organic compounds
1-Methyl-4,5-dinitro-1H-imidazole
aSchool of Chemical Engineering and Environment, North University of China, Taiyuan, People's Republic of China
*Correspondence e-mail: wangjianlong@nuc.edu.cn
In the title compound, C4H4N4O4, the two nitro groups are twisted with respect to the imidazole plane, making dihedral angles of 24.2 (3) and 33.4 (4)°. In the the molecules are linked through non-classical intermolecular C—H⋯O hydrogen bonds.
Related literature
For the synthesis, see: Damavarapu et al. (2007). For the biological activity of polynitroimidazole systems, see: Hofmann (1953); Breccia et al. (1982); Boyer (1986). For their detonation performance, see: Storm et al. (1990); Katritzky et al. (1993); Bulusu et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 2000); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809047126/lx2116sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809047126/lx2116Isup2.hkl
The title compound was prepared according to literature method (Damavarapu et al., 2007). Single crystals suitable for X-ray diffraction were obtained by evaporation of a solution of the title compound in methanol at room temperature.
All the Friedel pairs were merged. All H atoms were positioned geometrically and treated as riding, with C–H bond lengths constrained to 0.93 ° for imidazole ring H and 0.96 ° for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for imidazole ring H atom and 1.5Ueq(C) for methyl H atoms.
Data collection: RAPID-AUTO (Rigaku, 2000); cell
RAPID-AUTO (Rigaku, 2000); data reduction: CrystalStructure (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C4H4N4O4 | F(000) = 352 |
Mr = 172.11 | Dx = 1.637 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 3573 reflections |
a = 8.412 (2) Å | θ = 2.9–27.6° |
b = 12.646 (3) Å | µ = 0.15 mm−1 |
c = 6.563 (1) Å | T = 293 K |
V = 698.2 (3) Å3 | Block, colorless |
Z = 4 | 0.40 × 0.30 × 0.20 mm |
Rigaku R-AXIS RAPID IP diffractometer | 871 independent reflections |
Radiation source: fine-focus sealed tube | 648 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.097 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.6°, θmin = 2.9° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −16→16 |
Tmin = 0.944, Tmax = 0.971 | l = −8→8 |
3573 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.075P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max = 0.001 |
871 reflections | Δρmax = 0.22 e Å−3 |
111 parameters | Δρmin = −0.18 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.147 (18) |
C4H4N4O4 | V = 698.2 (3) Å3 |
Mr = 172.11 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 8.412 (2) Å | µ = 0.15 mm−1 |
b = 12.646 (3) Å | T = 293 K |
c = 6.563 (1) Å | 0.40 × 0.30 × 0.20 mm |
Rigaku R-AXIS RAPID IP diffractometer | 871 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 648 reflections with I > 2σ(I) |
Tmin = 0.944, Tmax = 0.971 | Rint = 0.097 |
3573 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 1 restraint |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.22 e Å−3 |
871 reflections | Δρmin = −0.18 e Å−3 |
111 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2730 (4) | 0.7411 (2) | 0.2853 (6) | 0.0530 (8) | |
H1 | 0.3251 | 0.7751 | 0.1789 | 0.064* | |
C2 | 0.1370 (3) | 0.7145 (2) | 0.5486 (5) | 0.0449 (7) | |
C3 | 0.1843 (3) | 0.61741 (19) | 0.4808 (5) | 0.0378 (6) | |
C4 | 0.3530 (4) | 0.5610 (3) | 0.1731 (6) | 0.0607 (9) | |
H4A | 0.3955 | 0.5988 | 0.0585 | 0.091* | |
H4B | 0.2780 | 0.5092 | 0.1262 | 0.091* | |
H4C | 0.4377 | 0.5264 | 0.2447 | 0.091* | |
N1 | 0.2728 (2) | 0.63562 (17) | 0.3106 (4) | 0.0410 (6) | |
N2 | 0.1915 (4) | 0.79129 (19) | 0.4271 (5) | 0.0561 (7) | |
N3 | 0.1551 (3) | 0.51403 (18) | 0.5576 (4) | 0.0490 (7) | |
N4 | 0.0529 (3) | 0.7419 (2) | 0.7316 (5) | 0.0569 (7) | |
O1 | 0.2496 (3) | 0.44510 (19) | 0.5115 (6) | 0.0806 (9) | |
O2 | 0.0370 (3) | 0.5008 (2) | 0.6601 (5) | 0.0773 (9) | |
O3 | 0.0716 (4) | 0.6874 (3) | 0.8832 (5) | 0.0878 (10) | |
O4 | −0.0300 (3) | 0.8211 (2) | 0.7273 (6) | 0.0839 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0718 (17) | 0.0401 (15) | 0.0470 (18) | −0.0025 (13) | 0.0072 (16) | 0.0127 (15) |
C2 | 0.0424 (13) | 0.0501 (16) | 0.0421 (16) | 0.0026 (10) | −0.0036 (12) | −0.0010 (13) |
C3 | 0.0393 (12) | 0.0394 (13) | 0.0346 (13) | −0.0021 (9) | −0.0019 (11) | 0.0059 (11) |
C4 | 0.0676 (18) | 0.0527 (19) | 0.062 (2) | 0.0108 (14) | 0.0197 (17) | 0.0053 (17) |
N1 | 0.0471 (10) | 0.0376 (12) | 0.0384 (12) | 0.0002 (9) | 0.0032 (11) | 0.0074 (11) |
N2 | 0.0737 (16) | 0.0423 (14) | 0.0524 (18) | 0.0039 (11) | 0.0002 (15) | 0.0042 (12) |
N3 | 0.0560 (13) | 0.0463 (14) | 0.0446 (15) | −0.0099 (11) | −0.0002 (13) | 0.0116 (12) |
N4 | 0.0537 (13) | 0.0690 (17) | 0.0479 (16) | −0.0004 (14) | −0.0017 (13) | −0.0132 (15) |
O1 | 0.0872 (16) | 0.0502 (13) | 0.104 (3) | 0.0139 (11) | 0.0169 (18) | 0.0335 (15) |
O2 | 0.0832 (18) | 0.0780 (17) | 0.071 (2) | −0.0301 (13) | 0.0296 (16) | 0.0049 (14) |
O3 | 0.116 (2) | 0.098 (2) | 0.0499 (17) | 0.0005 (17) | 0.0167 (17) | 0.0044 (15) |
O4 | 0.0717 (14) | 0.106 (2) | 0.074 (2) | 0.0307 (13) | −0.0068 (15) | −0.0273 (19) |
C1—N2 | 1.318 (5) | C4—N1 | 1.470 (4) |
C1—N1 | 1.344 (4) | C4—H4A | 0.9600 |
C1—H1 | 0.9300 | C4—H4B | 0.9600 |
C2—N2 | 1.337 (4) | C4—H4C | 0.9600 |
C2—C3 | 1.365 (4) | N3—O2 | 1.212 (3) |
C2—N4 | 1.436 (4) | N3—O1 | 1.218 (4) |
C3—N1 | 1.361 (4) | N4—O3 | 1.220 (5) |
C3—N3 | 1.423 (3) | N4—O4 | 1.222 (4) |
N2—C1—N1 | 112.9 (3) | H4A—C4—H4C | 109.5 |
N2—C1—H1 | 123.5 | H4B—C4—H4C | 109.5 |
N1—C1—H1 | 123.5 | C1—N1—C3 | 105.7 (2) |
N2—C2—C3 | 111.0 (3) | C1—N1—C4 | 124.1 (3) |
N2—C2—N4 | 119.5 (3) | C3—N1—C4 | 130.2 (2) |
C3—C2—N4 | 129.2 (3) | C1—N2—C2 | 104.5 (2) |
N1—C3—C2 | 105.9 (2) | O2—N3—O1 | 125.1 (3) |
N1—C3—N3 | 122.7 (2) | O2—N3—C3 | 117.8 (3) |
C2—C3—N3 | 131.3 (3) | O1—N3—C3 | 117.2 (3) |
N1—C4—H4A | 109.5 | O3—N4—O4 | 123.8 (4) |
N1—C4—H4B | 109.5 | O3—N4—C2 | 118.8 (3) |
H4A—C4—H4B | 109.5 | O4—N4—C2 | 117.3 (3) |
N1—C4—H4C | 109.5 | ||
N2—C2—C3—N1 | 0.4 (3) | C3—C2—N2—C1 | −0.3 (4) |
N4—C2—C3—N1 | −174.1 (3) | N4—C2—N2—C1 | 174.8 (3) |
N2—C2—C3—N3 | −179.5 (3) | N1—C3—N3—O2 | −155.1 (3) |
N4—C2—C3—N3 | 6.0 (5) | C2—C3—N3—O2 | 24.8 (5) |
N2—C1—N1—C3 | 0.2 (4) | N1—C3—N3—O1 | 23.5 (4) |
N2—C1—N1—C4 | 179.3 (3) | C2—C3—N3—O1 | −156.6 (3) |
C2—C3—N1—C1 | −0.3 (3) | N2—C2—N4—O3 | −143.7 (4) |
N3—C3—N1—C1 | 179.6 (3) | C3—C2—N4—O3 | 30.5 (5) |
C2—C3—N1—C4 | −179.4 (3) | N2—C2—N4—O4 | 34.1 (4) |
N3—C3—N1—C4 | 0.5 (5) | C3—C2—N4—O4 | −151.8 (3) |
N1—C1—N2—C2 | 0.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.93 | 2.49 | 3.150 (4) | 128 |
C4—H4A···O4ii | 0.96 | 2.48 | 3.428 (5) | 170 |
Symmetry codes: (i) −x+1/2, y+1/2, z−1/2; (ii) x+1/2, −y+3/2, z−1. |
Experimental details
Crystal data | |
Chemical formula | C4H4N4O4 |
Mr | 172.11 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 293 |
a, b, c (Å) | 8.412 (2), 12.646 (3), 6.563 (1) |
V (Å3) | 698.2 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.15 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.944, 0.971 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3573, 871, 648 |
Rint | 0.097 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.112, 0.95 |
No. of reflections | 871 |
No. of parameters | 111 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.18 |
Computer programs: RAPID-AUTO (Rigaku, 2000), CrystalStructure (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.93 | 2.49 | 3.150 (4) | 127.6 |
C4—H4A···O4ii | 0.96 | 2.48 | 3.428 (5) | 169.9 |
Symmetry codes: (i) −x+1/2, y+1/2, z−1/2; (ii) x+1/2, −y+3/2, z−1. |
Acknowledgements
The authors thank China North Industries Group Corporation for financial support.
References
Boyer, J. H. (1986). Nitroazoles: The C-Nitro Derivatives of Five-Membered N- and N,O-Heterocycles. Deerfield Beach, Florida: VCH. Google Scholar
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Breccia, A., Cavalleri, B. & Adams, G. E. (1982). Nitroimidazoles. Chemistry, Pharmacology, and Clinical Application. New York: Plenum. Google Scholar
Bulusu, S., Damavarapu, R., Autera, J. R., Behrens, R. Jr, Minier, L. M., Villanueva, J., Jayasuriya, K. & Axenrod, T. (1995). J. Phys. Chem. 99, 5009–5015. CrossRef CAS Web of Science Google Scholar
Damavarapu, R., Surapaneni, R. C., Gelber, N. et al. (2007). US Patent 7 304 164. Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hofmann, K. (1953). Imidazole and Its Derivatives, Part I. New York: Interscience. Google Scholar
Katritzky, A. R., Cundy, D. J. & Chen, J. (1993). J. Energetic Mat. 11, 345–352. CrossRef CAS Google Scholar
Rigaku (2000). RAPID-AUTO and CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Storm, C. B., Stine, J. R. & Kramer, J. F. (1990). Chemistry and Physics of Energetic Materials. Dordrecht: Kluwer Academic. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polynitroimidazole systems have been investigated extensively owing to their biological activity (Hofmann, 1953; Breccia et al., 1982; Boyer, 1986). Recently, these so called "high energy density materials" have attracted renewed attention in conjunction with their favorable detonation performance (Storm et al., 1990; Katritzky et al., 1993; Bulusu et al., 1995). As a promising candidate, 1-methyl-4,5- dinitroimidazole was synthesized by the nitration of N-methyl- imidazole (Damavarapu et al., 2007). Here we reprot the crystal structure of the title compound (Fig. 1).
In the crystal structure, the two nitro groups are twisted with respect to the imidazole plane, making dihedral angles of 24.2 (3)° (N3/O1, O2) and 33.4 (4)° (N4/O3, O4). The molecular packing (Fig. 2) is stabilized by non-classical intermolecular C–H···O hydrogen bonds; the first between the imidazole H atom and an oxygen of the nitro group, with C1–H1···Oi, the second between the methyl H atom and an oxygen of the nitro group, with C4–H4A···O4ii, respectively (Table 1).