organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3200-o3201

5-(3-Nitro­benz­yl)-1,3,4-thia­diazol-2-amine

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos - Far-Manguinhos, Laboratório de Síntese IV, 21041-250 Rio de Janeiro, RJ, Brazil, bInstituto de Química, Universidade Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 17 November 2009; accepted 19 November 2009; online 25 November 2009)

In the title mol­ecule, C9H8N4O2S, the dihedral angle between the thia­diazole and benzene rings is 73.92 (8)° and the thia­diazole group S atom is orientated towards the benzene ring, the central S—C—C—C torsion angle being 45.44 (18)°. In the crystal, supra­molecular tapes mediated by N—H⋯N hydrogen bonds and comprising alternating eight-membered {⋯HNCN}2 and 10-membered {⋯HNH⋯NN}2 synthons are formed along [010]. The tapes are consolidated into a three-dimensional network by a combination of C—H⋯O, C—H⋯S and C—H⋯π inter­actions

Related literature

For background to the biological inter­est of 1,3,4-thia­diazo­les, see: Thomasco et al. (2003[Thomasco, M. L., Godwood, C. R., Weaver, A. E., Ochoada, M. J. & Ford, W. C. (2003). Bioorg. Med. Chem. 13, 4193-4197.]); Oruç et al. (2004[Oruç, E. E., Rollas, S., Kandemirli, F. N., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760-6767.]); Moise et al. (2009[Moise, M., Sunel, V., Profire, L., Popa, M., Desbrieres, J. & Peptu, C. (2009). Molecules, 14, 2621-2631.]); Amir et al. (2009[Amir, M., Kumar, A., Ali, A. & Khan, A. S. (2009). J. Ind. Chem. Sect. B, 48, 1288-1293.]). For the development of anti-trypanosomal compounds, see: Carvalho et al. (2004[Carvalho, S. A., da Silva, E. F., Santa-Rita, R. M., de Castro, S. L. & Fraga, C. A. M. (2004). Bioorg. Med. Chem. Lett. 14, 5967-5970.]); Boechat et al. (2006[Boechat, N., Ferreira, S. B., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, S. M. S. V. (2006). Acta Cryst. C62, o42-o44.]); Boechat et al. (2008[Boechat, N., Kover, W. B., Bastos, M. M., Pinto, A. C., Maciel, L. C. L., Mayer, L. M. U., da Silva, F. S. Q., Sá, P. M., Mendonça, J. S., Wardell, S. M. S. V. & Arruda, M. S. L. (2008). J. Braz. Chem. Soc. 19, 445-457.]); Carvalho et al. (2008[Carvalho, S. A., Lopes, F. A. S., Salomão, K., Romeiro, N. C., Wardell, S. M. S. V., de Castro, S. L., da Silva, E. F. & Fraga, C. A. M. (2008). Bioorg. Med. Chem. 16, 413-421.]); Poorrajab et al. (2009[Poorrajab, F., Ardestani, S. K., Emami, S., Behrouzi-Fardmoghadam, M., Shafiee, A. & Foroumadi, A. (2009). Eur. J. Med. Chem. 44, 1758-1762.]) Riente et al. (2009[Riente, R. R., Souza, V. P., Carvalho, S. A., Kaiser, M., Brum, R. & Silva, E. F. (2009). J. Med. Chem. 4, 392-397.]). For the synthesis, see: Turner et al. (1988[Turner, S., Myers, M., Gadie, B., Nelson, A. J., Pape, R., Saville, J. F., Doxey, J. C. & Berridge, T. L. (1988). J. Med. Chem. 31, 902-906.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N4O2S

  • Mr = 236.26

  • Triclinic, [P \overline 1]

  • a = 5.0878 (2) Å

  • b = 5.6213 (3) Å

  • c = 17.8035 (9) Å

  • α = 80.980 (3)°

  • β = 85.677 (3)°

  • γ = 79.855 (3)°

  • V = 494.42 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 120 K

  • 0.38 × 0.20 × 0.09 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.639, Tmax = 0.746

  • 9074 measured reflections

  • 2256 independent reflections

  • 1973 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.05

  • 2256 reflections

  • 151 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1n⋯N2i 0.88 2.25 3.0828 (19) 157
N3—H2n⋯N1ii 0.88 2.12 3.003 (2) 175
C3—H3a⋯N2iii 0.99 2.60 3.552 (2) 162
C3—H3b⋯S1iv 0.99 2.85 3.6687 (17) 141
C7—H7⋯O2v 0.95 2.53 3.355 (2) 145
C9—H9⋯O1vi 0.95 2.51 3.446 (2) 168
C5—H5⋯Cgiii 0.95 2.86 3.7708 (17) 160
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+2, -z+1; (iii) x-1, y, z; (iv) x, y+1, z; (v) -x, -y+1, -z+2; (vi) x+1, y+1, z. Cg is the centroid of the S1/N1/N2/C1/C2 ring.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

1,3,4-Thiadiazoles have attracted much attention due to their biological activities (Thomasco et al., 2003; Oruç et al., 2004; Moise et al., 2009; Amir et al., 2009), with particular attention being paid to the anti-trypanosomal activities of Megazol, and related compounds (Carvalho et al., 2004, 2008; Riente et al., 2009: Poorrajab et al., 2009). In continuation of our interests in 1,3,4-thiadiazoles (Boechat et al., 2006, 2008; Carvalho et al., 2004, 2008), we now report the structure of the title compound, (I), obtained by modification of a general procedure (Turner et al., 1988).

In the molecular structure of (I) atom S1 is orientated towards the benzene ring, Fig. 1. The dihedral angle between the thiadiazole (r.m.s. deviation = 0.005 Å) and benzene (r.m.s. deviation = 0.004 Å) rings of 73.92 (8) ° indicates a twist between planes as seen in the S1–C2–C3–C4 torsion angle of 45.44 (18) °. The nitro group is effectively co-planar with the benzene ring to which it is attached as seen in the O1–N4–C6–C5 torsion angle of 6.3 (2) °.

The crystal packing is dominated by N—H···N hydrogen bonds. Each of the amine-H atoms connects to a centrosymmetrically related molecule leading to eight-membered {···HNCN}2 and 10-membered {···HNH···NN}2 synthons. Each synthon is planar and alternate in a supramolecular tape orientated along [010], Table 1 and Fig. 2. Chains are consolidated into a 3-D network by a combination of C—H···O, C—H···S and C—H···π interactions, Table 1 and Fig. 3.

Related literature top

For background to the biological interest of 1,3,4-thiadiazoles, see: Thomasco et al. (2003); Oruç et al. (2004); Moise et al. (2009); Amir et al. (2009). For the development of anti-trypanosomal compounds, see: Carvalho et al. (2004); Boechat et al. (2006); Boechat et al. (2008); Carvalho et al. (2008); Poorrajab et al. (2009) Riente et al. (2009). For the synthesis, see: Turner et al. (1988). Cg is the centroid of the S1/N1/N2/C1/C2 ring.

Experimental top

A finely ground mixture of 2-nitrophenylacetic acid (0.49 g, 2.7 mmol) and thiosemicarbazide (0.25 g, 2.7 mmol) was added in portions over 0.5 h to polyphosphoric acid (5 g) at 353 K. The reaction mixture was maintained at 353 K for 5 h and cooled, water/ice was added, and the mixture was finally basified with NaOH 30% (aq.). The solids isolated by filtration were washed with water and air-dried to give (I), which was recrystallized from EtOH, m.p. 471–473 K; yield 72%. The sample used in the structure determination was obtained after a further recrystallization from EtOH. 1H NMR (d6-DMSO) δ: 4.47 (s, 2H, CH2), 7.05 (s, 2H, NH2), 7.55 (m, 2H, H4 and H5), 7.72 (m, 1H, H6), 8.03 (d, 1H, J = 8.0 Hz) p.p.m. 13C NMR (d6-DMSO) δ: 32.8, 124.7, 128.6, 132.0, 132.6, 133.8, 148.5, 155.1, 168.7 p.p.m.

Refinement top

The C-bound H atoms were geometrically placed with C—H = 0.95–0.99 Å, and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and included in the model with N–H = 0.880±0.001 Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chain along [010] in (I) mediated by N–H···N hydrogen bonds (blue dashed lines). Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. Unit-cell contents for (I) viewed in projection down the a axis. The N–H···N (blue), C—H···O (orange) and C—H···S (green) contacts are shown as dashed lines. Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
5-(3-Nitrobenzyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C9H8N4O2SZ = 2
Mr = 236.26F(000) = 244
Triclinic, P1Dx = 1.587 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0878 (2) ÅCell parameters from 11753 reflections
b = 5.6213 (3) Åθ = 2.9–27.5°
c = 17.8035 (9) ŵ = 0.32 mm1
α = 80.980 (3)°T = 120 K
β = 85.677 (3)°Block, colourless
γ = 79.855 (3)°0.38 × 0.20 × 0.09 mm
V = 494.42 (4) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
2256 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1973 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.040
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.5°
ϕ and ω scansh = 65
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 77
Tmin = 0.639, Tmax = 0.746l = 2323
9074 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.3167P]
where P = (Fo2 + 2Fc2)/3
2256 reflections(Δ/σ)max = 0.001
151 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.33 e Å3
Crystal data top
C9H8N4O2Sγ = 79.855 (3)°
Mr = 236.26V = 494.42 (4) Å3
Triclinic, P1Z = 2
a = 5.0878 (2) ÅMo Kα radiation
b = 5.6213 (3) ŵ = 0.32 mm1
c = 17.8035 (9) ÅT = 120 K
α = 80.980 (3)°0.38 × 0.20 × 0.09 mm
β = 85.677 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2256 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1973 reflections with I > 2σ(I)
Tmin = 0.639, Tmax = 0.746Rint = 0.040
9074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
2256 reflectionsΔρmin = 0.33 e Å3
151 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39352 (8)0.87897 (7)0.63466 (2)0.01803 (12)
O10.3420 (3)0.5966 (2)0.79836 (7)0.0282 (3)
O20.2766 (3)0.4981 (2)0.91883 (7)0.0326 (3)
N10.7365 (3)1.1393 (2)0.56903 (8)0.0187 (3)
N20.5591 (3)1.2890 (2)0.61221 (8)0.0185 (3)
N30.8153 (3)0.7356 (2)0.54139 (8)0.0198 (3)
H1N0.75520.59590.54850.030*
H2N0.94450.76520.50730.030*
N40.2396 (3)0.6204 (2)0.85639 (8)0.0218 (3)
C10.6754 (3)0.9177 (3)0.57569 (9)0.0160 (3)
C20.3731 (3)1.1810 (3)0.64921 (9)0.0161 (3)
C30.1583 (3)1.2978 (3)0.70123 (9)0.0189 (3)
H3A0.01311.33690.67540.023*
H3B0.20491.45280.71160.023*
C40.1235 (3)1.1329 (3)0.77600 (9)0.0167 (3)
C50.0430 (3)0.9582 (3)0.78225 (9)0.0164 (3)
H50.14110.94420.74030.020*
C60.0634 (3)0.8046 (3)0.85083 (9)0.0180 (3)
C70.0726 (3)0.8188 (3)0.91408 (10)0.0231 (4)
H70.05450.71170.96040.028*
C80.2360 (3)0.9947 (3)0.90746 (10)0.0249 (4)
H80.33091.00960.95000.030*
C90.2626 (3)1.1498 (3)0.83935 (10)0.0208 (3)
H90.37661.26840.83580.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0196 (2)0.0135 (2)0.0218 (2)0.00748 (15)0.00547 (15)0.00271 (14)
O10.0321 (7)0.0250 (6)0.0306 (7)0.0141 (5)0.0028 (5)0.0022 (5)
O20.0328 (7)0.0306 (7)0.0307 (7)0.0112 (6)0.0028 (6)0.0113 (5)
N10.0184 (7)0.0156 (6)0.0228 (7)0.0061 (5)0.0044 (5)0.0039 (5)
N20.0186 (7)0.0152 (6)0.0225 (7)0.0061 (5)0.0034 (5)0.0036 (5)
N30.0206 (7)0.0140 (6)0.0252 (8)0.0067 (5)0.0064 (5)0.0036 (5)
N40.0193 (7)0.0170 (7)0.0271 (8)0.0029 (5)0.0029 (6)0.0012 (6)
C10.0156 (7)0.0165 (7)0.0162 (8)0.0058 (6)0.0008 (6)0.0001 (6)
C20.0188 (7)0.0130 (7)0.0174 (8)0.0060 (6)0.0006 (6)0.0014 (6)
C30.0214 (8)0.0131 (7)0.0225 (8)0.0052 (6)0.0035 (6)0.0024 (6)
C40.0143 (7)0.0145 (7)0.0210 (8)0.0018 (6)0.0046 (6)0.0049 (6)
C50.0156 (7)0.0163 (7)0.0170 (8)0.0020 (6)0.0006 (6)0.0033 (6)
C60.0150 (7)0.0156 (7)0.0226 (8)0.0024 (6)0.0025 (6)0.0020 (6)
C70.0226 (8)0.0262 (9)0.0174 (8)0.0002 (7)0.0019 (6)0.0001 (7)
C80.0228 (9)0.0325 (9)0.0209 (9)0.0032 (7)0.0041 (7)0.0085 (7)
C90.0173 (8)0.0220 (8)0.0254 (9)0.0052 (6)0.0017 (6)0.0096 (7)
Geometric parameters (Å, º) top
S1—C11.7373 (16)C3—H3A0.9900
S1—C21.7412 (15)C3—H3B0.9900
O1—N41.2271 (19)C4—C51.393 (2)
O2—N41.2321 (18)C4—C91.400 (2)
N1—C11.321 (2)C5—C61.389 (2)
N1—N21.3949 (19)C5—H50.9500
N2—C21.297 (2)C6—C71.385 (2)
N3—C11.342 (2)C7—C81.386 (2)
N3—H1N0.8800C7—H70.9500
N3—H2N0.8799C8—C91.391 (2)
N4—C61.472 (2)C8—H80.9500
C2—C31.506 (2)C9—H90.9500
C3—C41.516 (2)
C1—S1—C287.36 (7)H3A—C3—H3B107.9
C1—N1—N2111.82 (13)C5—C4—C9118.89 (15)
C2—N2—N1113.45 (12)C5—C4—C3120.45 (14)
C1—N3—H1N117.3C9—C4—C3120.64 (14)
C1—N3—H2N119.9C6—C5—C4118.95 (14)
H1N—N3—H2N122.0C6—C5—H5120.5
O1—N4—O2123.37 (14)C4—C5—H5120.5
O1—N4—C6118.11 (13)C7—C6—C5122.94 (15)
O2—N4—C6118.52 (14)C7—C6—N4118.81 (14)
N1—C1—N3124.39 (14)C5—C6—N4118.25 (14)
N1—C1—S1113.68 (12)C6—C7—C8117.65 (15)
N3—C1—S1121.93 (11)C6—C7—H7121.2
N2—C2—C3124.72 (13)C8—C7—H7121.2
N2—C2—S1113.68 (12)C9—C8—C7120.82 (15)
C3—C2—S1121.59 (11)C9—C8—H8119.6
C2—C3—C4112.03 (13)C7—C8—H8119.6
C2—C3—H3A109.2C8—C9—C4120.74 (15)
C4—C3—H3A109.2C8—C9—H9119.6
C2—C3—H3B109.2C4—C9—H9119.6
C4—C3—H3B109.2
C1—N1—N2—C20.19 (19)C3—C4—C5—C6177.85 (14)
N2—N1—C1—N3178.79 (14)C4—C5—C6—C70.8 (2)
N2—N1—C1—S10.65 (17)C4—C5—C6—N4179.81 (13)
C2—S1—C1—N10.70 (12)O1—N4—C6—C7174.26 (14)
C2—S1—C1—N3178.76 (14)O2—N4—C6—C75.7 (2)
N1—N2—C2—C3178.85 (14)O1—N4—C6—C56.3 (2)
N1—N2—C2—S10.36 (17)O2—N4—C6—C5173.78 (14)
C1—S1—C2—N20.59 (12)C5—C6—C7—C80.2 (2)
C1—S1—C2—C3178.64 (14)N4—C6—C7—C8179.63 (15)
N2—C2—C3—C4133.70 (16)C6—C7—C8—C90.4 (3)
S1—C2—C3—C445.44 (18)C7—C8—C9—C40.5 (3)
C2—C3—C4—C585.79 (18)C5—C4—C9—C80.1 (2)
C2—C3—C4—C992.73 (17)C3—C4—C9—C8178.44 (15)
C9—C4—C5—C60.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1n···N2i0.882.253.0828 (19)157
N3—H2n···N1ii0.882.123.003 (2)175
C3—H3a···N2iii0.992.603.552 (2)162
C3—H3b···S1iv0.992.853.6687 (17)141
C7—H7···O2v0.952.533.355 (2)145
C9—H9···O1vi0.952.513.446 (2)168
C5—H5···Cgiii0.952.863.7708 (17)160
Symmetry codes: (i) x, y1, z; (ii) x+2, y+2, z+1; (iii) x1, y, z; (iv) x, y+1, z; (v) x, y+1, z+2; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H8N4O2S
Mr236.26
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)5.0878 (2), 5.6213 (3), 17.8035 (9)
α, β, γ (°)80.980 (3), 85.677 (3), 79.855 (3)
V3)494.42 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.38 × 0.20 × 0.09
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.639, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
9074, 2256, 1973
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.05
No. of reflections2256
No. of parameters151
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.33

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1n···N2i0.882.253.0828 (19)157
N3—H2n···N1ii0.882.123.003 (2)175
C3—H3a···N2iii0.992.603.552 (2)162
C3—H3b···S1iv0.992.853.6687 (17)141
C7—H7···O2v0.952.533.355 (2)145
C9—H9···O1vi0.952.513.446 (2)168
C5—H5···Cgiii0.952.863.7708 (17)160
Symmetry codes: (i) x, y1, z; (ii) x+2, y+2, z+1; (iii) x1, y, z; (iv) x, y+1, z; (v) x, y+1, z+2; (vi) x+1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationAmir, M., Kumar, A., Ali, A. & Khan, A. S. (2009). J. Ind. Chem. Sect. B, 48, 1288–1293.  Google Scholar
First citationBoechat, N., Ferreira, S. B., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, S. M. S. V. (2006). Acta Cryst. C62, o42–o44.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoechat, N., Kover, W. B., Bastos, M. M., Pinto, A. C., Maciel, L. C. L., Mayer, L. M. U., da Silva, F. S. Q., Sá, P. M., Mendonça, J. S., Wardell, S. M. S. V. & Arruda, M. S. L. (2008). J. Braz. Chem. Soc. 19, 445–457.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCarvalho, S. A., da Silva, E. F., Santa-Rita, R. M., de Castro, S. L. & Fraga, C. A. M. (2004). Bioorg. Med. Chem. Lett. 14, 5967–5970.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCarvalho, S. A., Lopes, F. A. S., Salomão, K., Romeiro, N. C., Wardell, S. M. S. V., de Castro, S. L., da Silva, E. F. & Fraga, C. A. M. (2008). Bioorg. Med. Chem. 16, 413–421.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMoise, M., Sunel, V., Profire, L., Popa, M., Desbrieres, J. & Peptu, C. (2009). Molecules, 14, 2621–2631.  Web of Science CrossRef PubMed Google Scholar
First citationOruç, E. E., Rollas, S., Kandemirli, F. N., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767.  Web of Science PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPoorrajab, F., Ardestani, S. K., Emami, S., Behrouzi-Fardmoghadam, M., Shafiee, A. & Foroumadi, A. (2009). Eur. J. Med. Chem. 44, 1758–1762.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRiente, R. R., Souza, V. P., Carvalho, S. A., Kaiser, M., Brum, R. & Silva, E. F. (2009). J. Med. Chem. 4, 392–397.  CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomasco, M. L., Godwood, C. R., Weaver, A. E., Ochoada, M. J. & Ford, W. C. (2003). Bioorg. Med. Chem. 13, 4193–4197.  CrossRef CAS Google Scholar
First citationTurner, S., Myers, M., Gadie, B., Nelson, A. J., Pape, R., Saville, J. F., Doxey, J. C. & Berridge, T. L. (1988). J. Med. Chem. 31, 902–906.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3200-o3201
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds