organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3235-o3236

(E)-3-Methyl-4-[(2-oxidoquinolin-1-ium-3-yl)methyl­ene­amino]-1H-1,2,4-triazole-5(4H)-thione N,N-di­methyl­formamide solvate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 18 November 2009; accepted 21 November 2009; online 28 November 2009)

The title 1,2,4-triazole compound, C13H11N5OS·C3H7NO, crystallizes as a 1:1 dimethyl­formamide (DMF) solvate. The main mol­ecule exists in a trans configuration with respect to the acyclic C=N bond. An intra­molecular C—H⋯S hydrogen bond generates an S(6) ring motif. In the synthesis, a proton is transferred from the O atom of a hydr­oxy group to the quinoline group N atom. The essentially planar triazole ring and quinoline ring system [maximum deviations of 0.001 (2) and 0.013 (2) Å, respectively] form a dihedral angle of 5.86 (9)°. In the crystal structure, mol­ecules of (E)-4-[(2-hydroxy-3-­quinolyl)methyl­eneamino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione are linked into R22(8) centrosymmteric dimers via N—H⋯O hydrogen bonds. These dimers are further linked into an extended three-dimensional structure by the DMF solvent mol­ecules via inter­molecular N—H⋯O and C—H⋯O hydrogen bonds. The crystal structure is consolidated by two different inter­molecular ππ inter­actions [centroid–centroid distances = 3.6593 (12) and 3.6892 (12) Å].

Related literature

For general background to and applications of 1,2,4-triazole derivatives, see: Al-Soud et al. (2003[Al-Soud, Y. A., Al-Masoudi, N. A. & Ferwanah, A. E. S. (2003). Bioorg. Med. Chem. 11, 1701-1708.]); Almasirad et al. (2004[Almasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezadeh, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett. 14, 6057-6059.]); Amir & Shikha (2004[Amir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535-545.]); Holla et al. (2003[Holla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759-767.]); Turan-Zitouni et al. (2005[Turan-Zitouni, G., Kaplancıklı, Z. A., Yıldız, M. T., Chevallet, P. & Kaya, D. (2005). Eur. J. Med. Chem. 40, 607-613.]); Walczak et al. (2004[Walczak, K., Gondela, A. & Suwiński, J. (2004). Eur. J. Med. Chem. 39, 849-853.]). For the pharmacological properties of quinoline derivatives, see: Janardhana et al. (2008[Janardhana, N., Girisha, K. S., Shetty, N. S. & Kalluraya, B. (2008). Ind. J. Heterocycl. Chem. 17, 209-212.]); Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399-404.]). For general applications of Schiff base derivatives of 1,2,4-triazole-5-ones, see: Demirbas et al. (2004[Demirbas, N., Karaoglu, S. A., Demirbas, A. & Sancak, K. (2004). Eur. J. Med. Chem. 39, 793-804.]); Sujith et al. (2009[Sujith, K. V., Rao, J. N., Shetty, P. & Kalluraya, B. (2009). Eur. J. Med. Chem. 44, 3697-3702.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For closely related structures, see: Dufresne et al. 2008[Dufresne, S., Bourque, A. N. & Skene, W. G. (2008). Acta Cryst. E64, o316.]; Fun et al. (2009[Fun, H.-K., Goh, J. H., Vijesh, A. M., Padaki, M. & Isloor, A. M. (2009). Acta Cryst. E65, o1918-o1919.]); Song et al. (2008[Song, J., Lin, Y. & Chan, W. L. (2008). Acta Cryst. E64, o934.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N5OS·C3H7NO

  • Mr = 358.42

  • Monoclinic, P 21 /c

  • a = 7.2374 (1) Å

  • b = 23.4970 (4) Å

  • c = 10.8214 (2) Å

  • β = 107.820 (1)°

  • V = 1751.97 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.45 × 0.27 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.962

  • 27543 measured reflections

  • 5088 independent reflections

  • 2909 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.144

  • S = 1.02

  • 5088 reflections

  • 237 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.93 (2) 1.85 (2) 2.774 (2) 178 (2)
N4—H1N4⋯O2ii 0.88 (2) 1.85 (2) 2.736 (2) 177.2 (14)
C10—H10A⋯S1 0.93 2.43 3.203 (2) 140
C16—H16A⋯O2iii 0.96 2.48 3.368 (4) 153
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y, z-1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A degree of respectability has been bestowed upon 1,2,4-triazole derivatives due to their anti-bacterial, anti-fungal (Turan-Zitouni et al., 2005), anti-tubercular (Walczak et al., 2004), anti-cancer (Holla et al., 2003), anti-tumor (Al-Soud et al., 2003), anti-convulsant (Almasirad et al., 2004), anti-inflammatory and analgesic (Amir & Shikha, 2004) properties. Similarly quinoline and its derivatives have been reported to be associated with interesting pharmacological properties (Janardhana et al., 2008; Kalluraya & Sreenivasa, 1998). They are found in numerous commercial products, including pharmaceuticals, frangrances and dyes. Schiff base derivatives of 1,2,4-triazol-5-ones are also found to possess anti-tumor (Demirbas et al., 2004) and anti-inflammatory (Sujith et al., 2009) activities. These observations prompted us to synthesize the title compound and to characterize it by single crystal XRD study.

The asymmetric unit of the title compound (Fig. 1) comprises of a 4-[(2-hydroxyquinolin-3-yl)methyleneamino]-3-methyl-1H-1,2,4-triazole- 5(4H)-thione molecule and a N,N-dimethylformamide solvent molecule. In the main molecule, exists in a trans configuration with respect to the acyclic C10N2 bond. An intramolecular C10—H10A···S1 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) ring motif (Fig. 1, Berstein et al., 1995). A proton is transferred from atom O1 of the hydroxy group to atom N1. Comparing with the unprotonated structure (Dufresne et al., 2008), protonation of atom N1 has widened the C1—N1—C2 angle from 117.25 (14) to 124.83 (18)°. The 1,2,4-triazole ring and quinoline ring system are essentially planar, with maximum deviations of 0.001 (2) and 0.013 (2) Å, respectively, for atoms N3 and C6. These two ring systems are slightly inclined to one another at a dihedral angle of 5.86 (9)°. The bond lengths and angles are comparable to those related 1,2,4-triazole (Fun et al., 2009) and quinoline (Song et al., 2008) structures.

In the crystal structure (Fig. 2), the protonated N1 atom act as hydrogen bond donor to the O1 atom of an inversion-related molecule, producing an R22(8) hydrogen-bonded dimer through N1—H1N1···O1i hydrogen bond (see Table 1 for symmetry codes). The N,N-dimethylformamide solvent molecules further link these dimers via intermolecular N4—H1N4···O2ii and C16—H16A···O2iii hydrogen bonds (Table 1), establishing connections within these dimers and thus creating a three dimensional network. The crystal structure is consolidated by two different weak intermolecular ππ interactions involving the 1,2,4-triazole (Cg1) and C1/N1/C2/C7-C9 pyridine (Cg2) rings [Cg1···Cg2iv = 3.6593 (12) and Cg1···Cg2v = 3.6892 (12) Å, respectively; (iv) 2-x, 1-y, -z and (v) 1-x, 1-y, -z].

Related literature top

For general background to and applications of 1,2,4-triazole derivatives, see: Al-Soud et al. (2003); Almasirad et al. (2004); Amir & Shikha (2004); Holla et al. (2003); Turan-Zitouni et al. (2005); Walczak et al. (2004). For the pharmacological properties of quinoline derivatives, see: Janardhana et al. (2008); Kalluraya & Sreenivasa (1998). For general applications of Schiff base derivatives of 1,2,4-triazole-5-ones, see: Demirbas et al. (2004); Sujith et al. (2009). For hydrogen-bond motifs, see : Bernstein et al. (1995). For closely related structures, see: Dufresne et al. 2008; Fun et al. (2009); Song et al. (2008). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was obtained by refluxing 3-methyl-4-amino-1,2,4-triazole-5-thione (0.01 mol) and 2-hydroxy-3-formyl-quinoline (0.01 mol) in ethanol (30 ml) with the addition of three drops of concentrated sulphuric acid for 3 h. The solid product obtained was collected by filtration, washed with ethanol and dried. It was then recrystallized using ethanol. Single crystals suitable for X-ray analysis were obtained from a solution of the title compound in a mixture of ethanol and DMF by slow evaporation.

Refinement top

Atoms H1N1 and H1N4 were located from difference Fourier map and allowed to refine freely. All other hydrogen atoms were placed in calculated positions, with C—H = 0.93 – 0.96 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups. The reflection (020) was omitted as the intensity was affected by the beam backstop. The highest residual electron density peak and the deepest hole are located at 1.02 and 0.42 Å, respectively, from the sulphur atom.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed along the a axis, showing dimers being linked into three-dimensional network. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
(E)-3-Methyl-4-[(2-oxidoquinolin-1-ium-3-yl)methyleneamino]- 1H-1,2,4-triazole-5(4H)-thione N,N-dimethylformamide solvate top
Crystal data top
C13H11N5OS·C3H7NOF(000) = 752
Mr = 358.42Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5142 reflections
a = 7.2374 (1) Åθ = 2.6–24.1°
b = 23.4970 (4) ŵ = 0.21 mm1
c = 10.8214 (2) ÅT = 296 K
β = 107.820 (1)°Block, orange
V = 1751.97 (5) Å30.45 × 0.27 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5088 independent reflections
Radiation source: fine-focus sealed tube2909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.912, Tmax = 0.962k = 3233
27543 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.3261P]
where P = (Fo2 + 2Fc2)/3
5088 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H11N5OS·C3H7NOV = 1751.97 (5) Å3
Mr = 358.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2374 (1) ŵ = 0.21 mm1
b = 23.4970 (4) ÅT = 296 K
c = 10.8214 (2) Å0.45 × 0.27 × 0.19 mm
β = 107.820 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5088 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2909 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.962Rint = 0.044
27543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.23 e Å3
5088 reflectionsΔρmin = 0.19 e Å3
237 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62071 (9)0.36346 (2)0.02621 (6)0.0699 (2)
O10.9054 (2)0.46985 (6)0.34539 (13)0.0699 (4)
N11.0341 (2)0.55794 (7)0.39613 (17)0.0555 (4)
N20.7262 (2)0.50131 (6)0.03966 (15)0.0485 (4)
N30.6254 (2)0.45953 (6)0.12480 (14)0.0452 (3)
N40.4855 (2)0.38697 (7)0.22893 (17)0.0554 (4)
N50.4700 (2)0.42818 (7)0.32108 (16)0.0586 (4)
C10.9416 (3)0.51769 (8)0.30855 (19)0.0534 (5)
C21.0822 (3)0.61175 (8)0.36456 (19)0.0510 (4)
C31.1770 (3)0.65002 (9)0.4618 (2)0.0641 (5)
H3A1.20790.63970.54880.077*
C41.2241 (3)0.70310 (9)0.4275 (2)0.0698 (6)
H4A1.28540.72900.49200.084*
C51.1817 (3)0.71879 (9)0.2983 (3)0.0680 (6)
H5A1.21620.75470.27690.082*
C61.0893 (3)0.68142 (8)0.2023 (2)0.0617 (5)
H6A1.06120.69220.11570.074*
C71.0366 (3)0.62699 (8)0.23332 (19)0.0497 (4)
C80.9380 (3)0.58604 (8)0.13906 (19)0.0505 (4)
H8A0.90490.59560.05160.061*
C90.8906 (3)0.53351 (7)0.17255 (17)0.0472 (4)
C100.7858 (3)0.49056 (8)0.07984 (19)0.0526 (5)
H10A0.76300.45490.10950.063*
C110.5783 (2)0.40326 (7)0.10719 (19)0.0485 (4)
C120.5562 (3)0.47203 (8)0.25541 (19)0.0516 (4)
C130.5759 (3)0.52850 (9)0.3093 (2)0.0685 (6)
H13A0.51200.52840.40120.103*
H13B0.71090.53720.29280.103*
H13C0.51750.55670.26900.103*
O20.3433 (2)0.27901 (6)0.71425 (18)0.0801 (5)
N60.2576 (2)0.19916 (7)0.79911 (17)0.0606 (4)
C140.3236 (3)0.25191 (9)0.8062 (2)0.0645 (6)
H14A0.35760.26970.88670.077*
C150.1949 (4)0.17088 (10)0.6743 (2)0.0841 (7)
H15A0.15980.19880.60650.126*
H15B0.08470.14730.66960.126*
H15C0.29870.14780.66430.126*
C160.2369 (5)0.16951 (13)0.9100 (3)0.1056 (10)
H16A0.25380.19570.98060.158*
H16B0.33330.14010.93500.158*
H16C0.10990.15280.88860.158*
H1N11.054 (3)0.5478 (9)0.482 (2)0.063 (6)*
H1N40.436 (3)0.3526 (10)0.249 (2)0.070 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0962 (4)0.0476 (3)0.0632 (4)0.0040 (3)0.0204 (3)0.0050 (2)
O10.0986 (11)0.0555 (8)0.0482 (8)0.0161 (7)0.0116 (8)0.0012 (7)
N10.0672 (10)0.0548 (10)0.0410 (9)0.0070 (8)0.0115 (8)0.0036 (8)
N20.0560 (9)0.0419 (8)0.0454 (9)0.0008 (6)0.0122 (7)0.0048 (7)
N30.0482 (8)0.0424 (8)0.0445 (9)0.0000 (6)0.0133 (7)0.0046 (6)
N40.0597 (10)0.0435 (9)0.0593 (11)0.0032 (7)0.0128 (8)0.0085 (8)
N50.0678 (10)0.0497 (9)0.0525 (10)0.0019 (7)0.0098 (8)0.0063 (8)
C10.0603 (11)0.0495 (11)0.0479 (11)0.0028 (8)0.0131 (9)0.0040 (9)
C20.0468 (10)0.0499 (10)0.0550 (12)0.0008 (8)0.0137 (8)0.0072 (9)
C30.0641 (12)0.0643 (13)0.0594 (13)0.0034 (10)0.0124 (10)0.0133 (10)
C40.0643 (13)0.0584 (13)0.0811 (17)0.0099 (10)0.0139 (12)0.0210 (12)
C50.0706 (13)0.0472 (11)0.0881 (18)0.0082 (10)0.0272 (12)0.0089 (11)
C60.0677 (12)0.0519 (11)0.0688 (14)0.0018 (9)0.0258 (11)0.0025 (10)
C70.0486 (10)0.0457 (10)0.0561 (12)0.0001 (7)0.0181 (9)0.0043 (8)
C80.0568 (11)0.0498 (10)0.0458 (11)0.0006 (8)0.0169 (9)0.0025 (9)
C90.0509 (10)0.0466 (10)0.0433 (10)0.0013 (8)0.0135 (8)0.0030 (8)
C100.0622 (11)0.0441 (10)0.0509 (12)0.0029 (8)0.0166 (9)0.0017 (8)
C110.0482 (9)0.0399 (9)0.0577 (12)0.0024 (7)0.0166 (9)0.0059 (8)
C120.0556 (10)0.0506 (10)0.0456 (11)0.0018 (8)0.0109 (8)0.0032 (9)
C130.0890 (15)0.0562 (12)0.0549 (13)0.0040 (11)0.0137 (11)0.0037 (10)
O20.0986 (12)0.0576 (9)0.0853 (12)0.0178 (8)0.0299 (10)0.0067 (9)
N60.0706 (11)0.0506 (9)0.0597 (11)0.0023 (8)0.0185 (9)0.0055 (8)
C140.0645 (13)0.0587 (13)0.0658 (15)0.0008 (10)0.0131 (11)0.0148 (11)
C150.114 (2)0.0615 (14)0.0710 (16)0.0128 (13)0.0200 (14)0.0153 (12)
C160.153 (3)0.094 (2)0.082 (2)0.0127 (19)0.0536 (19)0.0069 (16)
Geometric parameters (Å, º) top
S1—C111.668 (2)C6—C71.405 (3)
O1—C11.247 (2)C6—H6A0.9300
N1—C11.361 (2)C7—C81.425 (2)
N1—C21.382 (2)C8—C91.359 (2)
N1—H1N10.93 (2)C8—H8A0.9300
N2—C101.257 (2)C9—C101.461 (2)
N2—N31.3903 (19)C10—H10A0.9300
N3—C121.379 (2)C12—C131.474 (3)
N3—C111.393 (2)C13—H13A0.9600
N4—C111.338 (2)C13—H13B0.9600
N4—N51.370 (2)C13—H13C0.9600
N4—H1N40.88 (2)O2—C141.225 (3)
N5—C121.298 (2)N6—C141.322 (3)
C1—C91.452 (3)N6—C161.434 (3)
C2—C31.395 (3)N6—C151.448 (3)
C2—C71.403 (3)C14—H14A0.9300
C3—C41.374 (3)C15—H15A0.9600
C3—H3A0.9300C15—H15B0.9600
C4—C51.386 (3)C15—H15C0.9600
C4—H4A0.9300C16—H16A0.9600
C5—C61.369 (3)C16—H16B0.9600
C5—H5A0.9300C16—H16C0.9600
C1—N1—C2124.83 (18)C8—C9—C10124.36 (17)
C1—N1—H1N1114.3 (13)C1—C9—C10115.88 (16)
C2—N1—H1N1120.6 (13)N2—C10—C9120.68 (17)
C10—N2—N3119.03 (16)N2—C10—H10A119.7
C12—N3—N2118.77 (15)C9—C10—H10A119.7
C12—N3—C11108.36 (15)N4—C11—N3101.93 (16)
N2—N3—C11132.85 (15)N4—C11—S1126.57 (14)
C11—N4—N5114.79 (16)N3—C11—S1131.50 (14)
C11—N4—H1N4123.0 (15)N5—C12—N3110.81 (17)
N5—N4—H1N4122.2 (15)N5—C12—C13125.92 (18)
C12—N5—N4104.12 (16)N3—C12—C13123.26 (17)
O1—C1—N1120.69 (18)C12—C13—H13A109.5
O1—C1—C9122.81 (17)C12—C13—H13B109.5
N1—C1—C9116.50 (17)H13A—C13—H13B109.5
N1—C2—C3120.42 (19)C12—C13—H13C109.5
N1—C2—C7119.00 (17)H13A—C13—H13C109.5
C3—C2—C7120.58 (18)H13B—C13—H13C109.5
C4—C3—C2119.1 (2)C14—N6—C16122.4 (2)
C4—C3—H3A120.4C14—N6—C15119.25 (19)
C2—C3—H3A120.4C16—N6—C15118.30 (19)
C3—C4—C5121.2 (2)O2—C14—N6124.8 (2)
C3—C4—H4A119.4O2—C14—H14A117.6
C5—C4—H4A119.4N6—C14—H14A117.6
C6—C5—C4120.1 (2)N6—C15—H15A109.5
C6—C5—H5A120.0N6—C15—H15B109.5
C4—C5—H5A120.0H15A—C15—H15B109.5
C5—C6—C7120.5 (2)N6—C15—H15C109.5
C5—C6—H6A119.7H15A—C15—H15C109.5
C7—C6—H6A119.7H15B—C15—H15C109.5
C2—C7—C6118.54 (18)N6—C16—H16A109.5
C2—C7—C8117.62 (17)N6—C16—H16B109.5
C6—C7—C8123.84 (19)H16A—C16—H16B109.5
C9—C8—C7122.29 (18)N6—C16—H16C109.5
C9—C8—H8A118.9H16A—C16—H16C109.5
C7—C8—H8A118.9H16B—C16—H16C109.5
C8—C9—C1119.75 (17)
C10—N2—N3—C12178.43 (17)O1—C1—C9—C8178.68 (18)
C10—N2—N3—C113.3 (3)N1—C1—C9—C80.8 (3)
C11—N4—N5—C120.1 (2)O1—C1—C9—C102.5 (3)
C2—N1—C1—O1179.27 (18)N1—C1—C9—C10178.08 (16)
C2—N1—C1—C90.2 (3)N3—N2—C10—C9179.39 (15)
C1—N1—C2—C3179.90 (18)C8—C9—C10—N22.6 (3)
C1—N1—C2—C70.9 (3)C1—C9—C10—N2176.18 (17)
N1—C2—C3—C4179.58 (19)N5—N4—C11—N30.2 (2)
C7—C2—C3—C40.4 (3)N5—N4—C11—S1179.90 (13)
C2—C3—C4—C51.0 (3)C12—N3—C11—N40.18 (18)
C3—C4—C5—C60.8 (3)N2—N3—C11—N4178.25 (16)
C4—C5—C6—C70.0 (3)C12—N3—C11—S1179.91 (15)
N1—C2—C7—C6178.83 (17)N2—N3—C11—S11.7 (3)
C3—C2—C7—C60.3 (3)N4—N5—C12—N30.0 (2)
N1—C2—C7—C81.4 (3)N4—N5—C12—C13178.53 (19)
C3—C2—C7—C8179.39 (16)N2—N3—C12—N5178.56 (15)
C5—C6—C7—C20.5 (3)C11—N3—C12—N50.1 (2)
C5—C6—C7—C8179.16 (18)N2—N3—C12—C132.9 (3)
C2—C7—C8—C90.9 (3)C11—N3—C12—C13178.46 (18)
C6—C7—C8—C9179.39 (18)C16—N6—C14—O2179.8 (2)
C7—C8—C9—C10.2 (3)C15—N6—C14—O22.8 (3)
C7—C8—C9—C10178.53 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.93 (2)1.85 (2)2.774 (2)178 (2)
N4—H1N4···O2ii0.88 (2)1.85 (2)2.736 (2)177.2 (14)
C10—H10A···S10.932.433.203 (2)140
C16—H16A···O2iii0.962.483.368 (4)153
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H11N5OS·C3H7NO
Mr358.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.2374 (1), 23.4970 (4), 10.8214 (2)
β (°) 107.820 (1)
V3)1751.97 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.45 × 0.27 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.912, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
27543, 5088, 2909
Rint0.044
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.144, 1.02
No. of reflections5088
No. of parameters237
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.93 (2)1.85 (2)2.774 (2)178 (2)
N4—H1N4···O2ii0.88 (2)1.85 (2)2.736 (2)177.2 (14)
C10—H10A···S10.93002.43003.203 (2)140.00
C16—H16A···O2iii0.96002.48003.368 (4)153.00
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationAlmasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezadeh, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett. 14, 6057–6059.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAl-Soud, Y. A., Al-Masoudi, N. A. & Ferwanah, A. E. S. (2003). Bioorg. Med. Chem. 11, 1701–1708.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAmir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDemirbas, N., Karaoglu, S. A., Demirbas, A. & Sancak, K. (2004). Eur. J. Med. Chem. 39, 793–804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDufresne, S., Bourque, A. N. & Skene, W. G. (2008). Acta Cryst. E64, o316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Vijesh, A. M., Padaki, M. & Isloor, A. M. (2009). Acta Cryst. E65, o1918–o1919.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759–767.  Web of Science CrossRef PubMed Google Scholar
First citationJanardhana, N., Girisha, K. S., Shetty, N. S. & Kalluraya, B. (2008). Ind. J. Heterocycl. Chem. 17, 209–212.  Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J., Lin, Y. & Chan, W. L. (2008). Acta Cryst. E64, o934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSujith, K. V., Rao, J. N., Shetty, P. & Kalluraya, B. (2009). Eur. J. Med. Chem. 44, 3697–3702.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTuran-Zitouni, G., Kaplancıklı, Z. A., Yıldız, M. T., Chevallet, P. & Kaya, D. (2005). Eur. J. Med. Chem. 40, 607–613.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWalczak, K., Gondela, A. & Suwiński, J. (2004). Eur. J. Med. Chem. 39, 849–853.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3235-o3236
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds