C1—C131.482 (6)C13—H13A0.9600
C2—C31.341 (6)C13—H13B0.9600
C2—H20.9300C13—H13C0.9600
C3—C41.428 (6)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C121.387 (5)C14—H14C0.9600
C4—C51.399 (6)
N2—Mn1—N179.57 (12)C7—C6—H6119.2
N2—Mn1—Cl1111.79 (4)C11—C7—C6119.7 (4)
N1—Mn1—Cl1113.70 (4)C11—C7—C8115.5 (4)
N2—Mn1—Cl1i111.79 (4)C6—C7—C8124.8 (4)
N1—Mn1—Cl1i113.70 (4)C9—C8—C7120.4 (4)
Cl1—Mn1—Cl1i119.53 (5)C9—C8—H8119.8
O1ii—O1—H2A109.0C7—C8—H8119.8
O1ii—O1—H1A119.0C8—C9—C10120.4 (4)
H2A—O1—H1A104.5C8—C9—H9119.8
C1—N1—C12117.9 (3)C10—C9—H9119.8
C1—N1—Mn1129.1 (3)N2—C10—C9121.2 (4)
C12—N1—Mn1113.0 (2)N2—C10—C14118.4 (4)
C10—N2—C11119.1 (3)C9—C10—C14120.3 (4)
C10—N2—Mn1128.4 (3)C7—C11—N2123.3 (3)
C11—N2—Mn1112.5 (2)C7—C11—C12118.2 (3)
N1—C1—C2122.5 (3)N2—C11—C12118.5 (3)
N1—C1—C13116.6 (4)N1—C12—C4123.0 (3)
C2—C1—C13121.0 (4)N1—C12—C11116.5 (3)
C3—C2—C1120.0 (4)C4—C12—C11120.5 (3)
C3—C2—H2120.0C1—C13—H13A109.5
C1—C2—H2120.0C1—C13—H13B109.5
C2—C3—C4118.5 (4)H13A—C13—H13B109.5
C2—C3—H3120.8C1—C13—H13C109.5
C4—C3—H3120.8H13A—C13—H13C109.5
C12—C4—C5119.2 (4)H13B—C13—H13C109.5
C12—C4—C3118.2 (4)C10—C14—H14A109.5
C5—C4—C3122.6 (4)C10—C14—H14B109.5
C6—C5—C4120.7 (4)H14A—C14—H14B109.5
C6—C5—H5119.7C10—C14—H14C109.5
C4—C5—H5119.7H14A—C14—H14C109.5
C5—C6—C7121.7 (4)H14B—C14—H14C109.5
C5—C6—H6119.2
Symmetry codes: (i) x, y, z; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[MnCl2(C14H12N2)]·0.5H2O
Mr343.10
Crystal system, space groupMonoclinic, C2/m
Temperature (K)293
a, b, c (Å)18.763 (4), 7.7343 (15), 11.362 (2)
β (°) 101.532 (3)
V3)1615.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.31 × 0.23 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.719, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
4794, 1511, 1199
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.134, 1.01
No. of reflections1511
No. of parameters120
Δρmax, Δρmin (e Å3)0.59, 0.31

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

 

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMcCann, S., McCann, M., Casey, M. T., Jackman, M., Devereux, M. & Mckee, V. (1998). Inorg. Chim. Acta, 279, 24–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, T.-T. & Xu, D.-J. (2005). Acta Cryst. E61, m740–m742.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, M.-L., Sun, S.-B., Li, X.-Y. & Che, G.-B. (2009). Acta Cryst. E65, m136.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds