organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-Di-4-pyridyl-2,2′-(p-phenyl­ene)di-1,3,4-oxa­diazole

aDepartment of Chemistry, College of Science, North University of China, Taiyuan, Shanxi 030051, People's Republic of China
*Correspondence e-mail: jfsong0129@gmail.com

(Received 6 November 2009; accepted 24 November 2009; online 28 November 2009)

In the crystal structure of the title compound, C20H12N6O2, the mol­ecules are located on centres of inversion. The complete mol­ecule is almost planar, with a maximum deviation from the mean plane of 0.0657 (1) Å for the O atom. In the crystal, mol­ecules are stacked into columns elongated in the a axis direction. The centroid–centroid distances between the aromatic rings of the mol­ecules within the columns are 3.6406 (1) and 3.6287 (2) Å. Mol­ecules are additionally connected via weak inter­molecular C—H⋯N hydrogen bonding.

Related literature

For the potential uses of oxadiazo­les, see: Bentiss et al. (2000[Bentiss, F., Traisnel, M. & Lagrenee, M. (2000). Corros. Sci. 42, 127-146.]); Navidpour et al. (2006[Navidpour, L., Shafaroodi, H., Abdi, K., Amini, M., Ghahremani, M. H., Dehpour, A. R. & Shafiee, A. (2006). Bioorg. Med. Chem. 14, 2507-2517.]). For related studies on oxadiazo­les, see: Wang et al. (2005[Wang, Y. T., Tong, M. L., Fan, H. H., Wang, H. Z. & Chen, X. M. (2005). Dalton Trans. pp. 424-426.]); Zhang et al. (2007[Zhang, Z.-H., Li, C.-P., Tian, Y.-L. & Guo, Y.-M. (2007). Acta Cryst. E63, m3044.]). For the synthesis of bis-1,3,4-oxadiazol, see: Al-Talib et al. (1990[Al-Talib, M., Tashtoush, H. & Odeh, N. (1990). Synth. Commun. 20, 1811-1817.]).

[Scheme 1]

Experimental

Crystal data
  • C20H12N6O2

  • Mr = 368.36

  • Monoclinic, P 21 /n

  • a = 6.2424 (6) Å

  • b = 7.6969 (7) Å

  • c = 17.7321 (16) Å

  • β = 96.635 (2)°

  • V = 846.27 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 183 K

  • 0.30 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.985

  • 4541 measured reflections

  • 1665 independent reflections

  • 1114 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 1.01

  • 1665 reflections

  • 151 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H2⋯N3i 0.94 (2) 2.52 (2) 3.407 (3) 158.7 (16)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The interest in 1, 3, 4-oxadiazole systems originate from their biological activity and their wide application in medicine, industry and coordination chemistry (Bentiss et al., 2000; Navidpour et al., 2006; Wang et al., 2005). Substituted 1, 3, 4-oxadiazole compounds containing pyridyl group displays good coordination activities, but the related study mainly focus on mono-1,3,4 substituted oxadiazole compounds (Wang et al., 2005; Zhang et al., 2007). The synthesis of bis-1,3,4-oxadiazole was reported by Al-Talib et al., 1990, but we have used a modified procedure. In few of the importance of oxadiazole derivatives its crystal structure is reported here.

In the crystal structure of the title compound the molecules are located on centres of inversion and are nearly coplanar. Thus, the asymmetric unit contains half a molecule (Fig. 1). In the crystal structure the molecules are stacked into columns with a centroid-centroid distances of 3.6406 (1) Å] and and 3.6287 (2) Å (Fig. 2). The columns elongate in the direction of the a axis and are connected via weak C-H···N hydrogen bonding (Table 1).

Related literature top

For the potential uses of oxadiazoles, see: Bentiss et al. (2000); Navidpour et al. (2006). For related studies on oxadiazoles, see: Wang et al. (2005); Zhang et al. (2007). For the synthesis of bis-1,3,4-oxadiazol, see: Al-Talib et al. (1990).

Experimental top

1, 4-bis[(4-pydiyl)hydrozide]phenylene (1.58 g) was added into 70 ml phosphorous oxychloride (POCl3) and refluxed for about 24 h. After cooling to room temperature, the mixture was poured into 500 ml water. The yellow precipitate was filtered off, washed with water, and dried. Yellow single crystals were obtained by recrystallization of the precipitate from DMF.

Refinement top

All H atoms were located in a difference Fourier map and were refined with varying coordinates and varying isotropic displacement parameters.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLEASE PROVIDE; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry code: A = x, y, z].
[Figure 2] Fig. 2. The molecular packing for the title compound along the a axis. The intermolecular C—H···N hydrogen-bonds are shown as dashed lines.
5,5'-Di-4-pyridyl-2,2'-(p-phenylene)di-1,3,4-oxadiazole top
Crystal data top
C20H12N6O2F(000) = 380
Mr = 368.36Dx = 1.446 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.2424 (6) Åθ = 2.3–26.1°
b = 7.6969 (7) ŵ = 0.10 mm1
c = 17.7321 (16) ÅT = 183 K
β = 96.635 (2)°Needle, yellow
V = 846.27 (14) Å30.30 × 0.18 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
1665 independent reflections
Radiation source: fine-focus sealed tube1114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 26.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 57
Tmin = 0.971, Tmax = 0.985k = 96
4541 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.1652P]
where P = (Fo2 + 2Fc2)/3
1665 reflections(Δ/σ)max = 0.001
151 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C20H12N6O2V = 846.27 (14) Å3
Mr = 368.36Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.2424 (6) ŵ = 0.10 mm1
b = 7.6969 (7) ÅT = 183 K
c = 17.7321 (16) Å0.30 × 0.18 × 0.15 mm
β = 96.635 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1665 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1114 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.985Rint = 0.028
4541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.18 e Å3
1665 reflectionsΔρmin = 0.13 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0105 (2)0.26943 (17)0.91503 (7)0.0455 (4)
N11.0141 (3)0.2372 (2)1.03852 (9)0.0481 (5)
N20.8290 (3)0.1534 (2)1.00208 (9)0.0490 (5)
C21.3123 (3)0.4031 (2)0.99232 (11)0.0393 (5)
C60.6794 (3)0.1193 (3)0.86751 (11)0.0427 (5)
C41.1139 (3)0.3024 (2)0.98550 (10)0.0406 (5)
C50.8350 (3)0.1759 (2)0.93029 (11)0.0419 (5)
C11.4231 (3)0.4324 (3)1.06365 (12)0.0445 (5)
C31.3910 (3)0.4712 (3)0.92850 (11)0.0436 (5)
N30.3677 (3)0.0203 (3)0.75019 (11)0.0710 (6)
C100.5034 (4)0.0236 (3)0.88153 (14)0.0559 (6)
C70.6983 (4)0.1636 (3)0.79320 (13)0.0578 (6)
C80.5402 (4)0.1127 (4)0.73749 (14)0.0672 (7)
C90.3534 (4)0.0212 (4)0.82157 (14)0.0673 (7)
H21.316 (3)0.452 (2)0.8803 (12)0.048 (5)*
H11.365 (3)0.390 (2)1.1064 (12)0.046 (6)*
H30.483 (3)0.009 (3)0.9316 (13)0.063 (7)*
H60.550 (4)0.142 (3)0.6864 (15)0.085 (8)*
H50.812 (4)0.222 (3)0.7800 (13)0.069 (8)*
H40.234 (4)0.079 (3)0.8314 (14)0.086 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0404 (8)0.0544 (9)0.0408 (8)0.0085 (6)0.0005 (6)0.0010 (6)
N10.0434 (10)0.0573 (11)0.0424 (9)0.0076 (8)0.0004 (8)0.0024 (8)
N20.0453 (10)0.0571 (11)0.0434 (10)0.0091 (8)0.0001 (8)0.0006 (8)
C20.0336 (10)0.0411 (11)0.0419 (11)0.0023 (8)0.0017 (8)0.0022 (8)
C60.0395 (11)0.0451 (12)0.0425 (11)0.0004 (9)0.0001 (9)0.0044 (9)
C40.0389 (11)0.0445 (12)0.0367 (10)0.0018 (9)0.0027 (9)0.0033 (9)
C50.0362 (11)0.0428 (11)0.0463 (12)0.0027 (9)0.0026 (9)0.0004 (9)
C10.0423 (12)0.0521 (13)0.0383 (11)0.0018 (10)0.0012 (9)0.0029 (10)
C30.0399 (12)0.0509 (12)0.0377 (11)0.0003 (9)0.0054 (9)0.0013 (9)
N30.0657 (14)0.0925 (16)0.0512 (12)0.0132 (12)0.0083 (10)0.0080 (11)
C100.0573 (14)0.0641 (15)0.0452 (13)0.0159 (11)0.0012 (11)0.0002 (11)
C70.0552 (14)0.0711 (16)0.0464 (13)0.0106 (12)0.0028 (11)0.0003 (11)
C80.0718 (17)0.0867 (19)0.0414 (13)0.0059 (14)0.0007 (12)0.0022 (12)
C90.0559 (16)0.088 (2)0.0559 (16)0.0232 (14)0.0020 (12)0.0079 (13)
Geometric parameters (Å, º) top
O1—C41.362 (2)C1—H10.94 (2)
O1—C51.364 (2)C3—C1i1.371 (3)
N1—C41.288 (2)C3—H20.94 (2)
N1—N21.413 (2)N3—C91.319 (3)
N2—C51.290 (2)N3—C81.331 (3)
C2—C31.387 (3)C10—C91.377 (3)
C2—C11.388 (3)C10—H30.95 (2)
C2—C41.454 (3)C7—C81.370 (3)
C6—C101.369 (3)C7—H50.89 (2)
C6—C71.379 (3)C8—H60.94 (3)
C6—C51.457 (3)C9—H40.90 (3)
C1—C3i1.371 (3)
C4—O1—C5102.87 (14)C2—C1—H1118.9 (13)
C4—N1—N2106.44 (15)C1i—C3—C2119.80 (18)
C5—N2—N1105.93 (16)C1i—C3—H2120.2 (12)
C3—C2—C1119.71 (18)C2—C3—H2120.0 (12)
C3—C2—C4120.80 (17)C9—N3—C8116.0 (2)
C1—C2—C4119.48 (18)C6—C10—C9118.9 (2)
C10—C6—C7117.7 (2)C6—C10—H3120.6 (14)
C10—C6—C5120.01 (18)C9—C10—H3120.5 (14)
C7—C6—C5122.2 (2)C8—C7—C6119.0 (2)
N1—C4—O1112.27 (16)C8—C7—H5118.8 (15)
N1—C4—C2128.76 (17)C6—C7—H5122.3 (15)
O1—C4—C2118.96 (16)N3—C8—C7124.1 (2)
N2—C5—O1112.49 (16)N3—C8—H6115.6 (16)
N2—C5—C6128.40 (18)C7—C8—H6120.3 (16)
O1—C5—C6119.09 (17)N3—C9—C10124.4 (2)
C3i—C1—C2120.48 (19)N3—C9—H4117.0 (17)
C3i—C1—H1120.5 (12)C10—C9—H4118.5 (17)
Symmetry code: (i) x+3, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H2···N3ii0.94 (2)2.52 (2)3.407 (3)158.7 (16)
Symmetry code: (ii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H12N6O2
Mr368.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)183
a, b, c (Å)6.2424 (6), 7.6969 (7), 17.7321 (16)
β (°) 96.635 (2)
V3)846.27 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.971, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
4541, 1665, 1114
Rint0.028
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.01
No. of reflections1665
No. of parameters151
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.13

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLEASE PROVIDE.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H2···N3i0.94 (2)2.52 (2)3.407 (3)158.7 (16)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Doctoral Foundation of North University of China.

References

First citationAl-Talib, M., Tashtoush, H. & Odeh, N. (1990). Synth. Commun. 20, 1811–1817.  CrossRef CAS Web of Science Google Scholar
First citationBentiss, F., Traisnel, M. & Lagrenee, M. (2000). Corros. Sci. 42, 127–146.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNavidpour, L., Shafaroodi, H., Abdi, K., Amini, M., Ghahremani, M. H., Dehpour, A. R. & Shafiee, A. (2006). Bioorg. Med. Chem. 14, 2507–2517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationWang, Y. T., Tong, M. L., Fan, H. H., Wang, H. Z. & Chen, X. M. (2005). Dalton Trans. pp. 424–426.  Web of Science CSD CrossRef Google Scholar
First citationZhang, Z.-H., Li, C.-P., Tian, Y.-L. & Guo, Y.-M. (2007). Acta Cryst. E63, m3044.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds