organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-1-[(S)-(3-Cyano­thio­morpholino)carbon­yl]-2-methyl­propyl­aminium chloride dihydrate

aInner Mongolia Medical College, Hohhot 010059, People's Republic of China, and bBeijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
*Correspondence e-mail: zhongwu@nic.bmi.ac.cn

(Received 15 October 2009; accepted 24 November 2009; online 28 November 2009)

In the title compound, C10H18N3OS+·Cl·2H2O, the three C atoms of the isopropyl group are disordered and were refined using a split-site mode [occupancy ratio 0.53 (3):0.47 (3)]. In the crystal, the cations, anions and water mol­ecules are connected via O—H⋯O, O—H⋯Cl, N—H⋯Cl and N—H⋯O hydrogen bonding.

Related literature

For N-substituted thio­morpholine derivatives as potentialdipeptidyl peptidase IV(DPP-IV) inhibitors, see: Engel et al. (2003[ Engel, M., Hoffmann, T., Wagner, L., Wermann, M., Heiser, U., Kiefersauer, R., Huber, R., Bode, W., Demuth, H. U. & Brandstetter, H. (2003). Proc. Natl Acad. Sci. USA, 100, 5063-5068.]). For their biological activity, see: Mu et al. (2006[ Mu, J., Woods, J., Zhou, Y. P., Roy, R. S., Li, Z. H., Zycband, E., Feng, Y., Zhu, L., Li, C., Howard, A. D., Moller, D. E., Thornberry, N. A. & Zhang, B. B. (2006). Diabetes, 55, 1695-1704.]); Proost et al. (1998[ Proost, P., Meester, I. D., Schols, D., Struyf, S., Lambeir, A. M., Wuyts, A., Opdenakker, G., Clercq, E. D., Scharpe, S. & Damme, J. V. (1998). J. Biol. Chem. 273, 7222-7227.]). For the synthesis, see: Li et al. (2007[ Li, S., Zhong, W., Xiao, J. H., Ma, X. H., Wang, L. L., Liu, H. Y. & Zheng, Z. B. (2007). CN Patent CN200710090694.2.])

[Scheme 1]

Experimental

Crystal data
  • C10H18N3OS+·Cl·2H2O

  • Mr = 299.82

  • Monoclinic, P 21

  • a = 9.6425 (19) Å

  • b = 6.8180 (14) Å

  • c = 12.082 (2) Å

  • β = 99.25 (3)°

  • V = 784.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[ Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, USA.]) Tmin = 0.914, Tmax = 0.942

  • 6464 measured reflections

  • 3554 independent reflections

  • 2987 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.066

  • S = 1.00

  • 3554 reflections

  • 216 parameters

  • 49 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[ Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1544 Friedel pairs

  • Flack parameter: −0.03 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.96 (2) 1.89 (2) 2.838 (2) 169.3 (15)
N3—H3B⋯Cl1 0.97 (2) 2.37 (2) 3.3178 (16) 165.3 (15)
N3—H3C⋯O1ii 0.807 (18) 2.232 (18) 2.7891 (17) 126.6 (17)
N3—H3C⋯Cl1ii 0.807 (18) 2.599 (19) 3.2732 (16) 142.0 (16)
O2—H2A⋯Cl1i 0.85 (2) 2.37 (3) 3.2176 (15) 171 (2)
O2—H2B⋯O3 0.92 (2) 1.81 (2) 2.7186 (19) 171 (2)
O3—H3F⋯Cl1 0.82 (2) 2.31 (2) 3.1332 (15) 179 (2)
O3—H3G⋯O2i 0.86 (3) 2.02 (3) 2.873 (2) 173 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku/MSC, 2005[ Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-substituted thiomorpholine derivatives are considered as a potential dipeptidyl peptidase IV(DPP-IV) (Engel et al., 2003) inhibitor. These compounds present various biological properties, for instance, effectively ameliorate hyperglycemia,hyperlipidemia and significantly increase β-cell mass and improve islet architecture (Mu et al., 2006). In Addition, DPP-4 inhibitors display a potential anti-HIV-1 activity (Proost et al., 1998). The crystal structure of the title compound was analyzed by X-ray diffraction to investigate its structure-activity relationships.

In the crystal structure molecule of the title compound (Fig.1) the cations and anions are linked via intermolecular N—H···Cl interactions. They are additionally connected to the crystal water molecules by N—H···O and O—H···Cl interactions (Fig. 2 and Table 1). The water molecules are linked by strong O—H···O hydrogen bonding into zigzag-chains that elongate in the direction of the crystallographic c axis (Fig. 2).

Related literature top

For N-substituted thiomorpholine derivatives as potentialdipeptidyl peptidase IV(DPP-IV) inhibitors, see: Engel et al. (2003). For their biological activity, see: Mu et al. (2006); Proost et al. (1998). For the synthesis, see: Li et al. (2007)

Experimental top

The title compound was synthesized according the reported procedure of Li et al.(2007). Colorless single crystals were obtained by slow evaporation of a solution in acetone.

Refinement top

The C—H H atoms were placed in ideal positions and were refined using a riding model. with C—H=0.98–1.00Å and Uiso(H)=1.2Ueq(C) (1.5 for methyl H atoms). The N—H and O—H H atoms were refined with varying coordinates isotropic with Uiso(H) = 1.2Ueq(N) =1.5Ueq(O). The isopropyl group is disordered and were refined using a split model with restrained distances and s.o.f. of 0.54 (3) and 0.46 (3). The absolute structure was determined on the basis of 1535 Friedel pairs.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with the atomic numbering scheme.Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the b axis. Hydrogen bonding is shown as dashed lines.
(R)-1-[(S)-(3-Cyanothiomorpholino)carbonyl]-2-methylpropylaminium chloride dihydrate top
Crystal data top
C10H18N3OS+·Cl·2H2OF(000) = 320
Mr = 299.82Dx = 1.270 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.6425 (19) ÅCell parameters from 2714 reflections
b = 6.8180 (14) Åθ = 3.0–27.9°
c = 12.082 (2) ŵ = 0.38 mm1
β = 99.25 (3)°T = 113 K
V = 784.0 (3) Å3Block, colorless
Z = 20.24 × 0.20 × 0.16 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3554 independent reflections
Radiation source: rotating anode2987 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.028
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.7°
ω and ϕ scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 88
Tmin = 0.914, Tmax = 0.942l = 1115
6464 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0336P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3554 reflectionsΔρmax = 0.20 e Å3
216 parametersΔρmin = 0.35 e Å3
49 restraintsAbsolute structure: Flack (1983), 1535 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
C10H18N3OS+·Cl·2H2OV = 784.0 (3) Å3
Mr = 299.82Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.6425 (19) ŵ = 0.38 mm1
b = 6.8180 (14) ÅT = 113 K
c = 12.082 (2) Å0.24 × 0.20 × 0.16 mm
β = 99.25 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3554 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2987 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.942Rint = 0.028
6464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066Δρmax = 0.20 e Å3
S = 1.00Δρmin = 0.35 e Å3
3554 reflectionsAbsolute structure: Flack (1983), 1535 Friedel pairs
216 parametersAbsolute structure parameter: 0.03 (4)
49 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.41733 (4)0.64231 (8)0.03966 (4)0.03201 (12)
O10.03965 (11)0.5796 (2)0.38313 (8)0.0233 (3)
N10.12007 (18)0.2338 (3)0.05250 (14)0.0364 (4)
N20.12711 (12)0.6463 (2)0.20239 (10)0.0155 (3)
N30.10799 (15)0.8983 (2)0.42585 (11)0.0158 (3)
H3A0.186 (2)0.986 (3)0.4463 (14)0.024*
H3B0.1398 (19)0.784 (3)0.4706 (15)0.024*
H3C0.041 (2)0.947 (3)0.4483 (14)0.024*
C10.16317 (19)0.3355 (3)0.11428 (15)0.0232 (4)
C20.21136 (16)0.4683 (3)0.19675 (12)0.0181 (3)
H20.19270.40310.27180.022*
C30.36913 (17)0.5114 (3)0.16917 (13)0.0251 (4)
H3D0.39750.58950.23090.030*
H3E0.42140.38590.16480.030*
C40.29541 (17)0.8435 (3)0.07232 (15)0.0253 (4)
H4A0.30250.93250.00690.030*
H4B0.32080.91910.13610.030*
C50.14514 (17)0.7707 (3)0.10221 (13)0.0180 (3)
H5A0.11980.69510.03840.022*
H5B0.08090.88450.11560.022*
C60.04067 (15)0.6840 (2)0.30047 (12)0.0154 (3)
C70.06389 (15)0.8528 (2)0.30441 (11)0.0148 (3)
H7A0.01500.96470.26910.018*0.53 (3)
H7B0.01960.96490.26560.018*0.47 (3)
C80.1874 (9)0.8031 (14)0.2407 (11)0.024 (3)0.53 (3)
H80.14680.75500.16420.028*0.53 (3)
C90.2793 (11)0.641 (2)0.3005 (11)0.041 (2)0.53 (3)
H9A0.34590.59620.25260.062*0.53 (3)
H9B0.22000.53100.31610.062*0.53 (3)
H9C0.33110.69170.37110.062*0.53 (3)
C100.2733 (12)0.9874 (18)0.2277 (11)0.047 (2)0.53 (3)
H10A0.31651.03450.30190.070*0.53 (3)
H10B0.21161.08930.18970.070*0.53 (3)
H10C0.34700.95660.18320.070*0.53 (3)
C8'0.1900 (8)0.7874 (14)0.2504 (11)0.019 (3)0.47 (3)
H8'0.15240.76880.16900.023*0.47 (3)
C9'0.2515 (12)0.5906 (16)0.2911 (13)0.034 (2)0.47 (3)
H9D0.33100.55950.25280.052*0.47 (3)
H9E0.17950.48870.27460.052*0.47 (3)
H9F0.28390.59640.37220.052*0.47 (3)
C10'0.3015 (10)0.9447 (18)0.2549 (12)0.036 (2)0.47 (3)
H10D0.35810.94740.32990.053*0.47 (3)
H10E0.25641.07260.23850.053*0.47 (3)
H10F0.36220.91610.19920.053*0.47 (3)
Cl10.21552 (4)0.56119 (6)0.61863 (3)0.01970 (9)
O20.67759 (13)0.6702 (2)0.49074 (11)0.0268 (3)
H2A0.703 (2)0.768 (4)0.4543 (18)0.040*
H2B0.611 (2)0.735 (4)0.5235 (17)0.040*
O30.47478 (13)0.8267 (2)0.59628 (12)0.0324 (3)
H3F0.407 (3)0.756 (4)0.6016 (18)0.049*
H3G0.436 (2)0.934 (4)0.5706 (18)0.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0217 (2)0.0299 (3)0.0392 (3)0.00703 (19)0.01085 (17)0.0057 (2)
O10.0302 (6)0.0248 (7)0.0141 (5)0.0081 (5)0.0005 (4)0.0054 (5)
N10.0515 (11)0.0204 (10)0.0419 (10)0.0008 (8)0.0216 (8)0.0005 (7)
N20.0165 (6)0.0134 (7)0.0157 (6)0.0021 (6)0.0002 (5)0.0013 (5)
N30.0151 (6)0.0182 (8)0.0143 (6)0.0016 (6)0.0031 (5)0.0042 (5)
C10.0285 (9)0.0151 (9)0.0258 (8)0.0034 (7)0.0040 (7)0.0033 (7)
C20.0219 (8)0.0168 (9)0.0157 (7)0.0055 (6)0.0031 (6)0.0016 (6)
C30.0200 (8)0.0262 (11)0.0292 (9)0.0059 (7)0.0045 (6)0.0007 (7)
C40.0210 (8)0.0209 (10)0.0309 (9)0.0011 (7)0.0046 (7)0.0055 (8)
C50.0194 (8)0.0163 (9)0.0173 (8)0.0031 (6)0.0002 (6)0.0055 (6)
C60.0159 (7)0.0161 (9)0.0145 (7)0.0012 (6)0.0029 (5)0.0016 (6)
C70.0149 (7)0.0175 (9)0.0115 (7)0.0009 (6)0.0008 (5)0.0001 (6)
C80.019 (4)0.035 (4)0.019 (4)0.008 (3)0.007 (3)0.003 (3)
C90.022 (3)0.065 (5)0.039 (3)0.015 (3)0.011 (3)0.006 (4)
C100.043 (4)0.064 (5)0.038 (4)0.028 (3)0.021 (3)0.007 (3)
C8'0.015 (4)0.035 (5)0.008 (3)0.011 (3)0.000 (3)0.003 (3)
C9'0.024 (3)0.040 (4)0.042 (4)0.018 (3)0.013 (3)0.009 (3)
C10'0.028 (3)0.049 (4)0.036 (4)0.012 (3)0.022 (3)0.011 (3)
Cl10.01873 (17)0.0176 (2)0.02289 (18)0.00188 (16)0.00372 (13)0.00047 (16)
O20.0250 (6)0.0215 (8)0.0359 (7)0.0045 (6)0.0106 (5)0.0060 (6)
O30.0219 (7)0.0244 (8)0.0526 (9)0.0029 (6)0.0118 (6)0.0001 (7)
Geometric parameters (Å, º) top
S1—C31.7965 (17)C7—H7A0.9601
S1—C41.8085 (18)C7—H7B0.9601
O1—C61.2251 (18)C8—C91.523 (8)
N1—C11.145 (2)C8—C101.527 (7)
N2—C61.3594 (18)C8—H81.0000
N2—C21.456 (2)C9—H9A0.9800
N2—C51.465 (2)C9—H9B0.9800
N3—C71.4931 (18)C9—H9C0.9800
N3—H3A0.96 (2)C10—H10A0.9800
N3—H3B0.97 (2)C10—H10B0.9800
N3—H3C0.807 (18)C10—H10C0.9800
C1—C21.476 (2)C8'—C10'1.514 (7)
C2—C31.533 (2)C8'—C9'1.517 (8)
C2—H21.0000C8'—H8'1.0000
C3—H3D0.9900C9'—H9D0.9800
C3—H3E0.9900C9'—H9E0.9800
C4—C51.519 (2)C9'—H9F0.9800
C4—H4A0.9900C10'—H10D0.9800
C4—H4B0.9900C10'—H10E0.9800
C5—H5A0.9900C10'—H10F0.9800
C5—H5B0.9900O2—H2A0.85 (2)
C6—C71.525 (2)O2—H2B0.92 (2)
C7—C8'1.535 (7)O3—H3F0.82 (2)
C7—C81.555 (7)O3—H3G0.86 (3)
C3—S1—C496.81 (8)C6—C7—C8'109.4 (4)
C6—N2—C2117.26 (13)N3—C7—C8114.3 (5)
C6—N2—C5125.82 (14)C6—C7—C8112.0 (4)
C2—N2—C5116.91 (12)C8'—C7—C85.8 (8)
C7—N3—H3A118.0 (10)N3—C7—H7A108.3
C7—N3—H3B113.3 (11)C6—C7—H7A108.1
H3A—N3—H3B101.0 (15)C8'—C7—H7A114.1
C7—N3—H3C107.4 (13)C8—C7—H7A108.3
H3A—N3—H3C107.0 (17)N3—C7—H7B110.4
H3B—N3—H3C109.8 (17)C6—C7—H7B110.2
N1—C1—C2177.1 (2)C8'—C7—H7B110.1
N2—C2—C1108.01 (12)C8—C7—H7B104.3
N2—C2—C3112.16 (14)H7A—C7—H7B3.9
C1—C2—C3112.35 (14)C9—C8—C10111.2 (6)
N2—C2—H2108.1C9—C8—C7110.9 (7)
C1—C2—H2108.1C10—C8—C7110.1 (6)
C3—C2—H2108.1C9—C8—H8108.2
C2—C3—S1113.17 (11)C10—C8—H8108.2
C2—C3—H3D108.9C7—C8—H8108.2
S1—C3—H3D108.9C10'—C8'—C9'112.1 (6)
C2—C3—H3E108.9C10'—C8'—C7112.7 (6)
S1—C3—H3E108.9C9'—C8'—C7114.5 (7)
H3D—C3—H3E107.8C10'—C8'—H8'105.6
C5—C4—S1111.44 (13)C9'—C8'—H8'105.6
C5—C4—H4A109.3C7—C8'—H8'105.6
S1—C4—H4A109.3C8'—C9'—H9D109.5
C5—C4—H4B109.3C8'—C9'—H9E109.5
S1—C4—H4B109.3H9D—C9'—H9E109.5
H4A—C4—H4B108.0C8'—C9'—H9F109.5
N2—C5—C4111.57 (13)H9D—C9'—H9F109.5
N2—C5—H5A109.3H9E—C9'—H9F109.5
C4—C5—H5A109.3C8'—C10'—H10D109.5
N2—C5—H5B109.3C8'—C10'—H10E109.5
C4—C5—H5B109.3H10D—C10'—H10E109.5
H5A—C5—H5B108.0C8'—C10'—H10F109.5
O1—C6—N2121.61 (15)H10D—C10'—H10F109.5
O1—C6—C7119.60 (13)H10E—C10'—H10F109.5
N2—C6—C7118.67 (13)H2A—O2—H2B97 (2)
N3—C7—C6105.67 (11)H3F—O3—H3G103 (2)
N3—C7—C8'111.0 (5)
C6—N2—C2—C1114.30 (15)N2—C6—C7—N3162.20 (13)
C5—N2—C2—C166.80 (17)O1—C6—C7—C8'97.7 (6)
C6—N2—C2—C3121.36 (15)N2—C6—C7—C8'78.2 (6)
C5—N2—C2—C357.54 (17)O1—C6—C7—C8103.3 (5)
N1—C1—C2—N249 (4)N2—C6—C7—C872.7 (5)
N1—C1—C2—C3173 (4)N3—C7—C8—C952.9 (9)
N2—C2—C3—S157.51 (16)C6—C7—C8—C967.3 (10)
C1—C2—C3—S164.39 (17)C8'—C7—C8—C93 (8)
C4—S1—C3—C254.02 (14)N3—C7—C8—C1070.6 (9)
C3—S1—C4—C556.05 (13)C6—C7—C8—C10169.3 (7)
C6—N2—C5—C4118.33 (16)C8'—C7—C8—C10127 (9)
C2—N2—C5—C460.48 (18)N3—C7—C8'—C10'61.6 (9)
S1—C4—C5—N261.99 (17)C6—C7—C8'—C10'177.9 (8)
C2—N2—C6—O14.4 (2)C8—C7—C8'—C10'64 (8)
C5—N2—C6—O1174.41 (15)N3—C7—C8'—C9'68.0 (10)
C2—N2—C6—C7171.52 (12)C6—C7—C8'—C9'48.2 (11)
C5—N2—C6—C79.7 (2)C8—C7—C8'—C9'166 (9)
O1—C6—C7—N321.81 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.96 (2)1.89 (2)2.838 (2)169.3 (15)
N3—H3B···Cl10.97 (2)2.37 (2)3.3178 (16)165.3 (15)
N3—H3C···O1ii0.807 (18)2.232 (18)2.7891 (17)126.6 (17)
N3—H3C···Cl1ii0.807 (18)2.599 (19)3.2732 (16)142.0 (16)
O2—H2A···Cl1i0.85 (2)2.37 (3)3.2176 (15)171 (2)
O2—H2B···O30.92 (2)1.81 (2)2.7186 (19)171 (2)
O3—H3F···Cl10.82 (2)2.31 (2)3.1332 (15)179 (2)
O3—H3G···O2i0.86 (3)2.02 (3)2.873 (2)173 (2)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H18N3OS+·Cl·2H2O
Mr299.82
Crystal system, space groupMonoclinic, P21
Temperature (K)113
a, b, c (Å)9.6425 (19), 6.8180 (14), 12.082 (2)
β (°) 99.25 (3)
V3)784.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.914, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
6464, 3554, 2987
Rint0.028
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.00
No. of reflections3554
No. of parameters216
No. of restraints49
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.35
Absolute structureFlack (1983), 1535 Friedel pairs
Absolute structure parameter0.03 (4)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.96 (2)1.89 (2)2.838 (2)169.3 (15)
N3—H3B···Cl10.97 (2)2.37 (2)3.3178 (16)165.3 (15)
N3—H3C···O1ii0.807 (18)2.232 (18)2.7891 (17)126.6 (17)
N3—H3C···Cl1ii0.807 (18)2.599 (19)3.2732 (16)142.0 (16)
O2—H2A···Cl1i0.85 (2)2.37 (3)3.2176 (15)171 (2)
O2—H2B···O30.92 (2)1.81 (2)2.7186 (19)171 (2)
O3—H3F···Cl10.82 (2)2.31 (2)3.1332 (15)179 (2)
O3—H3G···O2i0.86 (3)2.02 (3)2.873 (2)173 (2)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1/2, z+1.
 

Acknowledgements

This work was supported by the National Special Program for Innovative Drugs (2009ZX09501-005).

References

First citation Engel, M., Hoffmann, T., Wagner, L., Wermann, M., Heiser, U., Kiefersauer, R., Huber, R., Bode, W., Demuth, H. U. & Brandstetter, H. (2003). Proc. Natl Acad. Sci. USA, 100, 5063–5068.  Web of Science CrossRef PubMed CAS Google Scholar
First citation Flack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citation Li, S., Zhong, W., Xiao, J. H., Ma, X. H., Wang, L. L., Liu, H. Y. & Zheng, Z. B. (2007). CN Patent CN200710090694.2.  Google Scholar
First citation Mu, J., Woods, J., Zhou, Y. P., Roy, R. S., Li, Z. H., Zycband, E., Feng, Y., Zhu, L., Li, C., Howard, A. D., Moller, D. E., Thornberry, N. A. & Zhang, B. B. (2006). Diabetes, 55, 1695–1704.  Web of Science CrossRef PubMed CAS Google Scholar
First citation Proost, P., Meester, I. D., Schols, D., Struyf, S., Lambeir, A. M., Wuyts, A., Opdenakker, G., Clercq, E. D., Scharpe, S. & Damme, J. V. (1998). J. Biol. Chem. 273, 7222–7227.  Web of Science CrossRef CAS PubMed Google Scholar
First citation Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, USA.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds