organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-4,5-di­nitro-1H-imidazole

aSchool of Chemical Engineering and Environment, North University of China, Taiyuan, People's Republic of China
*Correspondence e-mail: wangjianlong@nuc.edu.cn

(Received 7 October 2009; accepted 7 November 2009; online 14 November 2009)

In the title compound, C4H4N4O4, the two nitro groups are twisted with respect to the imidazole plane, making dihedral angles of 24.2 (3) and 33.4 (4)°. In the crystal structure, the mol­ecules are linked through non-classical inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis, see: Damavarapu et al. (2007[Damavarapu, R., Surapaneni, R. C., Gelber, N. et al. (2007). US Patent 7 304 164.]). For the biological activity of polynitro­imidazole systems, see: Hofmann (1953[Hofmann, K. (1953). Imidazole and Its Derivatives, Part I. New York: Interscience.]); Breccia et al. (1982[Breccia, A., Cavalleri, B. & Adams, G. E. (1982). Nitroimidazoles. Chemistry, Pharmacology, and Clinical Application. New York: Plenum.]); Boyer (1986[Boyer, J. H. (1986). Nitroazoles: The C-Nitro Derivatives of Five-Membered N- and N,O-Heterocycles. Deerfield Beach, Florida: VCH.]). For their detonation performance, see: Storm et al. (1990[Storm, C. B., Stine, J. R. & Kramer, J. F. (1990). Chemistry and Physics of Energetic Materials. Dordrecht: Kluwer Academic.]); Katritzky et al. (1993[Katritzky, A. R., Cundy, D. J. & Chen, J. (1993). J. Energetic Mat. 11, 345-352.]); Bulusu et al. (1995[Bulusu, S., Damavarapu, R., Autera, J. R., Behrens, R. Jr, Minier, L. M., Villanueva, J., Jayasuriya, K. & Axenrod, T. (1995). J. Phys. Chem. 99, 5009-5015.]).

[Scheme 1]

Experimental

Crystal data
  • C4H4N4O4

  • Mr = 172.11

  • Orthorhombic, P n a 21

  • a = 8.412 (2) Å

  • b = 12.646 (3) Å

  • c = 6.563 (1) Å

  • V = 698.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.944, Tmax = 0.971

  • 3573 measured reflections

  • 871 independent reflections

  • 648 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.112

  • S = 0.95

  • 871 reflections

  • 111 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.49 3.150 (4) 128
C4—H4A⋯O4ii 0.96 2.48 3.428 (5) 170
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-1].

Data collection: RAPID-AUTO (Rigaku, 2000[Rigaku (2000). RAPID-AUTO and CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku, 2000[Rigaku (2000). RAPID-AUTO and CrystalClear. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polynitroimidazole systems have been investigated extensively owing to their biological activity (Hofmann, 1953; Breccia et al., 1982; Boyer, 1986). Recently, these so called "high energy density materials" have attracted renewed attention in conjunction with their favorable detonation performance (Storm et al., 1990; Katritzky et al., 1993; Bulusu et al., 1995). As a promising candidate, 1-methyl-4,5- dinitroimidazole was synthesized by the nitration of N-methyl- imidazole (Damavarapu et al., 2007). Here we reprot the crystal structure of the title compound (Fig. 1).

In the crystal structure, the two nitro groups are twisted with respect to the imidazole plane, making dihedral angles of 24.2 (3)° (N3/O1, O2) and 33.4 (4)° (N4/O3, O4). The molecular packing (Fig. 2) is stabilized by non-classical intermolecular C–H···O hydrogen bonds; the first between the imidazole H atom and an oxygen of the nitro group, with C1–H1···Oi, the second between the methyl H atom and an oxygen of the nitro group, with C4–H4A···O4ii, respectively (Table 1).

Related literature top

For the synthesis, see: Damavarapu et al. (2007). For th biological activity of polynitroimidazole systems, see: Hofmann (1953); Breccia et al. (1982); Boyer (1986). For their detonation performance, see: Storm et al. (1990); Katritzky et al. (1993); Bulusu et al. (1995).

Experimental top

The title compound was prepared according to literature method (Damavarapu et al., 2007). Single crystals suitable for X-ray diffraction were obtained by evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

All the Friedel pairs were merged. All H atoms were positioned geometrically and treated as riding, with C–H bond lengths constrained to 0.93 ° for imidazole ring H and 0.96 ° for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for imidazole ring H atom and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO (Rigaku, 2000); data reduction: CrystalStructure (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C–H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1/2, y + 1/2, z - 1/2; (ii) x + 1/2, - y + 3/2, z - 1; (iii) - x + 1/2, y - 1/2, z + 1/2; (iv) x - 1/2, - y + 3/2, z + 1.]
1-Methyl-4,5-dinitro-1H-imidazole top
Crystal data top
C4H4N4O4F(000) = 352
Mr = 172.11Dx = 1.637 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3573 reflections
a = 8.412 (2) Åθ = 2.9–27.6°
b = 12.646 (3) ŵ = 0.15 mm1
c = 6.563 (1) ÅT = 293 K
V = 698.2 (3) Å3Block, colorless
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
871 independent reflections
Radiation source: fine-focus sealed tube648 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
Detector resolution: 10.00 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1616
Tmin = 0.944, Tmax = 0.971l = 88
3573 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
871 reflectionsΔρmax = 0.22 e Å3
111 parametersΔρmin = 0.18 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.147 (18)
Crystal data top
C4H4N4O4V = 698.2 (3) Å3
Mr = 172.11Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.412 (2) ŵ = 0.15 mm1
b = 12.646 (3) ÅT = 293 K
c = 6.563 (1) Å0.40 × 0.30 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
871 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
648 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.971Rint = 0.097
3573 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.112H-atom parameters constrained
S = 0.95Δρmax = 0.22 e Å3
871 reflectionsΔρmin = 0.18 e Å3
111 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2730 (4)0.7411 (2)0.2853 (6)0.0530 (8)
H10.32510.77510.17890.064*
C20.1370 (3)0.7145 (2)0.5486 (5)0.0449 (7)
C30.1843 (3)0.61741 (19)0.4808 (5)0.0378 (6)
C40.3530 (4)0.5610 (3)0.1731 (6)0.0607 (9)
H4A0.39550.59880.05850.091*
H4B0.27800.50920.12620.091*
H4C0.43770.52640.24470.091*
N10.2728 (2)0.63562 (17)0.3106 (4)0.0410 (6)
N20.1915 (4)0.79129 (19)0.4271 (5)0.0561 (7)
N30.1551 (3)0.51403 (18)0.5576 (4)0.0490 (7)
N40.0529 (3)0.7419 (2)0.7316 (5)0.0569 (7)
O10.2496 (3)0.44510 (19)0.5115 (6)0.0806 (9)
O20.0370 (3)0.5008 (2)0.6601 (5)0.0773 (9)
O30.0716 (4)0.6874 (3)0.8832 (5)0.0878 (10)
O40.0300 (3)0.8211 (2)0.7273 (6)0.0839 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0718 (17)0.0401 (15)0.0470 (18)0.0025 (13)0.0072 (16)0.0127 (15)
C20.0424 (13)0.0501 (16)0.0421 (16)0.0026 (10)0.0036 (12)0.0010 (13)
C30.0393 (12)0.0394 (13)0.0346 (13)0.0021 (9)0.0019 (11)0.0059 (11)
C40.0676 (18)0.0527 (19)0.062 (2)0.0108 (14)0.0197 (17)0.0053 (17)
N10.0471 (10)0.0376 (12)0.0384 (12)0.0002 (9)0.0032 (11)0.0074 (11)
N20.0737 (16)0.0423 (14)0.0524 (18)0.0039 (11)0.0002 (15)0.0042 (12)
N30.0560 (13)0.0463 (14)0.0446 (15)0.0099 (11)0.0002 (13)0.0116 (12)
N40.0537 (13)0.0690 (17)0.0479 (16)0.0004 (14)0.0017 (13)0.0132 (15)
O10.0872 (16)0.0502 (13)0.104 (3)0.0139 (11)0.0169 (18)0.0335 (15)
O20.0832 (18)0.0780 (17)0.071 (2)0.0301 (13)0.0296 (16)0.0049 (14)
O30.116 (2)0.098 (2)0.0499 (17)0.0005 (17)0.0167 (17)0.0044 (15)
O40.0717 (14)0.106 (2)0.074 (2)0.0307 (13)0.0068 (15)0.0273 (19)
Geometric parameters (Å, º) top
C1—N21.318 (5)C4—N11.470 (4)
C1—N11.344 (4)C4—H4A0.9600
C1—H10.9300C4—H4B0.9600
C2—N21.337 (4)C4—H4C0.9600
C2—C31.365 (4)N3—O21.212 (3)
C2—N41.436 (4)N3—O11.218 (4)
C3—N11.361 (4)N4—O31.220 (5)
C3—N31.423 (3)N4—O41.222 (4)
N2—C1—N1112.9 (3)H4A—C4—H4C109.5
N2—C1—H1123.5H4B—C4—H4C109.5
N1—C1—H1123.5C1—N1—C3105.7 (2)
N2—C2—C3111.0 (3)C1—N1—C4124.1 (3)
N2—C2—N4119.5 (3)C3—N1—C4130.2 (2)
C3—C2—N4129.2 (3)C1—N2—C2104.5 (2)
N1—C3—C2105.9 (2)O2—N3—O1125.1 (3)
N1—C3—N3122.7 (2)O2—N3—C3117.8 (3)
C2—C3—N3131.3 (3)O1—N3—C3117.2 (3)
N1—C4—H4A109.5O3—N4—O4123.8 (4)
N1—C4—H4B109.5O3—N4—C2118.8 (3)
H4A—C4—H4B109.5O4—N4—C2117.3 (3)
N1—C4—H4C109.5
N2—C2—C3—N10.4 (3)C3—C2—N2—C10.3 (4)
N4—C2—C3—N1174.1 (3)N4—C2—N2—C1174.8 (3)
N2—C2—C3—N3179.5 (3)N1—C3—N3—O2155.1 (3)
N4—C2—C3—N36.0 (5)C2—C3—N3—O224.8 (5)
N2—C1—N1—C30.2 (4)N1—C3—N3—O123.5 (4)
N2—C1—N1—C4179.3 (3)C2—C3—N3—O1156.6 (3)
C2—C3—N1—C10.3 (3)N2—C2—N4—O3143.7 (4)
N3—C3—N1—C1179.6 (3)C3—C2—N4—O330.5 (5)
C2—C3—N1—C4179.4 (3)N2—C2—N4—O434.1 (4)
N3—C3—N1—C40.5 (5)C3—C2—N4—O4151.8 (3)
N1—C1—N2—C20.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.493.150 (4)128
C4—H4A···O4ii0.962.483.428 (5)170
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+3/2, z1.

Experimental details

Crystal data
Chemical formulaC4H4N4O4
Mr172.11
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)8.412 (2), 12.646 (3), 6.563 (1)
V3)698.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.944, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
3573, 871, 648
Rint0.097
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.112, 0.95
No. of reflections871
No. of parameters111
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: RAPID-AUTO (Rigaku, 2000), CrystalStructure (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.493.150 (4)127.6
C4—H4A···O4ii0.962.483.428 (5)169.9
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+3/2, z1.
 

Acknowledgements

The authors thank China North Industries Group Corporation for financial support.

References

First citationBoyer, J. H. (1986). Nitroazoles: The C-Nitro Derivatives of Five-Membered N- and N,O-Heterocycles. Deerfield Beach, Florida: VCH.  Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBreccia, A., Cavalleri, B. & Adams, G. E. (1982). Nitroimidazoles. Chemistry, Pharmacology, and Clinical Application. New York: Plenum.  Google Scholar
First citationBulusu, S., Damavarapu, R., Autera, J. R., Behrens, R. Jr, Minier, L. M., Villanueva, J., Jayasuriya, K. & Axenrod, T. (1995). J. Phys. Chem. 99, 5009–5015.  CrossRef CAS Web of Science Google Scholar
First citationDamavarapu, R., Surapaneni, R. C., Gelber, N. et al. (2007). US Patent 7 304 164.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHofmann, K. (1953). Imidazole and Its Derivatives, Part I. New York: Interscience.  Google Scholar
First citationKatritzky, A. R., Cundy, D. J. & Chen, J. (1993). J. Energetic Mat. 11, 345–352.  CrossRef CAS Google Scholar
First citationRigaku (2000). RAPID-AUTO and CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStorm, C. B., Stine, J. R. & Kramer, J. F. (1990). Chemistry and Physics of Energetic Materials. Dordrecht: Kluwer Academic.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds