metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(η2-ethyl­ene)[aza­nidediylbis(diiso­propyl­phosphine selenide)-κ2Se,Se′]iridium(III)

aMaterial Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China, and bInstitute of Molecular Engineering and Applied Chemsitry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China
*Correspondence e-mail: imc@ahut.edu.cn

(Received 2 November 2009; accepted 22 November 2009; online 28 November 2009)

In the title compound, [Ir(η2-C2H4)2(C12H28NP2Se2)], the central Ir atom is chelated by the [N(iPr2PSe)2] ligand via two Se atoms and is coordinated by two η2-ethyl­ene mol­ecules via four C atoms in an octa­hedral coordination geometry.

Related literature

For studies of complexes containing [N(R2PQ)2] (Q = S, Se, Te) ligands, see: Ly & Woollins (1998[Ly, T. Q. & Woollins, J. D. (1998). Coord. Chem. Rev. 176, 451-481.]); Rudler et al. (1997[Rudler, H., Denise, B., Gregorio, J. R. & Vaissermann, J. (1997). Chem. Commun. 2299-2300.]). For metal complexes with [N(R2PQ)2] (Q = S, Se, Te) as NMR shift reagents, see: Barkaoui et al. (1997[Barkaoui, L., Charrouf, M., Rager, M. N., Denise, B., Platzer, N. & Hudler, R. (1997). Bull. Soc. Chim. Fr. 134, 167-172.]). For related structures, see: Cheung et al. (2006[Cheung, W. M., Lai, C. Y., Zhang, Q. F., Wong, W. Y., Williams, I. D. & Leung, W. H. (2006). Inorg. Chim. Acta, 359, 2712-2720.]); Kirchmann et al. (2008[Kirchmann, M., Fleischhauer, S. & Wesemann, L. (2008). Organometallics, 27, 2803-2808.]); Lundquist et al. (1990[Lundquist, E. G., Folting, K., Streib, W. E., Huffman, J. C., Eisenstein, O. & Caulton, K. G. (1990). J. Am. Chem. Soc. 112, 855-863.]); Parr et al. (1999[Parr, J., Smith, M. B. & Slawin, A. M. Z. (1999). J. Organomet. Chem. 588, 99-106.]). For the C—C bond length in free ethyl­ene, see: Stoicheff (1962[Stoicheff, B. P. (1962). Tetrahedron, 17, 135-145.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C2H4)2(C12H28NP2Se2)]

  • Mr = 654.52

  • Triclinic, [P \overline 1]

  • a = 9.6965 (1) Å

  • b = 10.3962 (1) Å

  • c = 12.0620 (1) Å

  • α = 98.511 (1)°

  • β = 96.055 (1)°

  • γ = 107.273 (1)°

  • V = 1133.84 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.24 mm−1

  • T = 296 K

  • 0.30 × 0.21 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.168, Tmax = 0.320

  • 15331 measured reflections

  • 5170 independent reflections

  • 4505 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.03

  • 5170 reflections

  • 207 parameters

  • H-atom parameters constrained

  • Δρmax = 1.39 e Å−3

  • Δρmin = −1.03 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidotetraaryldichalcogenodiphosphinates of general formula [N(R2PQ)2]- (Q = S, Se, Te) have a well defined coordination chemistry, with examples of simple complexes known for elements from each block of the periodic table (Ly & Woollins, 1998). Metal complexes with [N(R2PQ)2]- have been used as catalysts for organic reactions (Rudler et al., 1997) and NMR shift reagents (Barkaoui et al., 1997). Despite the high affinity of [N(R2PQ)2]- for late transition metal ions, their complexes with iridium have not been well explored. The only structurally characterized iridium imidotetraaryldichalcogenodiphosphinates are the half-sandwich complexes [Cp*Ir{N(R2PQ)2}X] (X = Cl, SCN, SeCN) (Parr et al., 1999). To explore the organometallic chemistry of imidotetraaryldichalcogenodiphosphinates, we are interested to synthesize organoiridium compounds with [N(R2PQ)2]- ligands. We have previously reported the syntheses and crystal structures of iridium imidotetraaryldithiodiphosphinates compounds containing carbonyl, 1,5-cyclooctadiene, and olefin co-ligands (Cheung et al., 2006). We herein describe molecular structure of an organoiridium compound [Ir{N(iPr2PSe)2}(η2-C2H4)2] with imido-tetra-iso-propyldiselenodiphosphinate and ethylene ligands in this paper.

The title compound crystallizes in the triclinic space group P-1. The molecular structure with atomic numbering is depicted in Fig. 1. The central iridium atom is hexacoordinated by one chelating [N(iPr2PSe)2]- ligand via two selenium atoms and two η2-ethylene molecules via four carbon atoms, thereby forming a distorded octahedral environment. The [N(iPr2PSe)2]- acts as a chelating ligand through its two selenium atoms to bond the iridium center in a cis geometry. Similar to analogue complexes [Ir{N(iPr2PS)2}(η2-C2H4)2] and [Ir{N(Ph2PS)2}(η2-COE)2] (COE = cyclooctene) with imido-tetra-iso-propyldiselenodiphosphinate ligands (Cheung et al., 2006), the conformation of the six-membered IrSe2P2N ring in the title compound is described as a twisted-boat imposed by the non-parallel orientation of the two P—Se bonds. The bite angle of Se(1)—Ir(1)—Se(2) is 99.332 (16)°, the other angles in the chelate ring are Ir(1)—Se(1)—P(1) 109.29 (3)°, Ir(1)—Se(2)—P(2) 110.38 (3)°, Se(1)—P(1)—N(1) 116.89 (14)°, Se(2)—P(2)—N(1) 116.88 (13)°, and P(1)—N(1)—P(2) 127.3 (2)°. The average Ir—Se bond length (av. 2.4601 (5) Å) in the title compound is slightly longer than those in [Cp*Ir{N(Ph2PSe)2}Cl] (av. 2.5139 (5) Å) (Parr et al., 1999) and [Cp*Ir{N(Ph2PSe)2}(SCN)] (av. 2.5159 (8) Å) (Parr et al., 1999). The ethylene molecules bind to the central iridium atom in an η2-coordination mode with the small bite angles C(1)—Ir(1)—C(2) and C(1)—Ir(1)—C(2) of 38.1 (2) and 38.4 (2)°, respectively. The average C—C bond length in the title compound (av. 1.398 (9) Å) is longer than that in free ethylene (1.339 Å) (Stoicheff, 1962), but compares with corresponding bond lengths in [Ir{N(iPr2PS)2}(η2-C2H4)2] (av. 1.400 (6) Å) (Cheung et al., 2006), [Ir(PMe2Ph)3(η2-C2H4)2][BF4] (av. 1.42 (2) Å) (Lundquist et al., 1990) and [Me4N][Ir(SnB11H11)(CO)(η2-C2H4)(PPh3)2] (av. 1.44 (3) Å) (Kirchmann et al., 2008). The average Ir—C bond length in the title compound (av. 2.133 (5) Å) compares well with those in [Ir{N(iPr2PS)2}(η2-C2H4)2] (av. 2.124 (5) Å) (Cheung et al., 2006), [Ir(PMe2Ph)3(η2-C2H4)2][BF4] (av. 2.20 (3) Å) (Lundquist et al., 1990) and [Me4N][Ir(SnB11H11)(CO)(η2-C2H4)(PPh3)2] (av. 2.22 (2) Å) (Kirchmann et al., 2008).

Related literature top

For studies of complexes containing [N(R2PQ)2]- (Q = S, Se, Te) ligands, see: Ly & Woollins (1998); Rudler et al. (1997). For metal complexes with [N(R2PQ)2]- (Q = S, Se, Te) as NMR shift reagents, see: Barkaoui et al. (1997). For related structures, see: Cheung et al. (2006); Kirchmann et al. (2008); Lundquist et al. (1990); Parr et al. (1999). For the C—C bond length in free ethylene, see: Stoicheff (1962).

Experimental top

The title compound was prepared according to the literature method (Cheung et al., 2006) and similarly as for [Ir{N(iPr2PS)2}(η2-C2H4)2] using K[N(iPr2PSe)2] instead of K[N(iPr2PS)2]. Orange single crystals of the title compound were obtained from the hexane solution at -40 °C.

Refinement top

H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
Bis(η2-ethylene)[azanidediylbis(diisopropylphosphine selenide)- κ2Se,Se']iridium(III) top
Crystal data top
[Ir(C2H4)2(C12H28NP2Se2)]Z = 2
Mr = 654.52F(000) = 628
Triclinic, P1Dx = 1.917 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6965 (1) ÅCell parameters from 6523 reflections
b = 10.3962 (1) Åθ = 2.5–26.8°
c = 12.0620 (1) ŵ = 9.24 mm1
α = 98.511 (1)°T = 296 K
β = 96.055 (1)°Prism, orange
γ = 107.273 (1)°0.30 × 0.21 × 0.16 mm
V = 1133.84 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5170 independent reflections
Radiation source: fine-focus sealed tube4505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.168, Tmax = 0.320k = 1213
15331 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.943P]
where P = (Fo2 + 2Fc2)/3
5170 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Ir(C2H4)2(C12H28NP2Se2)]γ = 107.273 (1)°
Mr = 654.52V = 1133.84 (2) Å3
Triclinic, P1Z = 2
a = 9.6965 (1) ÅMo Kα radiation
b = 10.3962 (1) ŵ = 9.24 mm1
c = 12.0620 (1) ÅT = 296 K
α = 98.511 (1)°0.30 × 0.21 × 0.16 mm
β = 96.055 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5170 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4505 reflections with I > 2σ(I)
Tmin = 0.168, Tmax = 0.320Rint = 0.024
15331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.03Δρmax = 1.39 e Å3
5170 reflectionsΔρmin = 1.03 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.183001 (17)0.291467 (16)0.217100 (14)0.03765 (6)
Se10.07448 (5)0.45184 (4)0.31713 (4)0.04549 (12)
Se20.39296 (5)0.45760 (5)0.16421 (5)0.04878 (12)
P10.24433 (11)0.65130 (11)0.37985 (9)0.0347 (2)
P20.35610 (11)0.65739 (11)0.16970 (9)0.0356 (2)
N10.3238 (4)0.7270 (3)0.2873 (3)0.0398 (8)
C10.3029 (7)0.1529 (6)0.1735 (6)0.0703 (16)
H1A0.30890.21060.24190.084*
H1B0.36320.09820.16790.084*
C20.2036 (7)0.1485 (6)0.0795 (5)0.0737 (18)
H2A0.14330.20330.08520.088*
H2B0.19760.09090.01120.088*
C30.0789 (7)0.1508 (6)0.3164 (6)0.0790 (19)
H3A0.17400.21040.32550.095*
H3B0.05170.09530.36940.095*
C40.0233 (6)0.1446 (6)0.2229 (6)0.0764 (19)
H4A0.00390.20000.16990.092*
H4B0.11840.08500.21380.092*
C110.1481 (5)0.7590 (5)0.4494 (4)0.0475 (11)
H11A0.10570.71490.50980.057*
C120.0227 (6)0.7685 (6)0.3672 (5)0.0652 (15)
H12A0.03310.81610.40790.098*
H12B0.03930.67780.33190.098*
H12C0.06130.81750.31000.098*
C130.2494 (7)0.9012 (6)0.5043 (6)0.086 (2)
H13A0.31190.93760.45210.129*
H13B0.30800.89590.57170.129*
H13C0.19240.96010.52370.129*
C140.3761 (5)0.6209 (5)0.4850 (4)0.0490 (11)
H14A0.40220.54310.44750.059*
C150.5195 (6)0.7394 (7)0.5211 (6)0.080 (2)
H15A0.50450.81130.57330.121*
H15B0.55130.77390.45540.121*
H15C0.59270.70740.55710.121*
C160.3095 (7)0.5757 (8)0.5874 (5)0.084 (2)
H16A0.37640.54510.63290.126*
H16B0.21940.50200.56190.126*
H16C0.29090.65150.63190.126*
C210.5261 (5)0.7694 (5)0.1388 (4)0.0465 (11)
H21A0.53840.73160.06240.056*
C220.6584 (5)0.7730 (6)0.2205 (5)0.0679 (16)
H22A0.74620.81980.19410.102*
H22B0.65630.68090.22450.102*
H22C0.65600.82040.29460.102*
C230.5204 (7)0.9147 (6)0.1376 (7)0.085 (2)
H23A0.48630.94690.20490.128*
H23B0.45480.91390.07190.128*
H23C0.61640.97460.13540.128*
C240.2058 (5)0.6298 (5)0.0541 (4)0.0510 (12)
H24A0.12740.54960.06410.061*
C250.1402 (7)0.7457 (7)0.0570 (6)0.0793 (18)
H25A0.20840.82380.03750.119*
H25B0.11960.77030.13190.119*
H25C0.05130.71640.00350.119*
C260.2453 (7)0.5916 (9)0.0620 (5)0.092 (2)
H26A0.15880.56170.11820.138*
H26B0.28740.51900.06160.138*
H26C0.31480.67020.07980.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.03986 (10)0.03282 (9)0.03745 (10)0.00918 (7)0.00462 (7)0.00396 (6)
Se10.0369 (2)0.0379 (2)0.0589 (3)0.00759 (18)0.0148 (2)0.0044 (2)
Se20.0454 (2)0.0417 (2)0.0647 (3)0.01693 (19)0.0215 (2)0.0117 (2)
P10.0354 (5)0.0349 (5)0.0337 (6)0.0103 (4)0.0063 (4)0.0076 (4)
P20.0335 (5)0.0390 (6)0.0348 (6)0.0110 (4)0.0058 (4)0.0090 (4)
N10.046 (2)0.0352 (19)0.037 (2)0.0096 (16)0.0086 (16)0.0081 (15)
C10.087 (4)0.050 (3)0.081 (4)0.038 (3)0.023 (4)0.007 (3)
C20.083 (4)0.057 (3)0.069 (4)0.017 (3)0.021 (3)0.025 (3)
C30.090 (4)0.057 (3)0.100 (5)0.015 (3)0.043 (4)0.045 (4)
C40.067 (4)0.049 (3)0.091 (5)0.019 (3)0.030 (3)0.007 (3)
C110.059 (3)0.043 (2)0.046 (3)0.019 (2)0.020 (2)0.010 (2)
C120.071 (3)0.060 (3)0.080 (4)0.039 (3)0.021 (3)0.018 (3)
C130.097 (5)0.054 (3)0.092 (5)0.016 (3)0.021 (4)0.019 (3)
C140.042 (2)0.064 (3)0.042 (3)0.018 (2)0.002 (2)0.015 (2)
C150.055 (3)0.096 (5)0.066 (4)0.004 (3)0.014 (3)0.018 (3)
C160.074 (4)0.129 (6)0.064 (4)0.035 (4)0.015 (3)0.056 (4)
C210.044 (2)0.051 (3)0.047 (3)0.012 (2)0.018 (2)0.015 (2)
C220.041 (3)0.068 (4)0.082 (4)0.002 (2)0.009 (3)0.015 (3)
C230.074 (4)0.055 (4)0.135 (6)0.013 (3)0.039 (4)0.042 (4)
C240.045 (2)0.067 (3)0.040 (3)0.020 (2)0.000 (2)0.006 (2)
C250.082 (4)0.095 (5)0.072 (4)0.051 (4)0.006 (3)0.013 (4)
C260.077 (4)0.157 (7)0.042 (3)0.056 (5)0.006 (3)0.005 (4)
Geometric parameters (Å, º) top
Ir1—C32.119 (5)C13—H13A0.9600
Ir1—C22.125 (5)C13—H13B0.9600
Ir1—C42.141 (5)C13—H13C0.9600
Ir1—C12.145 (5)C14—C161.524 (7)
Ir1—Se22.4590 (5)C14—C151.529 (7)
Ir1—Se12.4611 (5)C14—H14A0.9800
Se1—P12.1975 (11)C15—H15A0.9600
Se2—P22.2026 (12)C15—H15B0.9600
P1—N11.595 (3)C15—H15C0.9600
P1—C111.826 (5)C16—H16A0.9600
P1—C141.832 (5)C16—H16B0.9600
P2—N11.599 (4)C16—H16C0.9600
P2—C211.825 (4)C21—C221.521 (7)
P2—C241.832 (5)C21—C231.530 (7)
C1—C21.394 (9)C21—H21A0.9800
C1—H1A0.9300C22—H22A0.9600
C1—H1B0.9300C22—H22B0.9600
C2—H2A0.9300C22—H22C0.9600
C2—H2B0.9300C23—H23A0.9600
C3—C41.401 (9)C23—H23B0.9600
C3—H3A0.9300C23—H23C0.9600
C3—H3B0.9300C24—C261.518 (7)
C4—H4A0.9300C24—C251.519 (8)
C4—H4B0.9300C24—H24A0.9800
C11—C131.517 (7)C25—H25A0.9600
C11—C121.522 (7)C25—H25B0.9600
C11—H11A0.9800C25—H25C0.9600
C12—H12A0.9600C26—H26A0.9600
C12—H12B0.9600C26—H26B0.9600
C12—H12C0.9600C26—H26C0.9600
C3—Ir1—C298.6 (3)C11—C12—H12C109.5
C3—Ir1—C438.4 (2)H12A—C12—H12C109.5
C2—Ir1—C486.8 (2)H12B—C12—H12C109.5
C3—Ir1—C186.0 (2)C11—C13—H13A109.5
C2—Ir1—C138.1 (2)C11—C13—H13B109.5
C4—Ir1—C198.9 (2)H13A—C13—H13B109.5
C3—Ir1—Se2154.8 (2)C11—C13—H13C109.5
C2—Ir1—Se286.18 (16)H13A—C13—H13C109.5
C4—Ir1—Se2166.4 (2)H13B—C13—H13C109.5
C1—Ir1—Se282.61 (16)C16—C14—C15111.5 (5)
C3—Ir1—Se186.27 (17)C16—C14—P1112.6 (4)
C2—Ir1—Se1156.23 (19)C15—C14—P1114.1 (4)
C4—Ir1—Se182.66 (17)C16—C14—H14A105.9
C1—Ir1—Se1165.18 (18)C15—C14—H14A105.9
Se2—Ir1—Se199.332 (16)P1—C14—H14A105.9
P1—Se1—Ir1109.29 (3)C14—C15—H15A109.5
P2—Se2—Ir1110.38 (3)C14—C15—H15B109.5
N1—P1—C11108.1 (2)H15A—C15—H15B109.5
N1—P1—C14111.3 (2)C14—C15—H15C109.5
C11—P1—C14110.2 (2)H15A—C15—H15C109.5
N1—P1—Se1116.89 (14)H15B—C15—H15C109.5
C11—P1—Se1104.32 (16)C14—C16—H16A109.5
C14—P1—Se1105.85 (17)C14—C16—H16B109.5
N1—P2—C21108.2 (2)H16A—C16—H16B109.5
N1—P2—C24111.2 (2)C14—C16—H16C109.5
C21—P2—C24110.3 (2)H16A—C16—H16C109.5
N1—P2—Se2116.88 (13)H16B—C16—H16C109.5
C21—P2—Se2104.26 (16)C22—C21—C23110.5 (5)
C24—P2—Se2105.67 (17)C22—C21—P2112.0 (3)
P1—N1—P2127.3 (2)C23—C21—P2111.8 (3)
C2—C1—Ir170.2 (3)C22—C21—H21A107.4
C2—C1—H1A120.0C23—C21—H21A107.4
Ir1—C1—H1A49.8P2—C21—H21A107.4
C2—C1—H1B120.0C21—C22—H22A109.5
Ir1—C1—H1B169.8C21—C22—H22B109.5
H1A—C1—H1B120.0H22A—C22—H22B109.5
C1—C2—Ir171.7 (3)C21—C22—H22C109.5
C1—C2—H2A120.0H22A—C22—H22C109.5
Ir1—C2—H2A48.3H22B—C22—H22C109.5
C1—C2—H2B120.0C21—C23—H23A109.5
Ir1—C2—H2B168.3C21—C23—H23B109.5
H2A—C2—H2B120.0H23A—C23—H23B109.5
C4—C3—Ir171.7 (3)C21—C23—H23C109.5
C4—C3—H3A120.0H23A—C23—H23C109.5
Ir1—C3—H3A48.3H23B—C23—H23C109.5
C4—C3—H3B120.0C26—C24—C25111.0 (5)
Ir1—C3—H3B168.3C26—C24—P2112.6 (4)
H3A—C3—H3B120.0C25—C24—P2114.7 (4)
C3—C4—Ir169.9 (3)C26—C24—H24A105.9
C3—C4—H4A120.0C25—C24—H24A105.9
Ir1—C4—H4A50.1P2—C24—H24A105.9
C3—C4—H4B120.0C24—C25—H25A109.5
Ir1—C4—H4B170.1C24—C25—H25B109.5
H4A—C4—H4B120.0H25A—C25—H25B109.5
C13—C11—C12110.4 (5)C24—C25—H25C109.5
C13—C11—P1112.6 (4)H25A—C25—H25C109.5
C12—C11—P1111.3 (3)H25B—C25—H25C109.5
C13—C11—H11A107.5C24—C26—H26A109.5
C12—C11—H11A107.5C24—C26—H26B109.5
P1—C11—H11A107.5H26A—C26—H26B109.5
C11—C12—H12A109.5C24—C26—H26C109.5
C11—C12—H12B109.5H26A—C26—H26C109.5
H12A—C12—H12B109.5H26B—C26—H26C109.5
C3—Ir1—Se1—P1131.1 (2)C1—Ir1—C3—C4109.8 (4)
C2—Ir1—Se1—P1126.0 (4)Se2—Ir1—C3—C4173.1 (3)
C4—Ir1—Se1—P1169.5 (2)Se1—Ir1—C3—C482.9 (4)
C1—Ir1—Se1—P172.3 (6)C2—Ir1—C4—C3108.1 (4)
Se2—Ir1—Se1—P124.11 (4)C1—Ir1—C4—C371.8 (4)
C3—Ir1—Se2—P2121.0 (4)Se2—Ir1—C4—C3167.4 (6)
C2—Ir1—Se2—P2136.9 (2)Se1—Ir1—C4—C393.3 (4)
C4—Ir1—Se2—P277.5 (7)N1—P1—C11—C1357.8 (5)
C1—Ir1—Se2—P2175.02 (19)C14—P1—C11—C1363.9 (5)
Se1—Ir1—Se2—P219.84 (4)Se1—P1—C11—C13177.1 (4)
Ir1—Se1—P1—N159.94 (15)N1—P1—C11—C1266.7 (4)
Ir1—Se1—P1—C11179.16 (16)C14—P1—C11—C12171.6 (3)
Ir1—Se1—P1—C1464.58 (17)Se1—P1—C11—C1258.3 (4)
Ir1—Se2—P2—N156.66 (15)N1—P1—C14—C16168.3 (4)
Ir1—Se2—P2—C21175.99 (16)C11—P1—C14—C1648.5 (5)
Ir1—Se2—P2—C2467.67 (17)Se1—P1—C14—C1663.7 (5)
C11—P1—N1—P2148.8 (3)N1—P1—C14—C1539.8 (5)
C14—P1—N1—P290.1 (3)C11—P1—C14—C1580.0 (5)
Se1—P1—N1—P231.6 (3)Se1—P1—C14—C15167.8 (4)
C21—P2—N1—P1147.9 (3)N1—P2—C21—C2269.1 (4)
C24—P2—N1—P190.8 (3)C24—P2—C21—C22169.0 (4)
Se2—P2—N1—P130.7 (3)Se2—P2—C21—C2255.9 (4)
C3—Ir1—C1—C2109.3 (4)N1—P2—C21—C2355.5 (5)
C4—Ir1—C1—C273.1 (4)C24—P2—C21—C2366.4 (5)
Se2—Ir1—C1—C293.2 (3)Se2—P2—C21—C23179.4 (4)
Se1—Ir1—C1—C2168.2 (5)N1—P2—C24—C26168.1 (5)
C3—Ir1—C2—C172.2 (4)C21—P2—C24—C2648.1 (5)
C4—Ir1—C2—C1108.8 (4)Se2—P2—C24—C2664.1 (5)
Se2—Ir1—C2—C182.9 (3)N1—P2—C24—C2539.9 (5)
Se1—Ir1—C2—C1172.5 (3)C21—P2—C24—C2580.2 (5)
C2—Ir1—C3—C473.7 (4)Se2—P2—C24—C25167.7 (4)

Experimental details

Crystal data
Chemical formula[Ir(C2H4)2(C12H28NP2Se2)]
Mr654.52
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.6965 (1), 10.3962 (1), 12.0620 (1)
α, β, γ (°)98.511 (1), 96.055 (1), 107.273 (1)
V3)1133.84 (2)
Z2
Radiation typeMo Kα
µ (mm1)9.24
Crystal size (mm)0.30 × 0.21 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.168, 0.320
No. of measured, independent and
observed [I > 2σ(I)] reflections
15331, 5170, 4505
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.03
No. of reflections5170
No. of parameters207
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.39, 1.03

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-06–0556 and NCET-08–0618).

References

First citationBarkaoui, L., Charrouf, M., Rager, M. N., Denise, B., Platzer, N. & Hudler, R. (1997). Bull. Soc. Chim. Fr. 134, 167–172.  CAS Google Scholar
First citationBruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheung, W. M., Lai, C. Y., Zhang, Q. F., Wong, W. Y., Williams, I. D. & Leung, W. H. (2006). Inorg. Chim. Acta, 359, 2712–2720.  Web of Science CSD CrossRef CAS Google Scholar
First citationKirchmann, M., Fleischhauer, S. & Wesemann, L. (2008). Organometallics, 27, 2803–2808.  Web of Science CSD CrossRef CAS Google Scholar
First citationLundquist, E. G., Folting, K., Streib, W. E., Huffman, J. C., Eisenstein, O. & Caulton, K. G. (1990). J. Am. Chem. Soc. 112, 855–863.  CSD CrossRef CAS Web of Science Google Scholar
First citationLy, T. Q. & Woollins, J. D. (1998). Coord. Chem. Rev. 176, 451–481.  Web of Science CrossRef CAS Google Scholar
First citationParr, J., Smith, M. B. & Slawin, A. M. Z. (1999). J. Organomet. Chem. 588, 99–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationRudler, H., Denise, B., Gregorio, J. R. & Vaissermann, J. (1997). Chem. Commun. 2299–2300.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoicheff, B. P. (1962). Tetrahedron, 17, 135–145.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds