organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3142-o3143

6,6′-Di-tert-butyl-2,2′-[1,2-phenyl­ene­bis­(nitrilo­methyl­­idyne)]diphenol

aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 November 2009; accepted 17 November 2009; online 21 November 2009)

The mol­ecule of the title Schiff base compound, C28H32N2O2, has a twisted geometry, the dihedral angles between the central benzene ring and the other two benzene rings being 29.12 (14) and 26.01 (14)°. Four intra­molecular C—H⋯O hydrogen bonds and two intra­molecular O—H⋯N hydrogen bonds stabilize the mol­ecular structure. In the crystal packing, mol­ecules are stacked along the a axis and stabilized by ππ inter­actions [centroid–centroid distance = 3.6724 (17) Å]. The crystal studied was found to be a non-merohedral twin, the refined ratio of twin components being 0.374 (5):0.626 (5).

Related literature

For biological applications of Schiff base derivatives, see: Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Eltayeb & Ahmed (2005a[Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Technol. 6, 51-59.],b[Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97-108.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]). For related structures, see: Eltayeb et al. (2007a[Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o695-o696.],b[Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o766-o767.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C28H32N2O2

  • Mr = 428.56

  • Triclinic, [P \overline 1]

  • a = 6.8312 (9) Å

  • b = 13.9632 (16) Å

  • c = 14.0689 (15) Å

  • α = 116.615 (5)°

  • β = 99.068 (4)°

  • γ = 98.209 (4)°

  • V = 1149.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.87 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.996

  • 4021 measured reflections

  • 4021 independent reflections

  • 3241 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.206

  • S = 1.19

  • 4021 reflections

  • 304 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N2 0.91 (5) 1.73 (4) 2.584 (3) 156 (4)
O1—H1O1⋯N1 0.91 (5) 1.77 (6) 2.609 (3) 151 (5)
C22—H22A⋯O1 0.96 2.34 2.993 (3) 125
C23—H23A⋯O1 0.96 2.34 2.987 (4) 124
C26—H26B⋯O2 0.96 2.31 2.963 (4) 125
C27—H27C⋯O2 0.96 2.37 3.011 (4) 124

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases have received much attention because of their potential applications with some of these compounds exhibiting various pharmacological activities, as noted by their anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) properties. In addition, some of them may be used as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005a,b). Previously, we have reported the crystal structures of 2,2'-[1,2-phenylenebis(nitrilomethylidyne)]bis(5-methylphenol) (Eltayeb et al., 2007a) and 6,6'-dimethyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol (Eltayeb et al., 2007b). In this paper, we report the crystal structure of the title compound, obtained by the reaction of o-phenylenediamine and 3-tert-butyl-2-hydroxybenzaldehyde.

The title compound (Fig. 1) has a slightly twisted geometry with the dihedral angles between the two benzene rings (C1–C6 and C15–C20) with the central benzene ring (C8–C13) being 29.12 (14) and 26.01 (14)°. The geometrical parameters are comparable to previously reported structures (Eltayeb et al., 2007a,b). Two bifurcated intramolecular C—H···O hydrogen bonds and two intramolecular O—H···N hydrogen bonds stabilized the molecular structure (Fig. 1, Table 1). In the crystal packing (Fig. 2), the molecules are stacked along the a axis and stabilized by Cg1···Cg1 = 3.6724 (17) Å interactions [Cg1 is the centroid of C1–C6 phenyl ring; 1 - x, -y, 1 - z].

Related literature top

For biological applications of Schiff base derivatives, see: Dao et al. (2000); Eltayeb & Ahmed (2005a,b); Karthikeyan et al. (2006); Sriram et al. (2006). For related structures, see: Eltayeb et al. (2007a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol (20 ml) was added 3-tert-butyl-2-hydroxybenzaldehyde (0.7 ml, 4 mmol). The mixture was refluxed with stirring for 30 min. The resultant orange solution was filtered. Yellow precipitate obtained was dissolved in acetone. Yellow crystals suitable for XRD formed after a few days of slow evaporation of the solvent at room temperature.

Refinement top

O-bound H atoms were located in a difference Fourier map and refined freely. The rest of the H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 or 0.96 Å and Uiso(H) = 1.2–1.5(methyl)Ueq(C). The rotating group model was applied for the methyl groups. The crystal studied was a non-merohedral twin with a refined BASF of 0.374 (5).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing how the molecules are stacked along the a axis.
6,6'-Di-tert-butyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol top
Crystal data top
C28H32N2O2Z = 2
Mr = 428.56F(000) = 460
Triclinic, P1Dx = 1.238 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8312 (9) ÅCell parameters from 4325 reflections
b = 13.9632 (16) Åθ = 2.9–29.9°
c = 14.0689 (15) ŵ = 0.08 mm1
α = 116.615 (5)°T = 100 K
β = 99.068 (4)°Plate, yellow
γ = 98.209 (4)°0.87 × 0.20 × 0.05 mm
V = 1149.6 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4021 independent reflections
Radiation source: fine-focus sealed tube3241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 87
Tmin = 0.936, Tmax = 0.996k = 1614
4021 measured reflectionsl = 416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0995P)2 + 0.5885P]
where P = (Fo2 + 2Fc2)/3
4021 reflections(Δ/σ)max < 0.001
304 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C28H32N2O2γ = 98.209 (4)°
Mr = 428.56V = 1149.6 (2) Å3
Triclinic, P1Z = 2
a = 6.8312 (9) ÅMo Kα radiation
b = 13.9632 (16) ŵ = 0.08 mm1
c = 14.0689 (15) ÅT = 100 K
α = 116.615 (5)°0.87 × 0.20 × 0.05 mm
β = 99.068 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4021 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3241 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.996Rint = 0.000
4021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.206H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.32 e Å3
4021 reflectionsΔρmin = 0.39 e Å3
304 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2350 (3)0.09518 (15)0.37885 (15)0.0209 (5)
O20.1083 (3)0.11123 (16)0.22061 (15)0.0231 (5)
N10.0669 (3)0.11626 (17)0.27055 (17)0.0176 (5)
N20.1856 (3)0.10123 (17)0.10607 (18)0.0177 (5)
C10.2757 (4)0.0859 (2)0.4710 (2)0.0173 (6)
C20.3650 (4)0.1817 (2)0.5735 (2)0.0180 (6)
C30.4083 (4)0.1661 (2)0.6647 (2)0.0205 (6)
H3A0.47110.22750.73270.025*
C40.3624 (4)0.0631 (2)0.6593 (2)0.0213 (6)
H4A0.39530.05650.72250.026*
C50.2682 (4)0.0287 (2)0.5601 (2)0.0185 (6)
H5A0.23320.09750.55620.022*
C60.2250 (4)0.0188 (2)0.4652 (2)0.0166 (6)
C70.1138 (4)0.1159 (2)0.3629 (2)0.0178 (6)
H7A0.07400.18180.36410.021*
C80.0515 (4)0.2150 (2)0.1771 (2)0.0164 (6)
C90.0387 (4)0.3197 (2)0.1618 (2)0.0209 (6)
H9A0.05410.32580.21360.025*
C100.1613 (5)0.4144 (2)0.0713 (2)0.0246 (7)
H10A0.15060.48340.06240.029*
C110.3008 (5)0.4060 (2)0.0064 (2)0.0239 (7)
H11A0.38660.46940.06630.029*
C120.3115 (4)0.3039 (2)0.0056 (2)0.0211 (6)
H12A0.40590.29910.04650.025*
C130.1838 (4)0.2070 (2)0.0942 (2)0.0174 (6)
C140.2331 (4)0.0902 (2)0.0202 (2)0.0191 (6)
H14A0.26920.15300.04840.023*
C150.2329 (4)0.0154 (2)0.0251 (2)0.0181 (6)
C160.2928 (4)0.0202 (2)0.0721 (2)0.0218 (6)
H16A0.33790.04470.13890.026*
C170.2855 (4)0.1196 (2)0.0698 (2)0.0232 (6)
H17A0.32910.12230.13440.028*
C180.2127 (4)0.2166 (2)0.0297 (2)0.0222 (6)
H18A0.20520.28350.02960.027*
C190.1506 (4)0.2182 (2)0.1293 (2)0.0202 (6)
C200.1651 (4)0.1147 (2)0.1261 (2)0.0187 (6)
C210.4042 (4)0.2968 (2)0.5821 (2)0.0218 (6)
C220.2009 (4)0.3178 (2)0.5415 (2)0.0241 (6)
H22A0.13580.26010.46810.036*
H22B0.22620.38760.54210.036*
H22C0.11340.31910.58900.036*
C230.5547 (5)0.3065 (2)0.5150 (2)0.0265 (7)
H23A0.50130.25040.43970.040*
H23B0.68340.29720.54390.040*
H23C0.57390.37790.51940.040*
C240.4951 (5)0.3884 (2)0.7013 (2)0.0271 (7)
H24A0.62520.37950.72900.041*
H24B0.40440.38380.74560.041*
H24C0.51250.45910.70400.041*
C250.0608 (5)0.3263 (2)0.2379 (2)0.0237 (7)
C260.1878 (5)0.3344 (2)0.3208 (3)0.0306 (7)
H26A0.12780.40140.38870.046*
H26B0.19010.27230.33360.046*
H26C0.32480.33460.29210.046*
C270.1622 (5)0.3313 (2)0.2836 (2)0.0263 (7)
H27A0.21760.39760.35260.039*
H27B0.24060.33110.23260.039*
H27C0.16760.26830.29410.039*
C280.0596 (5)0.4277 (2)0.2213 (3)0.0299 (7)
H28A0.00240.49360.29050.045*
H28B0.19700.42720.19220.045*
H28C0.02130.42580.17080.045*
H1O20.127 (6)0.038 (3)0.199 (3)0.049 (11)*
H1O10.174 (7)0.026 (4)0.322 (4)0.064 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0261 (11)0.0191 (10)0.0153 (9)0.0031 (8)0.0029 (8)0.0079 (8)
O20.0313 (12)0.0210 (10)0.0194 (10)0.0070 (9)0.0042 (9)0.0120 (8)
N10.0133 (12)0.0176 (11)0.0192 (12)0.0036 (9)0.0042 (9)0.0066 (9)
N20.0142 (12)0.0192 (11)0.0206 (12)0.0052 (9)0.0042 (9)0.0100 (9)
C10.0108 (13)0.0255 (14)0.0159 (13)0.0061 (11)0.0040 (10)0.0095 (11)
C20.0105 (13)0.0226 (14)0.0186 (13)0.0040 (11)0.0057 (11)0.0073 (11)
C30.0140 (14)0.0250 (14)0.0155 (13)0.0033 (11)0.0043 (11)0.0040 (11)
C40.0170 (14)0.0312 (15)0.0175 (13)0.0082 (12)0.0051 (11)0.0124 (12)
C50.0129 (14)0.0247 (14)0.0210 (14)0.0081 (11)0.0061 (11)0.0120 (12)
C60.0088 (13)0.0213 (13)0.0201 (13)0.0059 (10)0.0053 (11)0.0091 (11)
C70.0149 (14)0.0201 (13)0.0200 (14)0.0065 (11)0.0060 (11)0.0098 (11)
C80.0130 (13)0.0161 (13)0.0179 (13)0.0022 (10)0.0063 (11)0.0059 (11)
C90.0230 (15)0.0227 (14)0.0197 (14)0.0091 (12)0.0070 (12)0.0110 (12)
C100.0336 (17)0.0151 (13)0.0249 (15)0.0064 (12)0.0109 (13)0.0083 (12)
C110.0262 (16)0.0192 (14)0.0178 (14)0.0017 (12)0.0055 (12)0.0038 (11)
C120.0182 (14)0.0250 (14)0.0179 (13)0.0028 (11)0.0039 (11)0.0094 (11)
C130.0136 (13)0.0196 (13)0.0185 (13)0.0037 (11)0.0073 (11)0.0078 (11)
C140.0119 (13)0.0232 (14)0.0187 (13)0.0024 (11)0.0033 (11)0.0079 (11)
C150.0096 (13)0.0277 (14)0.0202 (13)0.0060 (11)0.0044 (11)0.0135 (12)
C160.0131 (14)0.0320 (15)0.0196 (14)0.0044 (12)0.0051 (11)0.0117 (12)
C170.0135 (14)0.0402 (16)0.0265 (15)0.0080 (12)0.0063 (12)0.0239 (13)
C180.0181 (14)0.0298 (15)0.0296 (15)0.0107 (12)0.0102 (12)0.0206 (13)
C190.0142 (14)0.0263 (14)0.0264 (15)0.0085 (11)0.0091 (11)0.0155 (12)
C200.0142 (14)0.0270 (14)0.0204 (14)0.0077 (11)0.0066 (11)0.0146 (12)
C210.0194 (15)0.0212 (14)0.0217 (14)0.0041 (11)0.0068 (12)0.0075 (12)
C220.0253 (16)0.0233 (14)0.0261 (15)0.0075 (12)0.0067 (13)0.0133 (12)
C230.0259 (16)0.0224 (14)0.0274 (15)0.0021 (12)0.0087 (13)0.0092 (12)
C240.0244 (16)0.0227 (15)0.0251 (15)0.0022 (12)0.0055 (13)0.0052 (12)
C250.0277 (17)0.0226 (14)0.0257 (15)0.0091 (12)0.0104 (13)0.0137 (12)
C260.0370 (19)0.0291 (16)0.0318 (16)0.0139 (14)0.0166 (15)0.0156 (14)
C270.0267 (16)0.0241 (14)0.0245 (15)0.0036 (12)0.0049 (13)0.0100 (12)
C280.0356 (18)0.0275 (15)0.0342 (17)0.0111 (14)0.0140 (14)0.0185 (14)
Geometric parameters (Å, º) top
O1—C11.349 (3)C15—C201.413 (4)
O1—H1O10.91 (4)C16—C171.368 (4)
O2—C201.350 (3)C16—H16A0.9300
O2—H1O20.91 (4)C17—C181.389 (4)
N1—C71.286 (3)C17—H17A0.9300
N1—C81.416 (3)C18—C191.387 (4)
N2—C141.284 (3)C18—H18A0.9300
N2—C131.412 (3)C19—C201.414 (4)
C1—C21.415 (4)C19—C251.538 (4)
C1—C61.416 (4)C21—C231.531 (4)
C2—C31.389 (4)C21—C241.536 (4)
C2—C211.537 (4)C21—C221.536 (4)
C3—C41.393 (4)C22—H22A0.9600
C3—H3A0.9300C22—H22B0.9600
C4—C51.372 (4)C22—H22C0.9600
C4—H4A0.9300C23—H23A0.9600
C5—C61.395 (4)C23—H23B0.9600
C5—H5A0.9300C23—H23C0.9600
C6—C71.449 (4)C24—H24A0.9600
C7—H7A0.9300C24—H24B0.9600
C8—C91.397 (4)C24—H24C0.9600
C8—C131.416 (4)C25—C281.534 (4)
C9—C101.383 (4)C25—C261.535 (4)
C9—H9A0.9300C25—C271.536 (4)
C10—C111.391 (4)C26—H26A0.9600
C10—H10A0.9300C26—H26B0.9600
C11—C121.373 (4)C26—H26C0.9600
C11—H11A0.9300C27—H27A0.9600
C12—C131.398 (4)C27—H27B0.9600
C12—H12A0.9300C27—H27C0.9600
C14—C151.445 (4)C28—H28A0.9600
C14—H14A0.9300C28—H28B0.9600
C15—C161.399 (4)C28—H28C0.9600
C1—O1—H1O1107 (3)C19—C18—H18A118.5
C20—O2—H1O2104 (2)C17—C18—H18A118.5
C7—N1—C8118.6 (2)C18—C19—C20116.7 (2)
C14—N2—C13119.5 (2)C18—C19—C25122.3 (2)
O1—C1—C2119.7 (2)C20—C19—C25120.9 (2)
O1—C1—C6120.1 (2)O2—C20—C15119.8 (2)
C2—C1—C6120.3 (2)O2—C20—C19119.3 (2)
C3—C2—C1116.8 (2)C15—C20—C19120.9 (2)
C3—C2—C21122.5 (2)C23—C21—C24107.6 (2)
C1—C2—C21120.7 (2)C23—C21—C22110.5 (2)
C2—C3—C4123.2 (2)C24—C21—C22106.9 (2)
C2—C3—H3A118.4C23—C21—C2110.6 (2)
C4—C3—H3A118.4C24—C21—C2111.7 (2)
C5—C4—C3119.5 (3)C22—C21—C2109.4 (2)
C5—C4—H4A120.2C21—C22—H22A109.5
C3—C4—H4A120.2C21—C22—H22B109.5
C4—C5—C6119.9 (2)H22A—C22—H22B109.5
C4—C5—H5A120.1C21—C22—H22C109.5
C6—C5—H5A120.0H22A—C22—H22C109.5
C5—C6—C1120.2 (2)H22B—C22—H22C109.5
C5—C6—C7118.6 (2)C21—C23—H23A109.5
C1—C6—C7121.0 (2)C21—C23—H23B109.5
N1—C7—C6123.8 (2)H23A—C23—H23B109.5
N1—C7—H7A118.1C21—C23—H23C109.5
C6—C7—H7A118.1H23A—C23—H23C109.5
C9—C8—C13118.7 (2)H23B—C23—H23C109.5
C9—C8—N1122.9 (2)C21—C24—H24A109.5
C13—C8—N1118.4 (2)C21—C24—H24B109.5
C10—C9—C8121.3 (3)H24A—C24—H24B109.5
C10—C9—H9A119.4C21—C24—H24C109.5
C8—C9—H9A119.4H24A—C24—H24C109.5
C9—C10—C11119.7 (2)H24B—C24—H24C109.5
C9—C10—H10A120.1C28—C25—C26107.5 (2)
C11—C10—H10A120.1C28—C25—C27107.1 (2)
C12—C11—C10119.8 (3)C26—C25—C27110.9 (2)
C12—C11—H11A120.1C28—C25—C19111.6 (2)
C10—C11—H11A120.1C26—C25—C19110.5 (2)
C11—C12—C13121.6 (3)C27—C25—C19109.2 (2)
C11—C12—H12A119.2C25—C26—H26A109.5
C13—C12—H12A119.2C25—C26—H26B109.5
C12—C13—N2122.8 (2)H26A—C26—H26B109.5
C12—C13—C8118.6 (2)C25—C26—H26C109.5
N2—C13—C8118.6 (2)H26A—C26—H26C109.5
N2—C14—C15122.9 (2)H26B—C26—H26C109.5
N2—C14—H14A118.5C25—C27—H27A109.5
C15—C14—H14A118.5C25—C27—H27B109.5
C16—C15—C20119.2 (2)H27A—C27—H27B109.5
C16—C15—C14119.5 (2)C25—C27—H27C109.5
C20—C15—C14121.3 (2)H27A—C27—H27C109.5
C17—C16—C15120.5 (3)H27B—C27—H27C109.5
C17—C16—H16A119.8C25—C28—H28A109.5
C15—C16—H16A119.8C25—C28—H28B109.5
C16—C17—C18119.6 (3)H28A—C28—H28B109.5
C16—C17—H17A120.2C25—C28—H28C109.5
C18—C17—H17A120.2H28A—C28—H28C109.5
C19—C18—C17123.1 (3)H28B—C28—H28C109.5
O1—C1—C2—C3178.2 (2)N1—C8—C13—N22.6 (4)
C6—C1—C2—C33.2 (4)C13—N2—C14—C15178.2 (2)
O1—C1—C2—C213.7 (4)N2—C14—C15—C16178.0 (3)
C6—C1—C2—C21174.9 (2)N2—C14—C15—C204.8 (4)
C1—C2—C3—C42.1 (4)C20—C15—C16—C170.1 (4)
C21—C2—C3—C4176.0 (2)C14—C15—C16—C17177.2 (2)
C2—C3—C4—C50.5 (4)C15—C16—C17—C181.8 (4)
C3—C4—C5—C62.0 (4)C16—C17—C18—C191.8 (4)
C4—C5—C6—C10.8 (4)C17—C18—C19—C200.2 (4)
C4—C5—C6—C7176.1 (2)C17—C18—C19—C25177.0 (3)
O1—C1—C6—C5179.5 (2)C16—C15—C20—O2179.5 (2)
C2—C1—C6—C51.9 (4)C14—C15—C20—O23.2 (4)
O1—C1—C6—C75.3 (4)C16—C15—C20—C192.2 (4)
C2—C1—C6—C7173.3 (2)C14—C15—C20—C19175.1 (2)
C8—N1—C7—C6176.7 (2)C18—C19—C20—O2179.5 (2)
C5—C6—C7—N1179.6 (3)C25—C19—C20—O23.2 (4)
C1—C6—C7—N15.2 (4)C18—C19—C20—C152.2 (4)
C7—N1—C8—C932.3 (4)C25—C19—C20—C15175.1 (2)
C7—N1—C8—C13149.7 (2)C3—C2—C21—C23120.0 (3)
C13—C8—C9—C104.1 (4)C1—C2—C21—C2362.0 (3)
N1—C8—C9—C10177.9 (2)C3—C2—C21—C240.1 (4)
C8—C9—C10—C110.1 (4)C1—C2—C21—C24178.1 (2)
C9—C10—C11—C122.0 (4)C3—C2—C21—C22118.1 (3)
C10—C11—C12—C130.5 (4)C1—C2—C21—C2259.9 (3)
C11—C12—C13—N2177.3 (2)C18—C19—C25—C282.6 (4)
C11—C12—C13—C84.7 (4)C20—C19—C25—C28179.7 (2)
C14—N2—C13—C1229.9 (4)C18—C19—C25—C26122.2 (3)
C14—N2—C13—C8152.0 (3)C20—C19—C25—C2660.7 (3)
C9—C8—C13—C126.4 (4)C18—C19—C25—C27115.6 (3)
N1—C8—C13—C12175.6 (2)C20—C19—C25—C2761.5 (3)
C9—C8—C13—N2175.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.91 (5)1.73 (4)2.584 (3)156 (4)
O1—H1O1···N10.91 (5)1.77 (6)2.609 (3)151 (5)
C22—H22A···O10.962.342.993 (3)125
C23—H23A···O10.962.342.987 (4)124
C26—H26B···O20.962.312.963 (4)125
C27—H27C···O20.962.373.011 (4)124

Experimental details

Crystal data
Chemical formulaC28H32N2O2
Mr428.56
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.8312 (9), 13.9632 (16), 14.0689 (15)
α, β, γ (°)116.615 (5), 99.068 (4), 98.209 (4)
V3)1149.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.87 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.936, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
4021, 4021, 3241
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.206, 1.19
No. of reflections4021
No. of parameters304
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.91 (5)1.73 (4)2.584 (3)156 (4)
O1—H1O1···N10.91 (5)1.77 (6)2.609 (3)151 (5)
C22—H22A···O10.96002.34002.993 (3)125.00
C23—H23A···O10.96002.34002.987 (4)124.00
C26—H26B···O20.96002.31002.963 (4)125.00
C27—H27C···O20.96002.37003.011 (4)124.00
 

Footnotes

Current address: Department of Chemistry, International University of Africa, Khartoum, Sudan. E-mail: nasertaha90@hotmail.com.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government, the Ministry of Higher Education, (MOHE) and Universiti Sains Malaysia (USM) for the FRGS and RU research grants (PKIMIA/815002 and PKIMIA/811120). The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. HKF and CSY thank USM for the Research University Golden Goose grant (1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Technol. 6, 51–59.  Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97–108.  Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o695–o696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o766–o767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3142-o3143
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds