organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-{(E)-3-[1-(hy­droxy­imino)eth­yl]phenyl­imino­meth­yl}phenol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: xuli@mail.lzjtu.cn

(Received 4 November 2009; accepted 17 November 2009; online 21 November 2009)

In the title compound, C15H13BrN2O2, he oxime unit adopts an E conformation with respect to the O—H group. A classical intra­molecular O—H⋯N hydrogen bond results in the formation of a six-membered ring. The crystal structure is stabilized by inter­molecular O—H⋯N hydrogen bonds between the hydr­oxy groups and the oxime N atoms. In addition, the crystal structure also features short inter­molecular Br⋯Br short contacts with a distance of 3.8768 (5) Å.

Related literature

For background to Schiff bases, see: Dong et al. (2007[Dong, W.-K., Feng, J.-H. & Yang, X.-Q. (2007). Synth. React. Inorg. Met. Org. Nano-Chem. 37, 61-65.], 2008[Dong, W.-K., Duan, J.-G., Chai, L.-Q., Liu, G.-L. & Wu, H.-L. (2008). J. Coord. Chem. 61, 1306-1315.]); Wang et al. 2009[Wang, X.-Q., Tong, J.-F., Dong, W.-K., Gong, S.-S. & Wu, J.-C. (2009). Acta Cryst. E65, o2013.]). For background to oximes, see: Golovnia et al. (2009[Golovnia, E., Prisyazhnaya, E. V., Iskenderov, T. S., Haukka, M. & Fritsky, I. O. (2009). Acta Cryst. E65, o2018-o2019.]); Liu et al. (2008[Liu, G.-L., Chen, X., He, X.-N. & Dong, W.-K. (2008). Acta Cryst. E64, o659.]); Dong et al. (2009a[Dong, W.-K., Wu, J.-C., Sun, Y.-X., Yao, J. & Tong, J.-F. (2009a). Acta Cryst. E65, o1248.]); Öztürk et al. (2009[Öztürk, A., Babahan, İ., Sarıkavaklı, N. & Hökelek, T. (2009). Acta Cryst. E65, o1059-o1060.]). For the synthesis, see: Dong et al. (2009b[Dong, W.-K., Zhao, C.-Y., Sun, Y.-X., Tang, X.-L. & He, X.-N. (2009b). Inorg. Chem. Commun. 12, 234-236.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN2O2

  • Mr = 333.18

  • Monoclinic, P 21 /c

  • a = 17.020 (2) Å

  • b = 6.1676 (7) Å

  • c = 13.693 (1) Å

  • β = 96.461 (1)°

  • V = 1428.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.88 mm−1

  • T = 298 K

  • 0.45 × 0.20 × 0.10 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.357, Tmax = 0.762

  • 6906 measured reflections

  • 2492 independent reflections

  • 1799 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.100

  • S = 0.99

  • 2492 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.10 2.830 (4) 149
O2—H2⋯N2 0.82 1.91 2.635 (4) 147
Symmetry code: (i) -x, -y+3, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base ligands containing oxygen and imine nitrogen atoms have attracted much attention due to their variety of applications as well as their strong coordination capability (Dong et al., 2007; Dong et al., 2008; Wang et al., 2009). The oxime compounds frequently exhibit versatility in organic, inorganic, bioinorganic, pigment, analytical, dyes and medical chemistry (Golovnia et al., 2009; Liu et al., 2008; Dong et al., 2009a; Öztürk et al., 2009). Owing to the importance of oxime-type compounds, we report the crystal structure of the title compound (Fig. 1).

In the crystal structure, all bond lengths and bond angles are in normal ranges. The molecule has a crystallographic inversion centre and the oxime unit adopts an E conformation with respect to the O—H group. The aniline ring (C3–C8) and phenol ring (C10–C15) are almost parallel each other, making a dihedral angle of 2.71 (1)°. The torsion angles of O1—N1—C2—C3 and C5—N2—C9—C10 are 178.5 (3) and -178.8 (3)°, respectively. In the crystal structure, a classical intramolecular O—H···N hydrogen bond forms a six-membered ring (Fig. 2 and Table 1). The crystal packing (Fig. 2) is stabilized by intermolecular O—H···N hydrogen bonds between the hydroxy groups and oxime N atoms, with a O1—H1···N1i (Table 1). In addition, the crystal structure was further stabilized by weak intermolecular Br···Brii (Fig. 2) short interactions with a distance of 3.8768 (5) Å.

Related literature top

For background to Schiff bases, see: Dong et al. (2007, 2008); Wang et al. 2009). For background to oximes, see: Golovnia et al. (2009); Liu et al. (2008); Dong et al. (2009a); Öztürk et al. (2009). For the synthesis, see: Dong et al. (2009b)

Experimental top

The title compound was synthesized according to an analogous method reported earlier (Dong et al., 2009b). To an ethanol solution (5 ml) of 3-aminophenylethanone oxime (150.2 mg, 1.00 mmol) was added dropwise an ethanol solution (5 ml) of 5-bromosalicylaldehyde (201.1 mg, 1.00 mmol) then the yellow precipitate was obtained. The mixture solution was stirred at 328–333 K for 1 h. After cooling to room temperature, the precipitate was filtered off, dried in vacuo and purified by recrystallization from ethanol of solid. Yield: 54.01%, m. p. 459–461 K. Anal. Calc. for C15H13BrN2O2: C, 54.07; H, 3.93; N, 8.41. Found: C, 54.32; H, 4.01; N, 8.81.

Yellow needle-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of dichloromethane at room temperature for about four weeks.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 Å (CH3), 0.93 Å (CH), O—H = 0.82 Å for (OH). The isotropic displacement parameters for all H atoms were set equal to 1.2 or 1.5 Ueq of the carrier atom.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound with atom numbering. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. O—H..N and Br···Br interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) -x + 1, y + 1/2, -z + 3/2; (ii) -x + 1, y - 1/2, -z + 3/2; (iii) -x, -y + 3, -z + 1.]
4-Bromo-2-{(E)-3-[1-(hydroxyimino)ethyl]phenyliminomethyl}phenol top
Crystal data top
C15H13BrN2O2F(000) = 672
Mr = 333.18Dx = 1.549 Mg m3
Monoclinic, P21/cMelting point = 459–461 K
Hall symbol: -p 2ybcMo Kα radiation, λ = 0.71073 Å
a = 17.020 (2) ÅCell parameters from 2173 reflections
b = 6.1676 (7) Åθ = 2.7–23.8°
c = 13.693 (1) ŵ = 2.88 mm1
β = 96.461 (1)°T = 298 K
V = 1428.3 (3) Å3Needle-like, yellow
Z = 40.45 × 0.20 × 0.10 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2492 independent reflections
Radiation source: fine-focus sealed tube1799 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.051
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2014
Tmin = 0.357, Tmax = 0.762k = 77
6906 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.100H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
2492 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C15H13BrN2O2V = 1428.3 (3) Å3
Mr = 333.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.020 (2) ŵ = 2.88 mm1
b = 6.1676 (7) ÅT = 298 K
c = 13.693 (1) Å0.45 × 0.20 × 0.10 mm
β = 96.461 (1)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2492 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1799 reflections with I > 2σ(I)
Tmin = 0.357, Tmax = 0.762Rint = 0.051
6906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.99Δρmax = 0.47 e Å3
2492 reflectionsΔρmin = 0.32 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.46909 (2)0.34895 (6)0.66885 (3)0.05662 (19)
N10.04843 (18)1.3049 (4)0.46740 (19)0.0451 (7)
N20.25065 (15)0.4933 (4)0.52712 (19)0.0416 (7)
O10.01134 (16)1.4311 (4)0.38885 (16)0.0609 (8)
H10.00961.53730.41100.091*
O20.29339 (17)0.2760 (5)0.37605 (18)0.0688 (8)
H20.27180.37260.40440.103*
C10.0818 (3)1.0731 (7)0.3317 (2)0.0601 (11)
H1A0.03851.14540.29400.090*
H1B0.07530.91910.32470.090*
H1C0.13061.11600.30840.090*
C20.0833 (2)1.1340 (5)0.4385 (2)0.0355 (8)
C30.12600 (18)0.9934 (5)0.5170 (2)0.0328 (7)
C40.16790 (19)0.8077 (5)0.4921 (2)0.0361 (8)
H40.16830.77230.42610.043*
C50.2089 (2)0.6749 (5)0.5637 (2)0.0372 (8)
C60.2088 (2)0.7269 (6)0.6638 (2)0.0457 (9)
H60.23550.64020.71230.055*
C70.1674 (2)0.9129 (6)0.6892 (2)0.0541 (10)
H70.16700.94860.75510.065*
C80.1272 (2)1.0439 (6)0.6175 (2)0.0439 (9)
H80.10071.16640.63620.053*
C90.2887 (2)0.3533 (5)0.5848 (2)0.0402 (8)
H90.28860.36750.65240.048*
C100.33200 (19)0.1729 (5)0.5462 (2)0.0370 (8)
C110.3322 (2)0.1382 (6)0.4443 (3)0.0455 (9)
C120.3730 (2)0.0397 (6)0.4104 (3)0.0554 (10)
H120.37260.06250.34320.067*
C130.4141 (2)0.1828 (6)0.4770 (3)0.0520 (10)
H130.44130.30000.45440.062*
C140.4138 (2)0.1477 (5)0.5778 (2)0.0391 (8)
C150.37336 (19)0.0263 (5)0.6123 (2)0.0393 (8)
H150.37350.04670.67970.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0571 (3)0.0476 (3)0.0643 (3)0.01472 (19)0.0030 (2)0.00954 (19)
N10.056 (2)0.0395 (17)0.0372 (15)0.0112 (15)0.0063 (14)0.0022 (13)
N20.0357 (17)0.0356 (17)0.0537 (17)0.0027 (13)0.0058 (14)0.0020 (13)
O10.083 (2)0.0526 (16)0.0436 (13)0.0295 (15)0.0089 (13)0.0039 (12)
O20.078 (2)0.079 (2)0.0479 (14)0.0289 (17)0.0001 (15)0.0108 (14)
C10.081 (3)0.062 (2)0.0367 (19)0.028 (2)0.0017 (19)0.0001 (18)
C20.036 (2)0.0329 (19)0.0373 (17)0.0002 (15)0.0027 (15)0.0020 (14)
C30.0309 (19)0.0315 (18)0.0353 (16)0.0001 (14)0.0005 (14)0.0005 (14)
C40.037 (2)0.037 (2)0.0338 (16)0.0039 (15)0.0021 (15)0.0024 (14)
C50.0311 (19)0.0339 (19)0.0462 (19)0.0012 (14)0.0031 (15)0.0022 (15)
C60.051 (2)0.043 (2)0.043 (2)0.0113 (18)0.0038 (17)0.0141 (16)
C70.071 (3)0.058 (2)0.0331 (18)0.014 (2)0.0074 (18)0.0027 (17)
C80.052 (2)0.040 (2)0.0395 (18)0.0097 (17)0.0060 (17)0.0024 (16)
C90.040 (2)0.0346 (19)0.0455 (19)0.0010 (16)0.0020 (16)0.0017 (16)
C100.0321 (19)0.0332 (19)0.0443 (18)0.0013 (15)0.0016 (15)0.0004 (15)
C110.037 (2)0.050 (2)0.048 (2)0.0033 (17)0.0018 (17)0.0052 (18)
C120.057 (3)0.070 (3)0.0408 (19)0.012 (2)0.0101 (18)0.0030 (19)
C130.051 (3)0.051 (2)0.055 (2)0.0117 (18)0.0109 (19)0.0053 (18)
C140.034 (2)0.0331 (19)0.050 (2)0.0024 (16)0.0022 (16)0.0017 (15)
C150.038 (2)0.038 (2)0.0411 (18)0.0003 (16)0.0013 (16)0.0041 (15)
Geometric parameters (Å, º) top
Br—C141.928 (3)C4—H40.9300
Br—Bri3.8768 (5)C5—C61.409 (5)
Br—Brii3.8768 (5)C6—C71.410 (5)
N1—C21.293 (4)C6—H60.9300
N1—O11.417 (3)C7—C81.390 (5)
N2—C91.294 (4)C7—H70.9300
N2—C51.446 (4)C8—H80.9300
O1—H10.8200C9—C101.466 (4)
O2—C111.377 (4)C9—H90.9300
O2—H20.8200C10—C151.411 (4)
C1—C21.507 (4)C10—C111.411 (5)
C1—H1A0.9600C11—C121.405 (5)
C1—H1B0.9600C12—C131.399 (5)
C1—H1C0.9600C12—H120.9300
C2—C31.504 (4)C13—C141.398 (5)
C3—C81.409 (4)C13—H130.9300
C3—C41.411 (4)C14—C151.387 (4)
C4—C51.401 (4)C15—H150.9300
C14—Br—Bri86.56 (10)C8—C7—C6121.3 (3)
C14—Br—Brii164.58 (10)C8—C7—H7119.4
Bri—Br—Brii105.395 (19)C6—C7—H7119.4
C2—N1—O1113.3 (3)C7—C8—C3120.9 (3)
C9—N2—C5122.5 (3)C7—C8—H8119.6
N1—O1—H1109.5C3—C8—H8119.6
C11—O2—H2109.5N2—C9—C10121.6 (3)
C2—C1—H1A109.5N2—C9—H9119.2
C2—C1—H1B109.5C10—C9—H9119.2
H1A—C1—H1B109.5C15—C10—C11118.7 (3)
C2—C1—H1C109.5C15—C10—C9119.3 (3)
H1A—C1—H1C109.5C11—C10—C9122.0 (3)
H1B—C1—H1C109.5O2—C11—C12118.3 (3)
N1—C2—C3116.9 (3)O2—C11—C10121.5 (3)
N1—C2—C1122.8 (3)C12—C11—C10120.1 (3)
C3—C2—C1120.2 (3)C13—C12—C11120.4 (3)
C8—C3—C4117.6 (3)C13—C12—H12119.8
C8—C3—C2121.6 (3)C11—C12—H12119.8
C4—C3—C2120.8 (3)C14—C13—C12119.3 (3)
C5—C4—C3122.0 (3)C14—C13—H13120.4
C5—C4—H4119.0C12—C13—H13120.4
C3—C4—H4119.0C15—C14—C13120.9 (3)
C4—C5—C6119.5 (3)C15—C14—Br120.2 (2)
C4—C5—N2115.8 (3)C13—C14—Br118.9 (2)
C6—C5—N2124.6 (3)C14—C15—C10120.5 (3)
C5—C6—C7118.7 (3)C14—C15—H15119.7
C5—C6—H6120.6C10—C15—H15119.7
C7—C6—H6120.6
O1—N1—C2—C3178.5 (3)N2—C9—C10—C15179.2 (3)
O1—N1—C2—C11.9 (5)N2—C9—C10—C112.2 (5)
N1—C2—C3—C80.8 (5)C15—C10—C11—O2179.6 (3)
C1—C2—C3—C8178.8 (3)C9—C10—C11—O21.8 (5)
N1—C2—C3—C4177.9 (3)C15—C10—C11—C120.1 (5)
C1—C2—C3—C42.5 (5)C9—C10—C11—C12178.5 (3)
C8—C3—C4—C50.6 (5)O2—C11—C12—C13179.2 (4)
C2—C3—C4—C5179.4 (3)C10—C11—C12—C130.5 (6)
C3—C4—C5—C60.1 (5)C11—C12—C13—C140.4 (6)
C3—C4—C5—N2178.6 (3)C12—C13—C14—C150.0 (5)
C9—N2—C5—C4177.6 (3)C12—C13—C14—Br178.9 (3)
C9—N2—C5—C64.0 (5)Bri—Br—C14—C1539.2 (3)
C4—C5—C6—C70.3 (5)Brii—Br—C14—C15102.3 (4)
N2—C5—C6—C7178.1 (3)Bri—Br—C14—C13141.9 (3)
C5—C6—C7—C80.0 (6)Brii—Br—C14—C1376.7 (5)
C6—C7—C8—C30.6 (6)C13—C14—C15—C100.4 (5)
C4—C3—C8—C70.9 (5)Br—C14—C15—C10179.3 (2)
C2—C3—C8—C7179.6 (3)C11—C10—C15—C140.3 (5)
C5—N2—C9—C10178.8 (3)C9—C10—C15—C14179.0 (3)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1iii0.822.102.830 (4)149
O2—H2···N20.821.912.635 (4)147
Symmetry code: (iii) x, y+3, z+1.

Experimental details

Crystal data
Chemical formulaC15H13BrN2O2
Mr333.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.020 (2), 6.1676 (7), 13.693 (1)
β (°) 96.461 (1)
V3)1428.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.88
Crystal size (mm)0.45 × 0.20 × 0.10
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.357, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
6906, 2492, 1799
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 0.99
No. of reflections2492
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.32

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.102.830 (4)148.5
O2—H2···N20.821.912.635 (4)147.0
Symmetry code: (i) x, y+3, z+1.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0904-11) and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDong, W.-K., Duan, J.-G., Chai, L.-Q., Liu, G.-L. & Wu, H.-L. (2008). J. Coord. Chem. 61, 1306–1315.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Feng, J.-H. & Yang, X.-Q. (2007). Synth. React. Inorg. Met. Org. Nano-Chem. 37, 61–65.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Wu, J.-C., Sun, Y.-X., Yao, J. & Tong, J.-F. (2009a). Acta Cryst. E65, o1248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Zhao, C.-Y., Sun, Y.-X., Tang, X.-L. & He, X.-N. (2009b). Inorg. Chem. Commun. 12, 234–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationGolovnia, E., Prisyazhnaya, E. V., Iskenderov, T. S., Haukka, M. & Fritsky, I. O. (2009). Acta Cryst. E65, o2018–o2019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, G.-L., Chen, X., He, X.-N. & Dong, W.-K. (2008). Acta Cryst. E64, o659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖztürk, A., Babahan, İ., Sarıkavaklı, N. & Hökelek, T. (2009). Acta Cryst. E65, o1059–o1060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, X.-Q., Tong, J.-F., Dong, W.-K., Gong, S.-S. & Wu, J.-C. (2009). Acta Cryst. E65, o2013.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds