metal-organic compounds
Tetrakis(μ2-phenylacetato-κ2O:O′)bis[(isoquinoline-κN)copper(II)]
aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn
In the title centrosymmetric binuclear CuII complex, [Cu2(C8H7O2)4(C9H7N)2], the two Cu cations are bridged by four carboxylate groups of the phenylacetate anions; each Cu cation is further coordinated by an isoquinoline ligand to complete the distorted CuO4N square-pyramidal geometry. The Cu cation is displaced by 0.2092 (8) Å from the basal plane formed by the four O atoms. Within the dinuclear molecule, the Cu⋯Cu separation is 2.6453 (6) Å. Although a parallel, overlapped arrangement of isoquinoline ligands exists in the the longer face-to-face distance of 3.667 (5) Å suggests there is no π–π stacking between isoquinoline ring systems.
Related literature
For general background to π–π stacking, see: Su & Xu (2004); Xu et al. (2007). For a related isoquinoline complex, see: Li et al. (2009). For Cu⋯Cu separations in multi-nuclear CuII complexes, see: Li et al. (2007, 2009).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809048697/ng2685sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809048697/ng2685Isup2.hkl
Isoquinoline (0.23 ml, 2 mmol), copper dicholoride dihydrate (0.17 g, 1 mmol) and 2-phenylacetic acid (0.27 g, 2 mmol) were dissolved in ethanol (10 ml) at room temperature. The single crystals of the title compound were obtained from the solution after 2 d.
H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and 0.97 Å (methylene) and refined in riding mode with Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu2(C8H7O2)4(C9H7N)2] | Z = 1 |
Mr = 925.94 | F(000) = 478 |
Triclinic, P1 | Dx = 1.420 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2425 (15) Å | Cell parameters from 5268 reflections |
b = 11.251 (2) Å | θ = 2.0–25.0° |
c = 12.121 (2) Å | µ = 1.04 mm−1 |
α = 94.594 (2)° | T = 294 K |
β = 90.178 (2)° | Prism, blue |
γ = 104.803 (4)° | 0.26 × 0.22 × 0.16 mm |
V = 1082.9 (3) Å3 |
Rigaku R-AXIS RAPID IP diffractometer | 3837 independent reflections |
Radiation source: fine-focus sealed tube | 3409 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 10.0 pixels mm-1 | θmax = 25.2°, θmin = 1.7° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −13→12 |
Tmin = 0.835, Tmax = 0.920 | l = −14→14 |
11731 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2372P] where P = (Fo2 + 2Fc2)/3 |
3837 reflections | (Δ/σ)max < 0.001 |
280 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
[Cu2(C8H7O2)4(C9H7N)2] | γ = 104.803 (4)° |
Mr = 925.94 | V = 1082.9 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.2425 (15) Å | Mo Kα radiation |
b = 11.251 (2) Å | µ = 1.04 mm−1 |
c = 12.121 (2) Å | T = 294 K |
α = 94.594 (2)° | 0.26 × 0.22 × 0.16 mm |
β = 90.178 (2)° |
Rigaku R-AXIS RAPID IP diffractometer | 3837 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3409 reflections with I > 2σ(I) |
Tmin = 0.835, Tmax = 0.920 | Rint = 0.025 |
11731 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.29 e Å−3 |
3837 reflections | Δρmin = −0.20 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.44020 (3) | 0.49777 (2) | 0.39826 (2) | 0.03660 (11) | |
N1 | 0.3604 (2) | 0.47759 (17) | 0.22703 (15) | 0.0433 (4) | |
O1 | 0.3102 (2) | 0.32991 (15) | 0.42744 (15) | 0.0580 (5) | |
O2 | 0.4167 (2) | 0.33169 (14) | 0.59722 (14) | 0.0526 (4) | |
O3 | 0.6366 (2) | 0.43173 (17) | 0.36405 (14) | 0.0546 (4) | |
O4 | 0.7375 (2) | 0.43275 (17) | 0.53476 (14) | 0.0522 (4) | |
C1 | 0.3214 (3) | 0.2823 (2) | 0.5162 (2) | 0.0447 (5) | |
C2 | 0.2087 (4) | 0.1536 (2) | 0.5287 (2) | 0.0581 (7) | |
H2A | 0.2451 | 0.1228 | 0.5945 | 0.070* | |
H2B | 0.0948 | 0.1603 | 0.5403 | 0.070* | |
C3 | 0.2070 (3) | 0.0608 (2) | 0.4318 (2) | 0.0446 (5) | |
C4 | 0.1314 (3) | 0.0679 (2) | 0.3319 (2) | 0.0582 (7) | |
H4 | 0.0816 | 0.1321 | 0.3229 | 0.070* | |
C5 | 0.1289 (4) | −0.0202 (3) | 0.2444 (3) | 0.0727 (9) | |
H5 | 0.0783 | −0.0143 | 0.1771 | 0.087* | |
C6 | 0.2001 (5) | −0.1151 (3) | 0.2565 (3) | 0.0766 (9) | |
H6 | 0.1963 | −0.1746 | 0.1980 | 0.092* | |
C7 | 0.2763 (4) | −0.1229 (3) | 0.3536 (3) | 0.0795 (9) | |
H7 | 0.3270 | −0.1868 | 0.3615 | 0.095* | |
C8 | 0.2788 (4) | −0.0355 (2) | 0.4415 (2) | 0.0611 (7) | |
H8 | 0.3302 | −0.0422 | 0.5083 | 0.073* | |
C9 | 0.7351 (3) | 0.4067 (2) | 0.4323 (2) | 0.0436 (5) | |
C10 | 0.8640 (3) | 0.3418 (3) | 0.3878 (2) | 0.0595 (7) | |
H10A | 0.9673 | 0.4036 | 0.3764 | 0.071* | |
H10B | 0.8874 | 0.2907 | 0.4434 | 0.071* | |
C11 | 0.8137 (3) | 0.2622 (2) | 0.2810 (2) | 0.0457 (5) | |
C12 | 0.9175 (3) | 0.2738 (3) | 0.1913 (2) | 0.0567 (6) | |
H12 | 1.0190 | 0.3339 | 0.1960 | 0.068* | |
C13 | 0.8745 (4) | 0.1989 (3) | 0.0954 (2) | 0.0694 (8) | |
H13 | 0.9471 | 0.2084 | 0.0363 | 0.083* | |
C14 | 0.7261 (4) | 0.1106 (3) | 0.0860 (3) | 0.0748 (9) | |
H14 | 0.6968 | 0.0602 | 0.0206 | 0.090* | |
C15 | 0.6204 (4) | 0.0969 (3) | 0.1739 (3) | 0.0755 (9) | |
H15 | 0.5194 | 0.0363 | 0.1681 | 0.091* | |
C16 | 0.6622 (3) | 0.1718 (3) | 0.2706 (2) | 0.0611 (7) | |
H16 | 0.5888 | 0.1620 | 0.3293 | 0.073* | |
C21 | 0.3704 (3) | 0.3795 (2) | 0.1640 (2) | 0.0500 (6) | |
H21 | 0.4125 | 0.3205 | 0.1956 | 0.060* | |
C22 | 0.3277 (5) | 0.2486 (3) | −0.0130 (3) | 0.0854 (10) | |
H22 | 0.3657 | 0.1877 | 0.0185 | 0.103* | |
C23 | 0.2778 (5) | 0.2338 (4) | −0.1212 (3) | 0.0947 (12) | |
H23 | 0.2835 | 0.1626 | −0.1640 | 0.114* | |
C24 | 0.2186 (4) | 0.3226 (4) | −0.1690 (2) | 0.0805 (10) | |
H24 | 0.1846 | 0.3101 | −0.2432 | 0.097* | |
C25 | 0.2095 (4) | 0.4268 (3) | −0.1096 (2) | 0.0751 (9) | |
H25 | 0.1700 | 0.4859 | −0.1429 | 0.090* | |
C26 | 0.2524 (5) | 0.5517 (3) | 0.0722 (3) | 0.0869 (11) | |
H26 | 0.2134 | 0.6139 | 0.0437 | 0.104* | |
C27 | 0.3021 (4) | 0.5620 (3) | 0.1800 (2) | 0.0718 (9) | |
H27 | 0.2950 | 0.6322 | 0.2238 | 0.086* | |
C28 | 0.3213 (3) | 0.3581 (2) | 0.0513 (2) | 0.0489 (6) | |
C29 | 0.2602 (3) | 0.4467 (2) | 0.0038 (2) | 0.0536 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.03901 (17) | 0.03174 (16) | 0.03687 (17) | 0.00689 (11) | −0.00402 (11) | −0.00272 (11) |
N1 | 0.0469 (11) | 0.0393 (10) | 0.0415 (10) | 0.0094 (8) | −0.0075 (8) | −0.0036 (8) |
O1 | 0.0681 (12) | 0.0368 (9) | 0.0580 (11) | −0.0062 (8) | −0.0115 (9) | 0.0023 (8) |
O2 | 0.0614 (10) | 0.0383 (9) | 0.0497 (10) | −0.0013 (8) | −0.0008 (8) | 0.0000 (7) |
O3 | 0.0567 (10) | 0.0683 (12) | 0.0473 (9) | 0.0337 (9) | −0.0039 (8) | −0.0028 (8) |
O4 | 0.0468 (9) | 0.0653 (11) | 0.0480 (10) | 0.0235 (8) | −0.0053 (7) | −0.0045 (8) |
C1 | 0.0449 (13) | 0.0322 (12) | 0.0524 (14) | 0.0036 (9) | 0.0086 (11) | −0.0029 (10) |
C2 | 0.0658 (17) | 0.0384 (13) | 0.0590 (16) | −0.0058 (12) | 0.0118 (13) | −0.0005 (11) |
C3 | 0.0421 (12) | 0.0291 (11) | 0.0561 (14) | −0.0025 (9) | 0.0011 (10) | 0.0031 (10) |
C4 | 0.0609 (16) | 0.0425 (14) | 0.0711 (18) | 0.0131 (12) | −0.0118 (13) | 0.0048 (12) |
C5 | 0.089 (2) | 0.0604 (18) | 0.0603 (18) | 0.0047 (16) | −0.0197 (15) | −0.0001 (14) |
C6 | 0.106 (3) | 0.0479 (17) | 0.071 (2) | 0.0156 (16) | −0.0005 (18) | −0.0126 (14) |
C7 | 0.099 (2) | 0.0492 (17) | 0.097 (3) | 0.0351 (16) | −0.003 (2) | −0.0036 (16) |
C8 | 0.0664 (17) | 0.0503 (15) | 0.0655 (17) | 0.0126 (13) | −0.0117 (14) | 0.0063 (13) |
C9 | 0.0373 (12) | 0.0417 (12) | 0.0502 (14) | 0.0092 (9) | −0.0029 (10) | −0.0028 (10) |
C10 | 0.0443 (14) | 0.0792 (19) | 0.0599 (16) | 0.0298 (13) | −0.0072 (12) | −0.0107 (14) |
C11 | 0.0401 (12) | 0.0482 (13) | 0.0538 (14) | 0.0212 (10) | 0.0012 (10) | 0.0025 (11) |
C12 | 0.0448 (14) | 0.0590 (16) | 0.0663 (17) | 0.0135 (12) | 0.0083 (12) | 0.0051 (13) |
C13 | 0.076 (2) | 0.079 (2) | 0.0561 (17) | 0.0257 (16) | 0.0143 (14) | 0.0014 (15) |
C14 | 0.086 (2) | 0.069 (2) | 0.0677 (19) | 0.0227 (17) | −0.0061 (17) | −0.0147 (16) |
C15 | 0.0661 (19) | 0.0560 (17) | 0.094 (2) | 0.0008 (14) | −0.0056 (17) | −0.0070 (16) |
C16 | 0.0541 (16) | 0.0623 (17) | 0.0662 (17) | 0.0135 (13) | 0.0112 (13) | 0.0056 (14) |
C21 | 0.0524 (14) | 0.0541 (15) | 0.0463 (13) | 0.0216 (11) | −0.0097 (11) | −0.0038 (11) |
C22 | 0.105 (3) | 0.097 (3) | 0.0634 (19) | 0.054 (2) | −0.0140 (17) | −0.0290 (18) |
C23 | 0.104 (3) | 0.122 (3) | 0.059 (2) | 0.044 (2) | −0.0057 (18) | −0.039 (2) |
C24 | 0.079 (2) | 0.115 (3) | 0.0360 (15) | 0.008 (2) | 0.0016 (14) | −0.0062 (17) |
C25 | 0.091 (2) | 0.084 (2) | 0.0436 (15) | 0.0073 (17) | −0.0106 (14) | 0.0131 (15) |
C26 | 0.147 (3) | 0.0507 (17) | 0.070 (2) | 0.0390 (19) | −0.039 (2) | 0.0039 (15) |
C27 | 0.116 (3) | 0.0440 (15) | 0.0592 (17) | 0.0326 (16) | −0.0282 (16) | −0.0103 (13) |
C28 | 0.0417 (13) | 0.0595 (15) | 0.0432 (13) | 0.0121 (11) | −0.0005 (10) | −0.0062 (11) |
C29 | 0.0570 (15) | 0.0552 (15) | 0.0424 (13) | 0.0026 (12) | −0.0036 (11) | 0.0066 (11) |
Cu—O1 | 1.9786 (16) | C10—C11 | 1.507 (3) |
Cu—O2i | 1.9754 (16) | C10—H10A | 0.9700 |
Cu—O3 | 1.9785 (17) | C10—H10B | 0.9700 |
Cu—O4i | 1.9761 (17) | C11—C12 | 1.379 (3) |
Cu—N1 | 2.1522 (18) | C11—C16 | 1.393 (3) |
Cu—Cui | 2.6453 (6) | C12—C13 | 1.369 (4) |
N1—C21 | 1.312 (3) | C12—H12 | 0.9300 |
N1—C27 | 1.333 (3) | C13—C14 | 1.362 (4) |
O1—C1 | 1.253 (3) | C13—H13 | 0.9300 |
O2—C1 | 1.255 (3) | C14—C15 | 1.372 (4) |
O2—Cui | 1.9754 (16) | C14—H14 | 0.9300 |
O3—C9 | 1.254 (3) | C15—C16 | 1.376 (4) |
O4—C9 | 1.252 (3) | C15—H15 | 0.9300 |
O4—Cui | 1.9761 (17) | C16—H16 | 0.9300 |
C1—C2 | 1.527 (3) | C21—C28 | 1.407 (3) |
C2—C3 | 1.506 (3) | C21—H21 | 0.9300 |
C2—H2A | 0.9700 | C22—C23 | 1.358 (5) |
C2—H2B | 0.9700 | C22—C28 | 1.417 (4) |
C3—C8 | 1.373 (4) | C22—H22 | 0.9300 |
C3—C4 | 1.378 (4) | C23—C24 | 1.383 (5) |
C4—C5 | 1.388 (4) | C23—H23 | 0.9300 |
C4—H4 | 0.9300 | C24—C25 | 1.345 (5) |
C5—C6 | 1.360 (5) | C24—H24 | 0.9300 |
C5—H5 | 0.9300 | C25—C29 | 1.419 (4) |
C6—C7 | 1.352 (5) | C25—H25 | 0.9300 |
C6—H6 | 0.9300 | C26—C27 | 1.356 (4) |
C7—C8 | 1.387 (4) | C26—C29 | 1.403 (4) |
C7—H7 | 0.9300 | C26—H26 | 0.9300 |
C8—H8 | 0.9300 | C27—H27 | 0.9300 |
C9—C10 | 1.513 (3) | C28—C29 | 1.388 (4) |
O2i—Cu—O4i | 87.53 (8) | C11—C10—C9 | 115.1 (2) |
O2i—Cu—O1 | 167.83 (7) | C11—C10—H10A | 108.5 |
O4i—Cu—O1 | 90.12 (8) | C9—C10—H10A | 108.5 |
O2i—Cu—O3 | 90.58 (8) | C11—C10—H10B | 108.5 |
O4i—Cu—O3 | 167.78 (7) | C9—C10—H10B | 108.5 |
O1—Cu—O3 | 89.19 (8) | H10A—C10—H10B | 107.5 |
O2i—Cu—N1 | 98.20 (7) | C12—C11—C16 | 117.7 (2) |
O4i—Cu—N1 | 99.69 (7) | C12—C11—C10 | 121.4 (2) |
O1—Cu—N1 | 93.96 (7) | C16—C11—C10 | 120.9 (2) |
O3—Cu—N1 | 92.53 (7) | C13—C12—C11 | 121.5 (2) |
O2i—Cu—Cui | 84.42 (5) | C13—C12—H12 | 119.2 |
O4i—Cu—Cui | 87.03 (5) | C11—C12—H12 | 119.2 |
O1—Cu—Cui | 83.53 (5) | C14—C13—C12 | 120.5 (3) |
O3—Cu—Cui | 80.77 (5) | C14—C13—H13 | 119.8 |
N1—Cu—Cui | 172.85 (5) | C12—C13—H13 | 119.8 |
C21—N1—C27 | 117.3 (2) | C13—C14—C15 | 119.3 (3) |
C21—N1—Cu | 119.82 (16) | C13—C14—H14 | 120.3 |
C27—N1—Cu | 122.90 (16) | C15—C14—H14 | 120.3 |
C1—O1—Cu | 123.63 (14) | C14—C15—C16 | 120.7 (3) |
C1—O2—Cui | 122.64 (16) | C14—C15—H15 | 119.6 |
C9—O3—Cu | 126.83 (16) | C16—C15—H15 | 119.6 |
C9—O4—Cui | 119.64 (15) | C15—C16—C11 | 120.3 (3) |
O1—C1—O2 | 125.7 (2) | C15—C16—H16 | 119.8 |
O1—C1—C2 | 117.9 (2) | C11—C16—H16 | 119.8 |
O2—C1—C2 | 116.4 (2) | N1—C21—C28 | 124.0 (2) |
C3—C2—C1 | 114.8 (2) | N1—C21—H21 | 118.0 |
C3—C2—H2A | 108.6 | C28—C21—H21 | 118.0 |
C1—C2—H2A | 108.6 | C23—C22—C28 | 119.2 (3) |
C3—C2—H2B | 108.6 | C23—C22—H22 | 120.4 |
C1—C2—H2B | 108.6 | C28—C22—H22 | 120.4 |
H2A—C2—H2B | 107.5 | C22—C23—C24 | 121.2 (3) |
C8—C3—C4 | 117.9 (2) | C22—C23—H23 | 119.4 |
C8—C3—C2 | 120.5 (2) | C24—C23—H23 | 119.4 |
C4—C3—C2 | 121.6 (2) | C25—C24—C23 | 120.8 (3) |
C3—C4—C5 | 120.4 (3) | C25—C24—H24 | 119.6 |
C3—C4—H4 | 119.8 | C23—C24—H24 | 119.6 |
C5—C4—H4 | 119.8 | C24—C25—C29 | 120.2 (3) |
C6—C5—C4 | 120.5 (3) | C24—C25—H25 | 119.9 |
C6—C5—H5 | 119.8 | C29—C25—H25 | 119.9 |
C4—C5—H5 | 119.8 | C27—C26—C29 | 119.7 (3) |
C7—C6—C5 | 119.9 (3) | C27—C26—H26 | 120.2 |
C7—C6—H6 | 120.0 | C29—C26—H26 | 120.2 |
C5—C6—H6 | 120.0 | N1—C27—C26 | 123.9 (3) |
C6—C7—C8 | 119.9 (3) | N1—C27—H27 | 118.1 |
C6—C7—H7 | 120.0 | C26—C27—H27 | 118.1 |
C8—C7—H7 | 120.0 | C29—C28—C21 | 118.0 (2) |
C3—C8—C7 | 121.3 (3) | C29—C28—C22 | 119.6 (2) |
C3—C8—H8 | 119.3 | C21—C28—C22 | 122.3 (3) |
C7—C8—H8 | 119.3 | C28—C29—C26 | 117.2 (2) |
O4—C9—O3 | 125.3 (2) | C28—C29—C25 | 118.9 (3) |
O4—C9—C10 | 116.9 (2) | C26—C29—C25 | 123.9 (3) |
O3—C9—C10 | 117.8 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C8H7O2)4(C9H7N)2] |
Mr | 925.94 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 8.2425 (15), 11.251 (2), 12.121 (2) |
α, β, γ (°) | 94.594 (2), 90.178 (2), 104.803 (4) |
V (Å3) | 1082.9 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.04 |
Crystal size (mm) | 0.26 × 0.22 × 0.16 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.835, 0.920 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11731, 3837, 3409 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.088, 1.09 |
No. of reflections | 3837 |
No. of parameters | 280 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.20 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Cu—O1 | 1.9786 (16) | Cu—O4i | 1.9761 (17) |
Cu—O2i | 1.9754 (16) | Cu—N1 | 2.1522 (18) |
Cu—O3 | 1.9785 (17) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported by the ZIJIN project of Zhejiang University, China.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, M.-J., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m881. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, D.-X., Xu, D.-J. & Xu, Y.-Z. (2007). J. Coord. Chem. 60, 2687–2694. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229. Web of Science CSD CrossRef CAS Google Scholar
Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its crystal structure is reported here.
The molecular structure is shown in Fig. 1. Four phenylacetate anions bridge two CuII cations to form the centro-symmetric complex. Within the dinuclear molecule the Cu···Cu separation of 2.6453 (6) Å is consistent with 2.646 Å found in a related binucealr CuII complex bridged by acetate anions (Li et al., 2009) and 2.642 Å found in a polymeric CuII complex bridged by thiourea (Li et al. 2007). The CuII cation is coordinated by four carboxyl-O atoms from phenylacetate anions in the basal plane, an isoquinoline molecule further coordinates to the CuII cation in the apical position to complete the distorted square-pyramidal coordination geometry; the CuII cation is 0.2092 (8) Å deviated from the basal coordination plane.
The parallel, overlaped arrangement of isoquinoline ligands of adjacent complexes is observed in the crystal structure (Fig. 2). The face-to-face distance of 3.667 (5) Å suggests no π-π stacking between isoquinoline ring systems in the crystal structure.