metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ2-phenyl­acetato-κ2O:O′)bis­­[(iso­quinoline-κN)copper(II)]

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 13 November 2009; accepted 16 November 2009; online 21 November 2009)

In the title centrosymmetric binuclear CuII complex, [Cu2(C8H7O2)4(C9H7N)2], the two Cu cations are bridged by four carboxyl­ate groups of the phenyl­acetate anions; each Cu cation is further coordinated by an isoquinoline ligand to complete the distorted CuO4N square-pyramidal geometry. The Cu cation is displaced by 0.2092 (8) Å from the basal plane formed by the four O atoms. Within the dinuclear mol­ecule, the Cu⋯Cu separation is 2.6453 (6) Å. Although a parallel, overlapped arrangement of isoquinoline ligands exists in the crystal structure; the longer face-to-face distance of 3.667 (5) Å suggests there is no ππ stacking between isoquinoline ring systems.

Related literature

For general background to ππ stacking, see: Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Xu et al. (2007[Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622-m624.]). For a related isoquinoline complex, see: Li et al. (2009[Li, M.-J., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m881.]). For Cu⋯Cu separations in multi-nuclear CuII complexes, see: Li et al. (2007[Li, D.-X., Xu, D.-J. & Xu, Y.-Z. (2007). J. Coord. Chem. 60, 2687-2694.], 2009[Li, M.-J., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m881.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H7O2)4(C9H7N)2]

  • Mr = 925.94

  • Triclinic, [P \overline 1]

  • a = 8.2425 (15) Å

  • b = 11.251 (2) Å

  • c = 12.121 (2) Å

  • α = 94.594 (2)°

  • β = 90.178 (2)°

  • γ = 104.803 (4)°

  • V = 1082.9 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 294 K

  • 0.26 × 0.22 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.835, Tmax = 0.920

  • 11731 measured reflections

  • 3837 independent reflections

  • 3409 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.09

  • 3837 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Selected bond lengths (Å)

Cu—O1 1.9786 (16)
Cu—O2i 1.9754 (16)
Cu—O3 1.9785 (17)
Cu—O4i 1.9761 (17)
Cu—N1 2.1522 (18)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its crystal structure is reported here.

The molecular structure is shown in Fig. 1. Four phenylacetate anions bridge two CuII cations to form the centro-symmetric complex. Within the dinuclear molecule the Cu···Cu separation of 2.6453 (6) Å is consistent with 2.646 Å found in a related binucealr CuII complex bridged by acetate anions (Li et al., 2009) and 2.642 Å found in a polymeric CuII complex bridged by thiourea (Li et al. 2007). The CuII cation is coordinated by four carboxyl-O atoms from phenylacetate anions in the basal plane, an isoquinoline molecule further coordinates to the CuII cation in the apical position to complete the distorted square-pyramidal coordination geometry; the CuII cation is 0.2092 (8) Å deviated from the basal coordination plane.

The parallel, overlaped arrangement of isoquinoline ligands of adjacent complexes is observed in the crystal structure (Fig. 2). The face-to-face distance of 3.667 (5) Å suggests no π-π stacking between isoquinoline ring systems in the crystal structure.

Related literature top

For general background to ππ stacking, see: Su & Xu (2004); Xu et al. (2007). For a related isoquinoline complex, see: Li et al. (2009). For Cu···Cu separations in multi-nuclear CuII complexes, see: Li et al. (2007, 2009).

Experimental top

Isoquinoline (0.23 ml, 2 mmol), copper dicholoride dihydrate (0.17 g, 1 mmol) and 2-phenylacetic acid (0.27 g, 2 mmol) were dissolved in ethanol (10 ml) at room temperature. The single crystals of the title compound were obtained from the solution after 2 d.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and 0.97 Å (methylene) and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) 1 - x, 1 - y, 1 - z].
[Figure 2] Fig. 2. The unit cell packing diagram showing the parallel arrangement of isoquinoline ligands. H atoms have been omitted for clarity.
Tetrakis(µ2-phenylacetato-κ2O:O')bis[(isoquinoline- κN)copper(II)] top
Crystal data top
[Cu2(C8H7O2)4(C9H7N)2]Z = 1
Mr = 925.94F(000) = 478
Triclinic, P1Dx = 1.420 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2425 (15) ÅCell parameters from 5268 reflections
b = 11.251 (2) Åθ = 2.0–25.0°
c = 12.121 (2) ŵ = 1.04 mm1
α = 94.594 (2)°T = 294 K
β = 90.178 (2)°Prism, blue
γ = 104.803 (4)°0.26 × 0.22 × 0.16 mm
V = 1082.9 (3) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3837 independent reflections
Radiation source: fine-focus sealed tube3409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 1.7°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1312
Tmin = 0.835, Tmax = 0.920l = 1414
11731 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2372P]
where P = (Fo2 + 2Fc2)/3
3837 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Cu2(C8H7O2)4(C9H7N)2]γ = 104.803 (4)°
Mr = 925.94V = 1082.9 (3) Å3
Triclinic, P1Z = 1
a = 8.2425 (15) ÅMo Kα radiation
b = 11.251 (2) ŵ = 1.04 mm1
c = 12.121 (2) ÅT = 294 K
α = 94.594 (2)°0.26 × 0.22 × 0.16 mm
β = 90.178 (2)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3837 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3409 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.920Rint = 0.025
11731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.09Δρmax = 0.29 e Å3
3837 reflectionsΔρmin = 0.20 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.44020 (3)0.49777 (2)0.39826 (2)0.03660 (11)
N10.3604 (2)0.47759 (17)0.22703 (15)0.0433 (4)
O10.3102 (2)0.32991 (15)0.42744 (15)0.0580 (5)
O20.4167 (2)0.33169 (14)0.59722 (14)0.0526 (4)
O30.6366 (2)0.43173 (17)0.36405 (14)0.0546 (4)
O40.7375 (2)0.43275 (17)0.53476 (14)0.0522 (4)
C10.3214 (3)0.2823 (2)0.5162 (2)0.0447 (5)
C20.2087 (4)0.1536 (2)0.5287 (2)0.0581 (7)
H2A0.24510.12280.59450.070*
H2B0.09480.16030.54030.070*
C30.2070 (3)0.0608 (2)0.4318 (2)0.0446 (5)
C40.1314 (3)0.0679 (2)0.3319 (2)0.0582 (7)
H40.08160.13210.32290.070*
C50.1289 (4)0.0202 (3)0.2444 (3)0.0727 (9)
H50.07830.01430.17710.087*
C60.2001 (5)0.1151 (3)0.2565 (3)0.0766 (9)
H60.19630.17460.19800.092*
C70.2763 (4)0.1229 (3)0.3536 (3)0.0795 (9)
H70.32700.18680.36150.095*
C80.2788 (4)0.0355 (2)0.4415 (2)0.0611 (7)
H80.33020.04220.50830.073*
C90.7351 (3)0.4067 (2)0.4323 (2)0.0436 (5)
C100.8640 (3)0.3418 (3)0.3878 (2)0.0595 (7)
H10A0.96730.40360.37640.071*
H10B0.88740.29070.44340.071*
C110.8137 (3)0.2622 (2)0.2810 (2)0.0457 (5)
C120.9175 (3)0.2738 (3)0.1913 (2)0.0567 (6)
H121.01900.33390.19600.068*
C130.8745 (4)0.1989 (3)0.0954 (2)0.0694 (8)
H130.94710.20840.03630.083*
C140.7261 (4)0.1106 (3)0.0860 (3)0.0748 (9)
H140.69680.06020.02060.090*
C150.6204 (4)0.0969 (3)0.1739 (3)0.0755 (9)
H150.51940.03630.16810.091*
C160.6622 (3)0.1718 (3)0.2706 (2)0.0611 (7)
H160.58880.16200.32930.073*
C210.3704 (3)0.3795 (2)0.1640 (2)0.0500 (6)
H210.41250.32050.19560.060*
C220.3277 (5)0.2486 (3)0.0130 (3)0.0854 (10)
H220.36570.18770.01850.103*
C230.2778 (5)0.2338 (4)0.1212 (3)0.0947 (12)
H230.28350.16260.16400.114*
C240.2186 (4)0.3226 (4)0.1690 (2)0.0805 (10)
H240.18460.31010.24320.097*
C250.2095 (4)0.4268 (3)0.1096 (2)0.0751 (9)
H250.17000.48590.14290.090*
C260.2524 (5)0.5517 (3)0.0722 (3)0.0869 (11)
H260.21340.61390.04370.104*
C270.3021 (4)0.5620 (3)0.1800 (2)0.0718 (9)
H270.29500.63220.22380.086*
C280.3213 (3)0.3581 (2)0.0513 (2)0.0489 (6)
C290.2602 (3)0.4467 (2)0.0038 (2)0.0536 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.03901 (17)0.03174 (16)0.03687 (17)0.00689 (11)0.00402 (11)0.00272 (11)
N10.0469 (11)0.0393 (10)0.0415 (10)0.0094 (8)0.0075 (8)0.0036 (8)
O10.0681 (12)0.0368 (9)0.0580 (11)0.0062 (8)0.0115 (9)0.0023 (8)
O20.0614 (10)0.0383 (9)0.0497 (10)0.0013 (8)0.0008 (8)0.0000 (7)
O30.0567 (10)0.0683 (12)0.0473 (9)0.0337 (9)0.0039 (8)0.0028 (8)
O40.0468 (9)0.0653 (11)0.0480 (10)0.0235 (8)0.0053 (7)0.0045 (8)
C10.0449 (13)0.0322 (12)0.0524 (14)0.0036 (9)0.0086 (11)0.0029 (10)
C20.0658 (17)0.0384 (13)0.0590 (16)0.0058 (12)0.0118 (13)0.0005 (11)
C30.0421 (12)0.0291 (11)0.0561 (14)0.0025 (9)0.0011 (10)0.0031 (10)
C40.0609 (16)0.0425 (14)0.0711 (18)0.0131 (12)0.0118 (13)0.0048 (12)
C50.089 (2)0.0604 (18)0.0603 (18)0.0047 (16)0.0197 (15)0.0001 (14)
C60.106 (3)0.0479 (17)0.071 (2)0.0156 (16)0.0005 (18)0.0126 (14)
C70.099 (2)0.0492 (17)0.097 (3)0.0351 (16)0.003 (2)0.0036 (16)
C80.0664 (17)0.0503 (15)0.0655 (17)0.0126 (13)0.0117 (14)0.0063 (13)
C90.0373 (12)0.0417 (12)0.0502 (14)0.0092 (9)0.0029 (10)0.0028 (10)
C100.0443 (14)0.0792 (19)0.0599 (16)0.0298 (13)0.0072 (12)0.0107 (14)
C110.0401 (12)0.0482 (13)0.0538 (14)0.0212 (10)0.0012 (10)0.0025 (11)
C120.0448 (14)0.0590 (16)0.0663 (17)0.0135 (12)0.0083 (12)0.0051 (13)
C130.076 (2)0.079 (2)0.0561 (17)0.0257 (16)0.0143 (14)0.0014 (15)
C140.086 (2)0.069 (2)0.0677 (19)0.0227 (17)0.0061 (17)0.0147 (16)
C150.0661 (19)0.0560 (17)0.094 (2)0.0008 (14)0.0056 (17)0.0070 (16)
C160.0541 (16)0.0623 (17)0.0662 (17)0.0135 (13)0.0112 (13)0.0056 (14)
C210.0524 (14)0.0541 (15)0.0463 (13)0.0216 (11)0.0097 (11)0.0038 (11)
C220.105 (3)0.097 (3)0.0634 (19)0.054 (2)0.0140 (17)0.0290 (18)
C230.104 (3)0.122 (3)0.059 (2)0.044 (2)0.0057 (18)0.039 (2)
C240.079 (2)0.115 (3)0.0360 (15)0.008 (2)0.0016 (14)0.0062 (17)
C250.091 (2)0.084 (2)0.0436 (15)0.0073 (17)0.0106 (14)0.0131 (15)
C260.147 (3)0.0507 (17)0.070 (2)0.0390 (19)0.039 (2)0.0039 (15)
C270.116 (3)0.0440 (15)0.0592 (17)0.0326 (16)0.0282 (16)0.0103 (13)
C280.0417 (13)0.0595 (15)0.0432 (13)0.0121 (11)0.0005 (10)0.0062 (11)
C290.0570 (15)0.0552 (15)0.0424 (13)0.0026 (12)0.0036 (11)0.0066 (11)
Geometric parameters (Å, º) top
Cu—O11.9786 (16)C10—C111.507 (3)
Cu—O2i1.9754 (16)C10—H10A0.9700
Cu—O31.9785 (17)C10—H10B0.9700
Cu—O4i1.9761 (17)C11—C121.379 (3)
Cu—N12.1522 (18)C11—C161.393 (3)
Cu—Cui2.6453 (6)C12—C131.369 (4)
N1—C211.312 (3)C12—H120.9300
N1—C271.333 (3)C13—C141.362 (4)
O1—C11.253 (3)C13—H130.9300
O2—C11.255 (3)C14—C151.372 (4)
O2—Cui1.9754 (16)C14—H140.9300
O3—C91.254 (3)C15—C161.376 (4)
O4—C91.252 (3)C15—H150.9300
O4—Cui1.9761 (17)C16—H160.9300
C1—C21.527 (3)C21—C281.407 (3)
C2—C31.506 (3)C21—H210.9300
C2—H2A0.9700C22—C231.358 (5)
C2—H2B0.9700C22—C281.417 (4)
C3—C81.373 (4)C22—H220.9300
C3—C41.378 (4)C23—C241.383 (5)
C4—C51.388 (4)C23—H230.9300
C4—H40.9300C24—C251.345 (5)
C5—C61.360 (5)C24—H240.9300
C5—H50.9300C25—C291.419 (4)
C6—C71.352 (5)C25—H250.9300
C6—H60.9300C26—C271.356 (4)
C7—C81.387 (4)C26—C291.403 (4)
C7—H70.9300C26—H260.9300
C8—H80.9300C27—H270.9300
C9—C101.513 (3)C28—C291.388 (4)
O2i—Cu—O4i87.53 (8)C11—C10—C9115.1 (2)
O2i—Cu—O1167.83 (7)C11—C10—H10A108.5
O4i—Cu—O190.12 (8)C9—C10—H10A108.5
O2i—Cu—O390.58 (8)C11—C10—H10B108.5
O4i—Cu—O3167.78 (7)C9—C10—H10B108.5
O1—Cu—O389.19 (8)H10A—C10—H10B107.5
O2i—Cu—N198.20 (7)C12—C11—C16117.7 (2)
O4i—Cu—N199.69 (7)C12—C11—C10121.4 (2)
O1—Cu—N193.96 (7)C16—C11—C10120.9 (2)
O3—Cu—N192.53 (7)C13—C12—C11121.5 (2)
O2i—Cu—Cui84.42 (5)C13—C12—H12119.2
O4i—Cu—Cui87.03 (5)C11—C12—H12119.2
O1—Cu—Cui83.53 (5)C14—C13—C12120.5 (3)
O3—Cu—Cui80.77 (5)C14—C13—H13119.8
N1—Cu—Cui172.85 (5)C12—C13—H13119.8
C21—N1—C27117.3 (2)C13—C14—C15119.3 (3)
C21—N1—Cu119.82 (16)C13—C14—H14120.3
C27—N1—Cu122.90 (16)C15—C14—H14120.3
C1—O1—Cu123.63 (14)C14—C15—C16120.7 (3)
C1—O2—Cui122.64 (16)C14—C15—H15119.6
C9—O3—Cu126.83 (16)C16—C15—H15119.6
C9—O4—Cui119.64 (15)C15—C16—C11120.3 (3)
O1—C1—O2125.7 (2)C15—C16—H16119.8
O1—C1—C2117.9 (2)C11—C16—H16119.8
O2—C1—C2116.4 (2)N1—C21—C28124.0 (2)
C3—C2—C1114.8 (2)N1—C21—H21118.0
C3—C2—H2A108.6C28—C21—H21118.0
C1—C2—H2A108.6C23—C22—C28119.2 (3)
C3—C2—H2B108.6C23—C22—H22120.4
C1—C2—H2B108.6C28—C22—H22120.4
H2A—C2—H2B107.5C22—C23—C24121.2 (3)
C8—C3—C4117.9 (2)C22—C23—H23119.4
C8—C3—C2120.5 (2)C24—C23—H23119.4
C4—C3—C2121.6 (2)C25—C24—C23120.8 (3)
C3—C4—C5120.4 (3)C25—C24—H24119.6
C3—C4—H4119.8C23—C24—H24119.6
C5—C4—H4119.8C24—C25—C29120.2 (3)
C6—C5—C4120.5 (3)C24—C25—H25119.9
C6—C5—H5119.8C29—C25—H25119.9
C4—C5—H5119.8C27—C26—C29119.7 (3)
C7—C6—C5119.9 (3)C27—C26—H26120.2
C7—C6—H6120.0C29—C26—H26120.2
C5—C6—H6120.0N1—C27—C26123.9 (3)
C6—C7—C8119.9 (3)N1—C27—H27118.1
C6—C7—H7120.0C26—C27—H27118.1
C8—C7—H7120.0C29—C28—C21118.0 (2)
C3—C8—C7121.3 (3)C29—C28—C22119.6 (2)
C3—C8—H8119.3C21—C28—C22122.3 (3)
C7—C8—H8119.3C28—C29—C26117.2 (2)
O4—C9—O3125.3 (2)C28—C29—C25118.9 (3)
O4—C9—C10116.9 (2)C26—C29—C25123.9 (3)
O3—C9—C10117.8 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C8H7O2)4(C9H7N)2]
Mr925.94
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.2425 (15), 11.251 (2), 12.121 (2)
α, β, γ (°)94.594 (2), 90.178 (2), 104.803 (4)
V3)1082.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.26 × 0.22 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.835, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
11731, 3837, 3409
Rint0.025
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.09
No. of reflections3837
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.20

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu—O11.9786 (16)Cu—O4i1.9761 (17)
Cu—O2i1.9754 (16)Cu—N12.1522 (18)
Cu—O31.9785 (17)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, M.-J., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, D.-X., Xu, D.-J. & Xu, Y.-Z. (2007). J. Coord. Chem. 60, 2687–2694.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds