organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-(3-methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 November 2009; accepted 18 November 2009; online 25 November 2009)

In the title compound, C14H15NO2S, the conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsion angles with respect to the S=O bonds. Further, the conformation of the N—H bond is anti to the 3-methyl group in the aniline benzene ring. The mol­ecule is bent at the N atom with a C—SO2—NH—C torsion angle of 56.7 (3)°. The dihedral angle between the benzene rings is 83.9 (1)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds pack the mol­ecules into a supra­molecular structure.

Related literature

For the preparation of the title compound, see: Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.]). For a study of the effect of substituents on the crystal structures of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o877.],b[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o1219.]); Nirmala et al.(2009[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3184.]). For bond lengths in other aryl sulfonamides, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO2S

  • Mr = 261.33

  • Monoclinic, C 2/c

  • a = 14.076 (3) Å

  • b = 14.519 (3) Å

  • c = 13.482 (2) Å

  • β = 98.10 (2)°

  • V = 2727.8 (9) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.06 mm−1

  • T = 299 K

  • 0.50 × 0.45 × 0.35 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.426, Tmax = 0.533

  • 5405 measured reflections

  • 2436 independent reflections

  • 2285 reflections with I > 2σ(I)

  • Rint = 0.148

  • 3 standard reflections frequency: 120 min intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.163

  • S = 1.05

  • 2436 reflections

  • 169 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.839 (18) 2.10 (2) 2.914 (3) 163 (3)
Symmetry code: (i) -x, -y+1, -z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of substituents on the crystal structures of N–(aryl)–arylsulfonamides (Gowda et al., 2009a,b; Nirmala et al., 2009), in the present work, the structure of 4–methyl–N–(3–methylphenyl)benzenesulfonamide (I) has been determined.

The conformation of the N—C bond in the C1—SO2—NH—C7 segment of the structure has gauche torsions with respect to the SO bonds (Fig. 1). Further, the conformation of the N—H bond is anti to the 3–methyl group in the aniline benzene ring. The molecule is bent at the N atom with the C1—SO2—NH—C7 torsion angle of 56.7 (3)°, compared to the values of -51.6 (3)° in 4–methyl–N–(phenyl)–benzenesulfonamide (II)(Gowda et al., 2009b), 60.0 (2)° in 4–methyl–N–(2–methylphenyl)benzenesulfonamide (III) (Nirmala et al., 2009) and -61.8 (2)° in 4–methyl–N–(3,4–dimethylphenyl)benzenesulfonamide (IV) (Gowda et al., 2009a). The two benzene rings in (I) are tilted relative to each other by 83.9 (1)°, compared to the values of 68.4 (1)° in (II), 49.7 (1)° in (III) and 47.8 (1)° in (IV). The other bond parameters are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing stabilized by intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig.2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2005). For a study of the effect of substituents on the crystal structures of N–(aryl)–arylsulfonamides, see: Gowda et al. (2009a,b); Nirmala et al.(2009). For bond lengths in other aryl sulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of toluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with m–toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 4–methyl–N–(3–methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.84 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). The Uij components of C3 and C4 were restrained to approximate isotropic behavoir.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Methyl-N-(3-methylphenyl)benzenesulfonamide top
Crystal data top
C14H15NO2SF(000) = 1104
Mr = 261.33Dx = 1.273 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 14.076 (3) Åθ = 5.2–23.5°
b = 14.519 (3) ŵ = 2.06 mm1
c = 13.482 (2) ÅT = 299 K
β = 98.10 (2)°Prism, colourless
V = 2727.8 (9) Å30.50 × 0.45 × 0.35 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
2285 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.148
Graphite monochromatorθmax = 67.0°, θmin = 4.4°
ω/2θ scansh = 1612
Absorption correction: ψ scan
(North et al., 1968)
k = 1217
Tmin = 0.426, Tmax = 0.533l = 1616
5405 measured reflections3 standard reflections every 120 min
2436 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0638P)2 + 2.2735P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2436 reflectionsΔρmax = 0.42 e Å3
169 parametersΔρmin = 0.42 e Å3
13 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0092 (7)
Crystal data top
C14H15NO2SV = 2727.8 (9) Å3
Mr = 261.33Z = 8
Monoclinic, C2/cCu Kα radiation
a = 14.076 (3) ŵ = 2.06 mm1
b = 14.519 (3) ÅT = 299 K
c = 13.482 (2) Å0.50 × 0.45 × 0.35 mm
β = 98.10 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2285 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.148
Tmin = 0.426, Tmax = 0.5333 standard reflections every 120 min
5405 measured reflections intensity decay: 1.5%
2436 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06113 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.42 e Å3
2436 reflectionsΔρmin = 0.42 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03543 (17)0.26890 (18)0.04684 (16)0.0478 (6)
C20.0487 (2)0.2802 (3)0.0874 (3)0.0769 (9)
H20.07540.33840.09150.092*
C30.0921 (2)0.2041 (4)0.1217 (3)0.0927 (13)
H30.14870.21170.14900.111*
C40.0551 (3)0.1180 (3)0.1169 (2)0.0767 (10)
C50.0301 (2)0.1079 (3)0.0788 (2)0.0706 (8)
H50.05760.04990.07680.085*
C60.0746 (2)0.1826 (2)0.0439 (2)0.0576 (7)
H60.13190.17480.01800.069*
C70.17516 (16)0.41609 (16)0.18078 (17)0.0450 (5)
C80.24019 (18)0.34436 (19)0.19055 (18)0.0509 (6)
H80.24500.30580.13640.061*
C90.2985 (2)0.3297 (2)0.2811 (2)0.0584 (7)
C100.2903 (2)0.3882 (3)0.3600 (2)0.0690 (8)
H100.32930.37930.42080.083*
C110.2259 (2)0.4588 (2)0.3501 (2)0.0695 (8)
H110.22170.49750.40430.083*
C120.1671 (2)0.47364 (19)0.2610 (2)0.0561 (6)
H120.12270.52150.25480.067*
C130.1073 (4)0.0352 (4)0.1498 (3)0.1229 (19)
H13A0.15980.01990.09900.148*
H13B0.13140.04910.21120.148*
H13C0.06390.01600.16010.148*
C140.3672 (3)0.2506 (3)0.2921 (3)0.0958 (13)
H14A0.39220.24120.23020.115*
H14B0.33460.19590.30880.115*
H14C0.41910.26380.34440.115*
N10.11662 (17)0.43561 (15)0.08911 (16)0.0578 (6)
H1N0.0746 (19)0.475 (2)0.096 (3)0.069*
O10.17370 (14)0.33270 (13)0.03761 (13)0.0573 (5)
O20.01925 (16)0.41182 (14)0.07129 (14)0.0680 (6)
S10.08931 (4)0.36406 (4)0.00253 (4)0.0483 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0524 (12)0.0520 (14)0.0383 (11)0.0040 (11)0.0037 (9)0.0048 (10)
C20.0713 (18)0.087 (2)0.0776 (19)0.0045 (18)0.0286 (15)0.0209 (18)
C30.0718 (19)0.137 (4)0.076 (2)0.022 (2)0.0362 (16)0.023 (2)
C40.088 (2)0.095 (2)0.0472 (14)0.033 (2)0.0092 (14)0.0032 (15)
C50.0826 (19)0.0594 (17)0.0694 (18)0.0097 (17)0.0089 (15)0.0091 (15)
C60.0628 (14)0.0497 (14)0.0613 (15)0.0025 (13)0.0125 (11)0.0044 (12)
C70.0516 (12)0.0368 (11)0.0452 (12)0.0016 (10)0.0020 (9)0.0014 (9)
C80.0592 (14)0.0476 (13)0.0442 (12)0.0045 (12)0.0014 (10)0.0033 (10)
C90.0624 (14)0.0568 (16)0.0521 (14)0.0069 (13)0.0054 (11)0.0012 (12)
C100.0826 (19)0.0710 (19)0.0478 (14)0.0012 (17)0.0098 (13)0.0047 (14)
C110.0908 (19)0.0649 (18)0.0508 (14)0.0009 (17)0.0033 (13)0.0156 (13)
C120.0669 (14)0.0449 (14)0.0563 (14)0.0021 (12)0.0078 (11)0.0050 (11)
C130.141 (4)0.152 (5)0.078 (2)0.078 (4)0.023 (2)0.011 (3)
C140.102 (3)0.100 (3)0.076 (2)0.042 (2)0.0205 (19)0.007 (2)
N10.0746 (14)0.0409 (11)0.0528 (12)0.0174 (11)0.0088 (10)0.0052 (9)
O10.0713 (11)0.0513 (10)0.0504 (9)0.0047 (9)0.0127 (8)0.0068 (8)
O20.0909 (14)0.0553 (11)0.0502 (10)0.0221 (11)0.0162 (9)0.0009 (8)
S10.0622 (5)0.0406 (4)0.0400 (4)0.0101 (2)0.0004 (3)0.0017 (2)
Geometric parameters (Å, º) top
C1—C61.372 (4)C9—C101.378 (4)
C1—C21.382 (4)C9—C141.496 (5)
C1—S11.752 (3)C10—C111.362 (5)
C2—C31.375 (6)C10—H100.9300
C2—H20.9300C11—C121.377 (4)
C3—C41.358 (7)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C51.378 (5)C13—H13A0.9600
C4—C131.508 (5)C13—H13B0.9600
C5—C61.369 (4)C13—H13C0.9600
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C81.380 (4)C14—H14C0.9600
C7—C121.384 (4)N1—S11.619 (2)
C7—N11.414 (3)N1—H1N0.839 (18)
C8—C91.388 (3)O1—S11.414 (2)
C8—H80.9300O2—S11.4335 (18)
C6—C1—C2119.4 (3)C9—C10—H10119.5
C6—C1—S1120.79 (19)C10—C11—C12120.8 (3)
C2—C1—S1119.8 (2)C10—C11—H11119.6
C3—C2—C1119.0 (3)C12—C11—H11119.6
C3—C2—H2120.5C11—C12—C7118.8 (3)
C1—C2—H2120.5C11—C12—H12120.6
C4—C3—C2122.1 (3)C7—C12—H12120.6
C4—C3—H3118.9C4—C13—H13A109.5
C2—C3—H3118.9C4—C13—H13B109.5
C3—C4—C5118.4 (4)H13A—C13—H13B109.5
C3—C4—C13120.9 (4)C4—C13—H13C109.5
C5—C4—C13120.7 (4)H13A—C13—H13C109.5
C6—C5—C4120.6 (4)H13B—C13—H13C109.5
C6—C5—H5119.7C9—C14—H14A109.5
C4—C5—H5119.7C9—C14—H14B109.5
C5—C6—C1120.5 (3)H14A—C14—H14B109.5
C5—C6—H6119.7C9—C14—H14C109.5
C1—C6—H6119.7H14A—C14—H14C109.5
C8—C7—C12120.5 (2)H14B—C14—H14C109.5
C8—C7—N1122.1 (2)C7—N1—S1125.80 (17)
C12—C7—N1117.4 (2)C7—N1—H1N112 (2)
C7—C8—C9120.1 (2)S1—N1—H1N115 (2)
C7—C8—H8119.9O1—S1—O2118.24 (12)
C9—C8—H8119.9O1—S1—N1109.97 (12)
C10—C9—C8118.7 (3)O2—S1—N1104.53 (12)
C10—C9—C14121.4 (3)O1—S1—C1107.58 (11)
C8—C9—C14119.9 (3)O2—S1—C1109.39 (13)
C11—C10—C9121.1 (3)N1—S1—C1106.57 (12)
C11—C10—H10119.5
C6—C1—C2—C31.5 (4)C9—C10—C11—C120.1 (5)
S1—C1—C2—C3177.1 (2)C10—C11—C12—C70.8 (5)
C1—C2—C3—C40.0 (5)C8—C7—C12—C110.9 (4)
C2—C3—C4—C51.8 (5)N1—C7—C12—C11177.3 (3)
C2—C3—C4—C13176.6 (4)C8—C7—N1—S121.5 (4)
C3—C4—C5—C61.9 (5)C12—C7—N1—S1160.3 (2)
C13—C4—C5—C6176.4 (3)C7—N1—S1—O159.6 (3)
C4—C5—C6—C10.4 (5)C7—N1—S1—O2172.5 (2)
C2—C1—C6—C51.4 (4)C7—N1—S1—C156.7 (3)
S1—C1—C6—C5177.3 (2)C6—C1—S1—O11.9 (2)
C12—C7—C8—C90.3 (4)C2—C1—S1—O1179.5 (2)
N1—C7—C8—C9177.8 (3)C6—C1—S1—O2127.7 (2)
C7—C8—C9—C100.4 (4)C2—C1—S1—O250.9 (3)
C7—C8—C9—C14178.6 (3)C6—C1—S1—N1119.8 (2)
C8—C9—C10—C110.5 (5)C2—C1—S1—N161.6 (2)
C14—C9—C10—C11178.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.84 (2)2.10 (2)2.914 (3)163 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H15NO2S
Mr261.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)14.076 (3), 14.519 (3), 13.482 (2)
β (°) 98.10 (2)
V3)2727.8 (9)
Z8
Radiation typeCu Kα
µ (mm1)2.06
Crystal size (mm)0.50 × 0.45 × 0.35
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.426, 0.533
No. of measured, independent and
observed [I > 2σ(I)] reflections
5405, 2436, 2285
Rint0.148
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.163, 1.05
No. of reflections2436
No. of parameters169
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.42

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.839 (18)2.10 (2)2.914 (3)163 (3)
Symmetry code: (i) x, y+1, z.
 

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o1219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds