organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bis(di­methyl­amino)benzhydryl phenyl sulfone

aLudwig-Maximilians-Universität, Department, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: pemay@cup.uni-muenchen.de

(Received 2 November 2009; accepted 4 November 2009; online 7 November 2009)

In the title compound, C23H26N2O2S, the sulfur-bound phenyl group is aligned approximately parallel to one of the two rings of the benzhydryl group, making a dihedral angle of 1.15 (9)°. The other forms a dihedral angle of 59.20 (9)° with the phenyl group bound to the S atom. In the crystal, mol­ecules are linked into strands along [100] by weak C—H⋯O contacts. Weak C–H⋯π inter­actions are also observed.

Related literature

For the history of the sulfone anion, see: Hinsberg (1897[Hinsberg, O. (1897). Ber. Dtsch Chem. Ges. 30, 2803-2805.], 1917[Hinsberg, O. (1917). Ber. Dtsch Chem. Ges. 50, 468-473.]); Meek & Fowler (1968[Meek, J. S. & Fowler, J. S. (1968). J. Org. Chem. 33, 3422-3424.]); Kobayashi & Toriyabe (1985[Kobayashi, M. & Toriyabe, K. (1985). Sulfur Lett. 3, 117-122.]); Veenstra & Zwanenburg (1975[Veenstra, G. E. & Zwanenburg, B. (1975). Synthesis, pp. 519-520.]); Weber et al. (1985[Weber, J. V., Schneider, M. & Faller, D. P. P. (1985). Sulfur Lett. 3, 45-50.]); Mayr et al. (2001[Mayr, H., Bug, T., Gotta, M. F., Hering, N., Irrgang, B., Janker, B., Kempf, B., Loos, R., Ofial, A. R., Remennikov, G. & Schimmel, H. (2001). J. Am. Chem. Soc. 123, 9500-9512.], 2008[Mayr, H. & Ofial, A. R. (2008). J. Phys. Org. Chem. 21, 584-595.]). For a related structure, see: Li & Su (2005[Li, Y.-S. & Su, W.-K. (2005). Acta Cryst. E61, o2450-o2451.]). For the graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26N2O2S

  • Mr = 394.53

  • Monoclinic, P 21 /c

  • a = 5.9835 (2) Å

  • b = 16.6036 (5) Å

  • c = 20.8340 (6) Å

  • β = 98.150 (2)°

  • V = 2048.90 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 200 K

  • 0.31 × 0.13 × 0.09 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 13918 measured reflections

  • 4468 independent reflections

  • 3142 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.112

  • S = 1.03

  • 4468 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.56 3.469 (2) 160
C17—H17CCg1ii 0.98 2.80 3.673 (2) 148
C21—H21⋯Cg1iii 0.95 2.74 3.633 (2) 158
C22—H22⋯Cg2iii 0.95 2.78 3.435 (2) 127
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C2–C7and C10–C15 rings, respectively.

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

During our studies on electrophile-nucleophile reactions [Mayr et al. (2001), Mayr et al. (2008)] we obtained a crystalline product from the reaction of sodium benzenesulfinate with 4,4'-bis(dimethylamino)benzhydrylium tetrafluoroborate in dimethyl sulfoxide which was characterized by X-ray crystallography to be 4,4'-bis(dimethylamino)benzhydryl phenyl sulfone.

The asymmetric unit of the title compound contains one complete molecule, which is shown in Figure 1. The sulfur-bound phenyl group is approximately parallel aligned to one of the two phenyl rings of the benzhydryl group with an dihedral angle of 1.15 (9)°. The other one forms a dihedral angle of 59.20 (9)° with the phenyl group bound to the sulfur atom.

The molecules are linked to strands along [100] by weak contacts of the type C–H···O (Fig. 2). Contacts of this type have been described for a structure of a related sulfone [Li et al. (2005)]. In terms of graph-set analysis [Bernstein et al. (1995), Etter et al. (1990)], the descriptor on the unitary level is C11(6). Weak C–H···π interactions are also formed (see Table 1 for more details; Cg1 is the centre of gravity of the ring C2 to C7, Cg2 is the centre of gravity of the ring C10 to C15).

Parallel stacking of adjacent phenyl rings is not observed (Fig. 3). The dihedral angles exceed 46° in any cases.

Related literature top

For the history of the sulfone anion, see: Hinsberg (1897, 1917); Meek et al. (1968); Kobayashi et al. (1985); Veenstra et al. (1975); Weber et al. (1985); Mayr et al. (2001, 2008). For a related structure, see: Li et al. (2005). For the graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995); Etter et al. (1990). Cg1 and Cg2 are the centroids of the C2–C7and C10–C15 rings, respectively.

Experimental top

The title compound was obtained by mixing sodium benzenesulfinate (36 mg, 0.22 mmol) and 4,4'-bis(dimethylamino)benzhydrylium tetrafluoroborate (74 mg, 0.22 mmol) in DMSO (8 ml) at room temperature. After 20 min of stirring, water (10 ml) was added, and the mixture was extracted with ethyl acetate. The organic layer was washed several times with brine and dried (MgSO4). After evaporation of volatile solvents under reduced pressure, 4,4'-bis(dimethylamino)benzhydryl phenyl sulfone (42 mg, 48%) was obtained as a colorless solid. A small amount of the solid was dissolved in ethyl acetate. The solvent was allowed to evaporate slowly at room temperature. After 2 days, crystals had formed that were suitable for X-ray analysis. mp 197 °C (mp 204 °C [Hinsberg (1897), Hinsberg (1917)].

Refinement top

All H atoms were found in difference maps. C-bound H atoms were positioned geometrically and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C) for CH and Uiso(H) = 1.5Ueq(C) for CH3].

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. Weak intermolecular hydrogen bonds of the type C–H···O linking the title compound to strands along [100].
[Figure 3] Fig. 3. The packing of the title compound viewed along [100].
4,4'-Bis(dimethylamino)benzhydryl phenyl sulfone top
Crystal data top
C23H26N2O2SF(000) = 840
Mr = 394.53Dx = 1.279 (1) Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7329 reflections
a = 5.9835 (2) Åθ = 3.1–27.1°
b = 16.6036 (5) ŵ = 0.18 mm1
c = 20.8340 (6) ÅT = 200 K
β = 98.150 (2)°Rod, colourless
V = 2048.90 (11) Å30.31 × 0.13 × 0.09 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3142 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.050
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.1°, θmin = 3.4°
Detector resolution: 9 pixels mm-1h = 77
CCD; rotation images; thick slices, phi/ω–scank = 2120
13918 measured reflectionsl = 2526
4468 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.043P)2 + 0.5546P]
where P = (Fo2 + 2Fc2)/3
4468 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C23H26N2O2SV = 2048.90 (11) Å3
Mr = 394.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9835 (2) ŵ = 0.18 mm1
b = 16.6036 (5) ÅT = 200 K
c = 20.8340 (6) Å0.31 × 0.13 × 0.09 mm
β = 98.150 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3142 reflections with I > 2σ(I)
13918 measured reflectionsRint = 0.050
4468 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
4468 reflectionsΔρmin = 0.33 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74058 (8)0.09486 (3)0.15422 (2)0.03368 (15)
O10.9739 (2)0.11658 (8)0.15443 (7)0.0452 (4)
O20.6163 (2)0.06134 (8)0.09615 (6)0.0460 (4)
N10.3991 (3)0.38915 (10)0.04522 (8)0.0481 (4)
N20.9032 (3)0.34009 (9)0.41719 (7)0.0396 (4)
C10.5830 (3)0.18149 (10)0.17654 (8)0.0291 (4)
H10.43100.16050.18290.035*
C20.5424 (3)0.23697 (10)0.11785 (8)0.0284 (4)
C30.3353 (3)0.23509 (11)0.07836 (9)0.0337 (4)
H30.22310.19850.08830.040*
C40.2872 (3)0.28472 (11)0.02511 (9)0.0362 (4)
H40.14260.28200.00040.043*
C50.4470 (3)0.33879 (10)0.00799 (9)0.0334 (4)
C60.6582 (3)0.33989 (11)0.04706 (9)0.0369 (4)
H60.77210.37550.03670.044*
C70.7035 (3)0.28988 (10)0.10057 (9)0.0343 (4)
H70.84820.29180.12600.041*
C80.1893 (4)0.38272 (16)0.08687 (12)0.0651 (7)
H8A0.16660.32690.10170.098*
H8B0.19080.41820.12440.098*
H8C0.06610.39860.06310.098*
C90.5726 (4)0.43670 (14)0.06787 (11)0.0557 (6)
H9A0.64850.46940.03210.084*
H9B0.50490.47210.10300.084*
H9C0.68280.40110.08400.084*
C100.6815 (3)0.21879 (10)0.24073 (8)0.0288 (4)
C110.8948 (3)0.25420 (11)0.25295 (9)0.0326 (4)
H110.99330.25050.22110.039*
C120.9664 (3)0.29446 (11)0.31010 (8)0.0334 (4)
H121.11170.31870.31620.040*
C130.8299 (3)0.30059 (10)0.35951 (8)0.0322 (4)
C140.6190 (3)0.26226 (11)0.34831 (8)0.0345 (4)
H140.52300.26330.38090.041*
C150.5488 (3)0.22278 (10)0.29024 (9)0.0325 (4)
H150.40480.19760.28410.039*
C161.0909 (4)0.39582 (15)0.42066 (11)0.0586 (6)
H16A1.21920.36920.40510.088*
H16B1.13460.41300.46570.088*
H16C1.04590.44290.39360.088*
C170.7429 (4)0.35926 (14)0.46134 (10)0.0514 (6)
H17A0.63460.39930.44120.077*
H17B0.82410.38110.50180.077*
H17C0.66210.31030.47080.077*
C180.7267 (3)0.02533 (10)0.21776 (8)0.0290 (4)
C190.9132 (3)0.01217 (11)0.26374 (9)0.0366 (4)
H191.04830.04180.26240.044*
C200.9012 (4)0.04461 (11)0.31178 (10)0.0425 (5)
H201.02930.05450.34330.051*
C210.7036 (4)0.08691 (11)0.31415 (9)0.0412 (5)
H210.69560.12520.34760.049*
C220.5181 (4)0.07361 (11)0.26796 (10)0.0423 (5)
H220.38280.10300.26960.051*
C230.5285 (3)0.01744 (11)0.21925 (9)0.0373 (4)
H230.40130.00840.18730.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0452 (3)0.0261 (2)0.0328 (3)0.00373 (19)0.0159 (2)0.00259 (18)
O10.0450 (8)0.0352 (7)0.0617 (9)0.0052 (6)0.0296 (7)0.0088 (6)
O20.0762 (10)0.0358 (7)0.0268 (7)0.0050 (7)0.0096 (7)0.0029 (6)
N10.0550 (11)0.0468 (10)0.0399 (10)0.0014 (8)0.0024 (8)0.0149 (8)
N20.0448 (10)0.0429 (9)0.0320 (9)0.0050 (8)0.0083 (7)0.0045 (7)
C10.0330 (10)0.0264 (9)0.0297 (9)0.0013 (7)0.0107 (8)0.0004 (7)
C20.0333 (10)0.0247 (9)0.0285 (9)0.0011 (7)0.0090 (8)0.0016 (7)
C30.0326 (10)0.0307 (9)0.0382 (10)0.0040 (8)0.0062 (8)0.0015 (8)
C40.0320 (10)0.0399 (10)0.0351 (10)0.0014 (8)0.0008 (8)0.0011 (8)
C50.0414 (11)0.0282 (9)0.0306 (10)0.0062 (8)0.0048 (8)0.0001 (7)
C60.0386 (11)0.0327 (10)0.0389 (11)0.0048 (8)0.0041 (9)0.0064 (8)
C70.0336 (10)0.0334 (10)0.0347 (10)0.0016 (8)0.0008 (8)0.0045 (8)
C80.0605 (15)0.0772 (17)0.0527 (15)0.0080 (13)0.0092 (12)0.0214 (13)
C90.0688 (15)0.0517 (13)0.0464 (13)0.0004 (12)0.0075 (11)0.0193 (11)
C100.0334 (10)0.0250 (9)0.0287 (9)0.0031 (7)0.0070 (8)0.0033 (7)
C110.0316 (10)0.0373 (10)0.0304 (10)0.0046 (8)0.0094 (8)0.0036 (8)
C120.0297 (9)0.0379 (10)0.0327 (10)0.0022 (8)0.0041 (8)0.0037 (8)
C130.0385 (10)0.0307 (9)0.0275 (9)0.0025 (8)0.0051 (8)0.0050 (7)
C140.0387 (11)0.0372 (10)0.0303 (10)0.0012 (8)0.0144 (8)0.0005 (8)
C150.0346 (10)0.0291 (9)0.0358 (10)0.0029 (8)0.0116 (8)0.0012 (8)
C160.0574 (14)0.0714 (16)0.0481 (13)0.0245 (12)0.0108 (11)0.0139 (12)
C170.0615 (14)0.0580 (13)0.0373 (12)0.0138 (11)0.0163 (10)0.0125 (10)
C180.0384 (10)0.0210 (8)0.0287 (9)0.0003 (7)0.0085 (8)0.0014 (7)
C190.0377 (10)0.0316 (10)0.0407 (11)0.0037 (8)0.0063 (9)0.0001 (8)
C200.0516 (13)0.0361 (10)0.0377 (11)0.0027 (9)0.0006 (9)0.0041 (8)
C210.0629 (14)0.0270 (10)0.0361 (11)0.0007 (9)0.0149 (10)0.0048 (8)
C220.0505 (12)0.0308 (10)0.0483 (12)0.0095 (9)0.0165 (10)0.0007 (9)
C230.0394 (11)0.0322 (10)0.0401 (11)0.0030 (8)0.0052 (9)0.0009 (8)
Geometric parameters (Å, º) top
S1—O21.4391 (13)C9—H9C0.9800
S1—O11.4413 (14)C10—C151.390 (2)
S1—C181.7672 (17)C10—C111.396 (2)
S1—C11.8163 (17)C11—C121.380 (2)
N1—C51.386 (2)C11—H110.9500
N1—C81.425 (3)C12—C131.405 (3)
N1—C91.436 (3)C12—H120.9500
N2—C131.385 (2)C13—C141.403 (3)
N2—C161.449 (3)C14—C151.388 (2)
N2—C171.455 (3)C14—H140.9500
C1—C101.515 (2)C15—H150.9500
C1—C21.523 (2)C16—H16A0.9800
C1—H11.0000C16—H16B0.9800
C2—C31.387 (2)C16—H16C0.9800
C2—C71.389 (2)C17—H17A0.9800
C3—C41.379 (3)C17—H17B0.9800
C3—H30.9500C17—H17C0.9800
C4—C51.394 (3)C18—C191.381 (2)
C4—H40.9500C18—C231.386 (2)
C5—C61.403 (3)C19—C201.384 (3)
C6—C71.386 (2)C19—H190.9500
C6—H60.9500C20—C211.382 (3)
C7—H70.9500C20—H200.9500
C8—H8A0.9800C21—C221.380 (3)
C8—H8B0.9800C21—H210.9500
C8—H8C0.9800C22—C231.386 (3)
C9—H9A0.9800C22—H220.9500
C9—H9B0.9800C23—H230.9500
O2—S1—O1118.94 (9)C15—C10—C11116.64 (16)
O2—S1—C18107.68 (8)C15—C10—C1118.88 (15)
O1—S1—C18108.04 (8)C11—C10—C1124.38 (15)
O2—S1—C1107.24 (8)C12—C11—C10121.71 (17)
O1—S1—C1109.81 (8)C12—C11—H11119.1
C18—S1—C1104.14 (8)C10—C11—H11119.1
C5—N1—C8120.42 (18)C11—C12—C13121.72 (17)
C5—N1—C9121.15 (17)C11—C12—H12119.1
C8—N1—C9117.16 (17)C13—C12—H12119.1
C13—N2—C16119.58 (16)N2—C13—C14121.74 (16)
C13—N2—C17119.74 (16)N2—C13—C12121.64 (17)
C16—N2—C17113.86 (16)C14—C13—C12116.59 (16)
C10—C1—C2117.33 (14)C15—C14—C13120.88 (16)
C10—C1—S1113.48 (12)C15—C14—H14119.6
C2—C1—S1107.63 (11)C13—C14—H14119.6
C10—C1—H1105.8C14—C15—C10122.38 (17)
C2—C1—H1105.8C14—C15—H15118.8
S1—C1—H1105.8C10—C15—H15118.8
C3—C2—C7117.06 (16)N2—C16—H16A109.5
C3—C2—C1119.33 (15)N2—C16—H16B109.5
C7—C2—C1123.61 (15)H16A—C16—H16B109.5
C4—C3—C2122.04 (17)N2—C16—H16C109.5
C4—C3—H3119.0H16A—C16—H16C109.5
C2—C3—H3119.0H16B—C16—H16C109.5
C3—C4—C5121.21 (16)N2—C17—H17A109.5
C3—C4—H4119.4N2—C17—H17B109.5
C5—C4—H4119.4H17A—C17—H17B109.5
N1—C5—C4121.43 (17)N2—C17—H17C109.5
N1—C5—C6121.57 (17)H17A—C17—H17C109.5
C4—C5—C6116.99 (16)H17B—C17—H17C109.5
C7—C6—C5121.09 (17)C19—C18—C23120.87 (16)
C7—C6—H6119.5C19—C18—S1120.24 (14)
C5—C6—H6119.5C23—C18—S1118.85 (13)
C6—C7—C2121.59 (17)C18—C19—C20119.31 (18)
C6—C7—H7119.2C18—C19—H19120.3
C2—C7—H7119.2C20—C19—H19120.3
N1—C8—H8A109.5C21—C20—C19120.29 (18)
N1—C8—H8B109.5C21—C20—H20119.9
H8A—C8—H8B109.5C19—C20—H20119.9
N1—C8—H8C109.5C22—C21—C20120.09 (18)
H8A—C8—H8C109.5C22—C21—H21120.0
H8B—C8—H8C109.5C20—C21—H21120.0
N1—C9—H9A109.5C21—C22—C23120.20 (18)
N1—C9—H9B109.5C21—C22—H22119.9
H9A—C9—H9B109.5C23—C22—H22119.9
N1—C9—H9C109.5C22—C23—C18119.23 (17)
H9A—C9—H9C109.5C22—C23—H23120.4
H9B—C9—H9C109.5C18—C23—H23120.4
O2—S1—C1—C10174.47 (12)C15—C10—C11—C123.0 (3)
O1—S1—C1—C1054.96 (14)C1—C10—C11—C12173.26 (16)
C18—S1—C1—C1060.52 (14)C10—C11—C12—C131.2 (3)
O2—S1—C1—C253.97 (13)C16—N2—C13—C14163.95 (19)
O1—S1—C1—C276.60 (13)C17—N2—C13—C1414.6 (3)
C18—S1—C1—C2167.92 (11)C16—N2—C13—C1218.3 (3)
C10—C1—C2—C3131.26 (17)C17—N2—C13—C12167.64 (18)
S1—C1—C2—C399.33 (16)C11—C12—C13—N2179.12 (16)
C10—C1—C2—C749.4 (2)C11—C12—C13—C141.3 (3)
S1—C1—C2—C780.00 (19)N2—C13—C14—C15179.82 (16)
C7—C2—C3—C41.6 (3)C12—C13—C14—C152.0 (3)
C1—C2—C3—C4179.00 (16)C13—C14—C15—C100.2 (3)
C2—C3—C4—C50.8 (3)C11—C10—C15—C142.3 (3)
C8—N1—C5—C44.7 (3)C1—C10—C15—C14174.19 (16)
C9—N1—C5—C4171.44 (19)O2—S1—C18—C19140.96 (15)
C8—N1—C5—C6175.4 (2)O1—S1—C18—C1911.31 (17)
C9—N1—C5—C68.6 (3)C1—S1—C18—C19105.40 (15)
C3—C4—C5—N1179.57 (17)O2—S1—C18—C2336.90 (16)
C3—C4—C5—C60.4 (3)O1—S1—C18—C23166.54 (14)
N1—C5—C6—C7179.29 (17)C1—S1—C18—C2376.74 (15)
C4—C5—C6—C70.7 (3)C23—C18—C19—C200.1 (3)
C5—C6—C7—C20.2 (3)S1—C18—C19—C20177.73 (14)
C3—C2—C7—C61.3 (3)C18—C19—C20—C210.8 (3)
C1—C2—C7—C6179.32 (16)C19—C20—C21—C221.0 (3)
C2—C1—C10—C15112.91 (18)C20—C21—C22—C230.4 (3)
S1—C1—C10—C15120.48 (15)C21—C22—C23—C180.3 (3)
C2—C1—C10—C1163.2 (2)C19—C18—C23—C220.5 (3)
S1—C1—C10—C1163.4 (2)S1—C18—C23—C22178.34 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.563.469 (2)160
C17—H17C···Cg1ii0.982.803.673 (2)148
C21—H21···Cg1iii0.952.743.633 (2)158
C22—H22···Cg2iii0.952.783.435 (2)127
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H26N2O2S
Mr394.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.9835 (2), 16.6036 (5), 20.8340 (6)
β (°) 98.150 (2)
V3)2048.90 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.31 × 0.13 × 0.09
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13918, 4468, 3142
Rint0.050
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.112, 1.03
No. of reflections4468
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.33

Computer programs: COLLECT (Hooft, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.563.469 (2)160
C17—H17C···Cg1ii0.982.803.673 (2)148
C21—H21···Cg1iii0.952.743.633 (2)158
C22—H22···Cg2iii0.952.783.435 (2)127
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank Professor Thomas M. Klapötke for the generous allocation of diffractometer time.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHinsberg, O. (1897). Ber. Dtsch Chem. Ges. 30, 2803–2805.  CrossRef CAS Google Scholar
First citationHinsberg, O. (1917). Ber. Dtsch Chem. Ges. 50, 468–473.  CrossRef CAS Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKobayashi, M. & Toriyabe, K. (1985). Sulfur Lett. 3, 117–122.  CAS Google Scholar
First citationLi, Y.-S. & Su, W.-K. (2005). Acta Cryst. E61, o2450–o2451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMayr, H., Bug, T., Gotta, M. F., Hering, N., Irrgang, B., Janker, B., Kempf, B., Loos, R., Ofial, A. R., Remennikov, G. & Schimmel, H. (2001). J. Am. Chem. Soc. 123, 9500–9512.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMayr, H. & Ofial, A. R. (2008). J. Phys. Org. Chem. 21, 584–595.  Web of Science CrossRef CAS Google Scholar
First citationMeek, J. S. & Fowler, J. S. (1968). J. Org. Chem. 33, 3422–3424.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeenstra, G. E. & Zwanenburg, B. (1975). Synthesis, pp. 519–520.  Google Scholar
First citationWeber, J. V., Schneider, M. & Faller, D. P. P. (1985). Sulfur Lett. 3, 45–50.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds