organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4R,5R,10S)-N-(4-Bromo­phen­yl)de­hydro­abietamide

aCollege of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
*Correspondence e-mail: njguwen@163.com

(Received 27 October 2009; accepted 19 November 2009; online 28 November 2009)

The title compound, C26H32BrNO, the ring with the amide unit possesses a chair conformation with the two methyl groups in axial positions..

Related literature

For the synthesis and biological activity of dehydro­abietamide derivatives, see: Ntokos et al. (1973[Ntokos, G., Catsoulacos, P., Kokkinos, C. & Theodoropoulos, D. (1973). Bull. Soc. Chim. Fr. 3, 991-997.]); Sepulveda et al. (2005[Sepulveda, B., Astudillo, L., Rodriguez, J. A., Yanez, T., Theoduloz, C. & Schmeda-Hirschmann, G. (2005). Pharmacol. Res. 52, 429-437.]); Fujita et al. (1991[Fujita, Y., Yoshikuni, Y., Sotomatsu, T., Mori, T., Ozaki, T., Sempuku, K., Ogino, A., Kise, M. & Enomoto, H. (1991). Chem. Pharm. Bull. 39, 1193-1198.]). For related structures see: Rao et al. (2006[Rao, X.-P., Song, Z.-Q., Radbil, B. & Radbil, A. (2006). Acta Cryst. E62, o5301-o5302.], 2007[Rao, X.-P., Song, Z.-Q., Jia, W.-H. & Shang, S.-B. (2007). Acta Cryst. E63, o3886.]).

[Scheme 1]

Experimental

Crystal data
  • C26H32BrNO

  • Mr = 454.44

  • Orthorhombic, P 21 21 21

  • a = 5.9640 (12) Å

  • b = 11.750 (2) Å

  • c = 32.758 (7) Å

  • V = 2295.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.714, Tmax = 0.840

  • 4770 measured reflections

  • 4143 independent reflections

  • 1931 reflections with I > 2σ(I)

  • Rint = 0.063

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.133

  • S = 1.00

  • 4143 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1699 Friedel pairs

  • Flack parameter: −0.003 (16)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing research on the synthesis and biological activities of dehydroabietic acid derivatives, a serial of dehydroabietamides were synthesized and the crystal structure of the title compound was detected.

Related literature top

For the synthesis and biological activity of dehydroabietamide derivatives, see: Ntokos et al. (1973); Sepulveda et al. (2005); Fujita et al. (1991). For related structures see: Rao et al. (2006, 2007).

Experimental top

To a solution of dehydroabietic acid (6.0 g, 0.02 mol) in benzene (40 ml) was added dropwise 2.16 ml of SOCl2 (3.6 g, 0.03 mol), and the mixture was refluxed for 3 h. After cooling to room temperature, the solvent was removed in vacuo, and the residue was then dissolved in 30 ml of benzene, to which triethylamine (2.02 g, 0.02 mol) and p-bromoaniline (3.6 g, 0.021 mol) were added, and the mixture was stirred at room temperature for 24 h. The mixture was then filtered to remove precipitate, the filtrate was evaporated in vacuo to afford a yellowish solid, which was recrystalized in EtOH to give (I) as colorless needles (7.3 g, 81%). Single crystals of (I) suitable for an X-ray diffraction study were obtained by slow evaporation of an acetone solution at room temperature over a period of 5 d.

Refinement top

All H atoms were placed geometrically with C—H = 0.93–0.98 Å, N—H = 0.86 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with 30% probability displacement ellipsoids for non-H atoms.
(4R,5R,10S)-N-(4-Bromophenyl)dehydroabietamide top
Crystal data top
C26H32BrNODx = 1.315 Mg m3
Mr = 454.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 5.9640 (12) Åθ = 10–13°
b = 11.750 (2) ŵ = 1.81 mm1
c = 32.758 (7) ÅT = 293 K
V = 2295.6 (8) Å3Block, colourless
Z = 40.20 × 0.10 × 0.10 mm
F(000) = 952
Data collection top
Enraf–Nonius CAD-4
diffractometer
1931 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 25.3°, θmin = 1.2°
ω/2θ scansh = 07
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.714, Tmax = 0.840l = 3939
4770 measured reflections3 standard reflections every 200 reflections
4143 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.048P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4143 reflectionsΔρmax = 0.32 e Å3
257 parametersΔρmin = 0.34 e Å3
0 restraintsAbsolute structure: Flack (1983), 1699 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (16)
Crystal data top
C26H32BrNOV = 2295.6 (8) Å3
Mr = 454.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.9640 (12) ŵ = 1.81 mm1
b = 11.750 (2) ÅT = 293 K
c = 32.758 (7) Å0.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1931 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.063
Tmin = 0.714, Tmax = 0.8403 standard reflections every 200 reflections
4770 measured reflections intensity decay: 1%
4143 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.133Δρmax = 0.32 e Å3
S = 1.00Δρmin = 0.34 e Å3
4143 reflectionsAbsolute structure: Flack (1983), 1699 Friedel pairs
257 parametersAbsolute structure parameter: 0.003 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.81958 (18)0.68193 (7)0.09535 (2)0.0947 (4)
N0.8080 (10)1.0580 (5)0.03060 (15)0.0532 (14)
H0A0.94071.07440.03900.064*
O0.4404 (8)1.1045 (4)0.03859 (15)0.0639 (14)
C10.1942 (15)1.1802 (8)0.2890 (2)0.109
H1A0.27681.15270.31210.164*
H1B0.19961.26180.28850.164*
H1C0.25921.15060.26440.164*
C20.1482 (15)1.1731 (9)0.3320 (2)0.122 (4)
H2A0.05511.14710.35400.183*
H2B0.29291.13770.33390.183*
H2C0.16501.25420.33370.183*
C30.0417 (14)1.1424 (8)0.2921 (2)0.094 (3)
H3A0.03891.05910.29100.112*
C40.1823 (13)1.1816 (8)0.2558 (2)0.069 (2)
C50.2310 (12)1.2951 (8)0.2487 (2)0.067 (2)
H5A0.17771.35070.26650.081*
C60.3610 (11)1.3266 (6)0.21477 (18)0.0565 (18)
H6A0.39511.40290.21050.068*
C70.4407 (11)1.2442 (6)0.18691 (19)0.0487 (18)
C80.3956 (12)1.1298 (6)0.1947 (2)0.055 (2)
C90.2662 (13)1.1021 (7)0.2288 (2)0.064 (2)
H9A0.23451.02580.23350.077*
C100.5908 (10)1.2836 (5)0.15146 (18)0.0399 (17)
C110.5900 (9)1.1879 (5)0.11856 (17)0.0398 (15)
H11A0.43171.17810.11140.048*
C120.6589 (13)1.0742 (5)0.13792 (19)0.0555 (19)
H12A0.79881.08310.15270.067*
H12B0.68041.01720.11690.067*
C130.4725 (14)1.0366 (6)0.1672 (2)0.068 (2)
H13A0.52670.97380.18370.081*
H13B0.34591.00930.15140.081*
C140.4971 (11)1.3919 (5)0.13126 (18)0.0486 (18)
H14A0.50921.45460.15040.058*
H14B0.33931.38060.12540.058*
C150.6185 (12)1.4242 (5)0.09160 (19)0.0575 (19)
H15A0.77391.44210.09750.069*
H15B0.54911.49130.07990.069*
C160.6080 (11)1.3265 (6)0.06107 (18)0.0535 (18)
H16A0.45271.31320.05370.064*
H16B0.68791.34830.03650.064*
C170.7083 (11)1.2159 (5)0.0775 (2)0.0470 (18)
C180.8244 (11)1.3108 (6)0.17050 (17)0.0611 (18)
H18A0.80411.34990.19600.092*
H18B0.90451.24110.17520.092*
H18C0.90831.35800.15210.092*
C190.9710 (10)1.2251 (6)0.0809 (2)0.073 (3)
H19A1.00951.28400.09990.110*
H19B1.03101.15380.09020.110*
H19C1.03271.24290.05460.110*
C200.6416 (14)1.1207 (6)0.04718 (19)0.0519 (18)
C210.7971 (13)0.9705 (5)0.00191 (19)0.0477 (17)
C220.9833 (12)0.9004 (5)0.0016 (2)0.0580 (19)
H22A1.10670.91200.01530.070*
C230.9861 (13)0.8142 (7)0.0298 (2)0.063 (2)
H23A1.10960.76590.03110.075*
C240.8111 (16)0.7978 (6)0.05601 (19)0.061 (2)
C250.6259 (13)0.8674 (6)0.05292 (19)0.060 (2)
H25A0.50460.85600.07030.072*
C260.6176 (12)0.9541 (6)0.02438 (19)0.058 (2)
H26A0.49241.00100.02280.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.1378 (8)0.0749 (5)0.0715 (5)0.0229 (6)0.0134 (6)0.0208 (5)
N0.032 (3)0.072 (4)0.055 (3)0.014 (4)0.001 (3)0.012 (3)
O0.032 (3)0.089 (4)0.070 (3)0.006 (3)0.002 (3)0.028 (3)
C10.1090.1090.1090.0000.0000.000
C20.093 (7)0.220 (11)0.054 (5)0.027 (10)0.007 (6)0.031 (7)
C30.084 (7)0.140 (9)0.057 (5)0.005 (6)0.012 (5)0.021 (5)
C40.059 (5)0.100 (6)0.048 (4)0.005 (7)0.013 (4)0.013 (5)
C50.048 (5)0.102 (7)0.051 (4)0.010 (5)0.004 (4)0.019 (5)
C60.047 (5)0.073 (5)0.049 (4)0.007 (5)0.005 (4)0.010 (4)
C70.034 (4)0.071 (5)0.041 (4)0.004 (4)0.008 (4)0.010 (4)
C80.052 (5)0.063 (5)0.050 (4)0.003 (4)0.006 (4)0.009 (4)
C90.062 (6)0.078 (5)0.053 (4)0.007 (4)0.001 (4)0.007 (4)
C100.027 (4)0.054 (4)0.039 (4)0.001 (3)0.004 (3)0.001 (3)
C110.019 (3)0.055 (4)0.045 (3)0.010 (4)0.000 (3)0.004 (4)
C120.060 (5)0.049 (4)0.058 (4)0.001 (5)0.003 (5)0.012 (3)
C130.092 (6)0.053 (5)0.058 (5)0.009 (5)0.011 (5)0.005 (4)
C140.046 (4)0.051 (4)0.050 (4)0.004 (4)0.006 (4)0.007 (3)
C150.066 (5)0.053 (4)0.053 (4)0.003 (4)0.003 (5)0.003 (4)
C160.045 (5)0.064 (4)0.052 (4)0.008 (4)0.000 (3)0.007 (4)
C170.027 (4)0.057 (4)0.057 (4)0.004 (4)0.001 (4)0.012 (3)
C180.042 (4)0.082 (5)0.059 (4)0.003 (5)0.015 (4)0.021 (4)
C190.028 (4)0.113 (7)0.079 (6)0.012 (5)0.011 (4)0.018 (5)
C200.050 (5)0.060 (4)0.046 (4)0.005 (5)0.003 (4)0.004 (3)
C210.047 (4)0.051 (4)0.045 (4)0.011 (4)0.015 (4)0.006 (3)
C220.052 (5)0.057 (5)0.066 (5)0.009 (4)0.010 (4)0.003 (4)
C230.065 (6)0.058 (5)0.064 (5)0.017 (5)0.015 (4)0.006 (5)
C240.071 (5)0.058 (5)0.054 (4)0.014 (5)0.005 (5)0.009 (4)
C250.068 (6)0.064 (5)0.047 (4)0.005 (5)0.005 (4)0.005 (4)
C260.051 (5)0.065 (5)0.057 (5)0.013 (4)0.006 (4)0.006 (4)
Geometric parameters (Å, º) top
Br—C241.876 (7)C12—C131.534 (9)
N—C201.350 (8)C12—H12A0.9700
N—C211.394 (7)C12—H12B0.9700
N—H0A0.8600C13—H13A0.9700
O—C201.247 (7)C13—H13B0.9700
C1—C31.478 (11)C14—C151.535 (8)
C1—H1A0.9600C14—H14A0.9700
C1—H1B0.9600C14—H14B0.9700
C1—H1C0.9600C15—C161.524 (8)
C2—C31.498 (10)C15—H15A0.9700
C2—H2A0.9600C15—H15B0.9700
C2—H2B0.9600C16—C171.528 (9)
C2—H2C0.9600C16—H16A0.9700
C3—C41.525 (10)C16—H16B0.9700
C3—H3A0.9800C17—C201.548 (8)
C4—C91.382 (10)C17—C191.574 (8)
C4—C51.385 (10)C18—H18A0.9600
C5—C61.406 (9)C18—H18B0.9600
C5—H5A0.9300C18—H18C0.9600
C6—C71.413 (8)C19—H19A0.9600
C6—H6A0.9300C19—H19B0.9600
C7—C81.394 (8)C19—H19C0.9600
C7—C101.538 (9)C21—C221.387 (8)
C8—C91.396 (8)C21—C261.388 (8)
C8—C131.489 (9)C22—C231.372 (9)
C9—H9A0.9300C22—H22A0.9300
C10—C141.540 (8)C23—C241.365 (9)
C10—C111.557 (8)C23—H23A0.9300
C10—C181.559 (8)C24—C251.378 (9)
C11—C121.535 (8)C25—C261.383 (8)
C11—C171.555 (8)C25—H25A0.9300
C11—H11A0.9800C26—H26A0.9300
C20—N—C21129.7 (6)C8—C13—H13B109.0
C20—N—H0A115.1C12—C13—H13B109.0
C21—N—H0A115.1H13A—C13—H13B107.8
C3—C1—H1A109.5C15—C14—C10113.4 (5)
C3—C1—H1B109.5C15—C14—H14A108.9
H1A—C1—H1B109.5C10—C14—H14A108.9
C3—C1—H1C109.5C15—C14—H14B108.9
H1A—C1—H1C109.5C10—C14—H14B108.9
H1B—C1—H1C109.5H14A—C14—H14B107.7
C3—C2—H2A109.5C16—C15—C14110.5 (5)
C3—C2—H2B109.5C16—C15—H15A109.6
H2A—C2—H2B109.5C14—C15—H15A109.6
C3—C2—H2C109.5C16—C15—H15B109.6
H2A—C2—H2C109.5C14—C15—H15B109.6
H2B—C2—H2C109.5H15A—C15—H15B108.1
C1—C3—C2113.0 (8)C15—C16—C17113.1 (5)
C1—C3—C4112.3 (7)C15—C16—H16A108.9
C2—C3—C4112.0 (7)C17—C16—H16A108.9
C1—C3—H3A106.3C15—C16—H16B108.9
C2—C3—H3A106.3C17—C16—H16B108.9
C4—C3—H3A106.3H16A—C16—H16B107.8
C9—C4—C5117.9 (7)C16—C17—C20106.7 (5)
C9—C4—C3119.7 (8)C16—C17—C11107.9 (5)
C5—C4—C3122.5 (8)C20—C17—C11106.6 (5)
C4—C5—C6120.1 (7)C16—C17—C19110.9 (6)
C4—C5—H5A119.9C20—C17—C19110.5 (6)
C6—C5—H5A119.9C11—C17—C19113.9 (5)
C5—C6—C7121.1 (7)C10—C18—H18A109.5
C5—C6—H6A119.4C10—C18—H18B109.5
C7—C6—H6A119.4H18A—C18—H18B109.5
C8—C7—C6118.6 (6)C10—C18—H18C109.5
C8—C7—C10122.7 (6)H18A—C18—H18C109.5
C6—C7—C10118.5 (6)H18B—C18—H18C109.5
C7—C8—C9118.5 (7)C17—C19—H19A109.5
C7—C8—C13122.7 (6)C17—C19—H19B109.5
C9—C8—C13118.8 (7)H19A—C19—H19B109.5
C4—C9—C8123.8 (7)C17—C19—H19C109.5
C4—C9—H9A118.1H19A—C19—H19C109.5
C8—C9—H9A118.1H19B—C19—H19C109.5
C7—C10—C14111.2 (5)O—C20—N122.2 (7)
C7—C10—C11107.7 (5)O—C20—C17120.1 (7)
C14—C10—C11107.3 (5)N—C20—C17117.6 (7)
C7—C10—C18106.3 (5)C22—C21—C26118.9 (6)
C14—C10—C18109.0 (5)C22—C21—N117.1 (7)
C11—C10—C18115.3 (5)C26—C21—N123.9 (7)
C12—C11—C17114.8 (5)C23—C22—C21120.2 (7)
C12—C11—C10110.0 (5)C23—C22—H22A119.9
C17—C11—C10116.4 (5)C21—C22—H22A119.9
C12—C11—H11A104.7C24—C23—C22121.2 (7)
C17—C11—H11A104.7C24—C23—H23A119.4
C10—C11—H11A104.7C22—C23—H23A119.4
C13—C12—C11108.4 (6)C23—C24—C25118.9 (6)
C13—C12—H12A110.0C23—C24—Br120.9 (6)
C11—C12—H12A110.0C25—C24—Br120.2 (6)
C13—C12—H12B110.0C24—C25—C26121.0 (7)
C11—C12—H12B110.0C24—C25—H25A119.5
H12A—C12—H12B108.4C26—C25—H25A119.5
C8—C13—C12112.9 (6)C25—C26—C21119.7 (7)
C8—C13—H13A109.0C25—C26—H26A120.2
C12—C13—H13A109.0C21—C26—H26A120.2
C1—C3—C4—C9113.1 (9)C7—C10—C14—C15170.8 (5)
C2—C3—C4—C9118.5 (9)C11—C10—C14—C1553.2 (6)
C1—C3—C4—C567.0 (11)C18—C10—C14—C1572.3 (6)
C2—C3—C4—C561.4 (11)C10—C14—C15—C1657.3 (7)
C9—C4—C5—C60.3 (11)C14—C15—C16—C1757.7 (7)
C3—C4—C5—C6179.8 (7)C15—C16—C17—C20168.5 (6)
C4—C5—C6—C71.2 (10)C15—C16—C17—C1154.3 (7)
C5—C6—C7—C82.6 (10)C15—C16—C17—C1971.0 (7)
C5—C6—C7—C10177.3 (6)C12—C11—C17—C16175.8 (5)
C6—C7—C8—C92.5 (10)C10—C11—C17—C1653.7 (7)
C10—C7—C8—C9176.9 (6)C12—C11—C17—C2061.5 (7)
C6—C7—C8—C13179.9 (6)C10—C11—C17—C20168.0 (5)
C10—C7—C8—C135.4 (11)C12—C11—C17—C1960.7 (7)
C5—C4—C9—C80.4 (11)C10—C11—C17—C1969.9 (7)
C3—C4—C9—C8179.7 (7)C21—N—C20—O1.7 (11)
C7—C8—C9—C41.0 (11)C21—N—C20—C17177.8 (6)
C13—C8—C9—C4178.8 (7)C16—C17—C20—O55.3 (8)
C8—C7—C10—C14141.0 (6)C11—C17—C20—O59.8 (8)
C6—C7—C10—C1444.5 (7)C19—C17—C20—O176.0 (6)
C8—C7—C10—C1123.7 (8)C16—C17—C20—N124.2 (6)
C6—C7—C10—C11161.9 (5)C11—C17—C20—N120.7 (6)
C8—C7—C10—C18100.4 (7)C19—C17—C20—N3.5 (8)
C6—C7—C10—C1874.0 (8)C20—N—C21—C22162.9 (6)
C7—C10—C11—C1254.4 (7)C20—N—C21—C2620.7 (10)
C14—C10—C11—C12174.2 (5)C26—C21—C22—C231.9 (10)
C18—C10—C11—C1264.0 (7)N—C21—C22—C23178.6 (6)
C7—C10—C11—C17172.8 (5)C21—C22—C23—C242.5 (11)
C14—C10—C11—C1753.0 (7)C22—C23—C24—C252.1 (11)
C18—C10—C11—C1768.8 (7)C22—C23—C24—Br178.5 (5)
C17—C11—C12—C13158.1 (5)C23—C24—C25—C261.3 (11)
C10—C11—C12—C1368.2 (6)Br—C24—C25—C26179.3 (5)
C7—C8—C13—C1217.0 (10)C24—C25—C26—C210.8 (10)
C9—C8—C13—C12165.4 (6)C22—C21—C26—C251.1 (10)
C11—C12—C13—C847.0 (7)N—C21—C26—C25177.5 (6)

Experimental details

Crystal data
Chemical formulaC26H32BrNO
Mr454.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.9640 (12), 11.750 (2), 32.758 (7)
V3)2295.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.714, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
4770, 4143, 1931
Rint0.063
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.133, 1.00
No. of reflections4143
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.34
Absolute structureFlack (1983), 1699 Friedel pairs
Absolute structure parameter0.003 (16)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Professor H. Q. Wang of the Center for Testing and Analysis, Nanjing University, for collecting the X-ray diffraction data.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFujita, Y., Yoshikuni, Y., Sotomatsu, T., Mori, T., Ozaki, T., Sempuku, K., Ogino, A., Kise, M. & Enomoto, H. (1991). Chem. Pharm. Bull. 39, 1193–1198.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNtokos, G., Catsoulacos, P., Kokkinos, C. & Theodoropoulos, D. (1973). Bull. Soc. Chim. Fr. 3, 991–997.  Google Scholar
First citationRao, X.-P., Song, Z.-Q., Jia, W.-H. & Shang, S.-B. (2007). Acta Cryst. E63, o3886.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRao, X.-P., Song, Z.-Q., Radbil, B. & Radbil, A. (2006). Acta Cryst. E62, o5301–o5302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSepulveda, B., Astudillo, L., Rodriguez, J. A., Yanez, T., Theoduloz, C. & Schmeda-Hirschmann, G. (2005). Pharmacol. Res. 52, 429–437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds