organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-(2-methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 November 2009; accepted 19 November 2009; online 21 November 2009)

In the title compound, C14H15NO2S, the dihedral angle between the aromatic rings is 49.7 (1)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur.

Related literature

For our study of the effect of substituents on the crystal structures of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692.]; 2009[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.]). For bond lengths in other aryl sulfonamides, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO2S

  • Mr = 261.33

  • Orthorhombic, P b c a

  • a = 14.650 (3) Å

  • b = 12.019 (1) Å

  • c = 15.634 (3) Å

  • V = 2752.8 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.04 mm−1

  • T = 299 K

  • 0.55 × 0.55 × 0.35 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.400, Tmax = 0.535

  • 3596 measured reflections

  • 2450 independent reflections

  • 1899 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.134

  • S = 1.06

  • 2450 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.838 (17) 2.219 (18) 3.036 (3) 165 (2)
Symmetry code: (i) -x, -y, -z+1.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 .

Supporting information


Comment top

As part of a study of the effect of substituents on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008; 2009), in the present work, the structure of 4-methyl-N-(2-methylphenyl)- benzenesulfonamide (I) has been determined. The conformation of the N—C bond in the C1—SO2—NH—C7 segment of the structure has gauche torsions with respect to the SO bonds.(Fig. 1). The molecule is bent at the S atom with the C1—SO2—NH—C7 torsion angle of 60.0 (2)°, compared to the values of 72.0 (2)° in N-(2-methylphenyl)- benzenesulfonamide (II)(Gowda et al.,2008) and 51.6 (3)° in 4-methyl-N-(phenyl)benzenesulfonamide (III) (Gowda et al., 2009). The N—H bond orients itself away from the ortho-methyl group in the anilino benzene ring. The two benzene rings in (I) are tilted relative to each other by 49.7 (1)°, compared to the values of 61.5 (1)° in (II) and 68.4 (1)° in (III). The other bond parameters are similar to those observed in (II), (III) and other aryl sulfonamides(Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) via N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

Related literature top

For our study of the effect of substituents on the crystal structures of N-(aryl)-arylsulfonamides, see: Gowda et al. (2008; 2009). For bond lengths in other aryl sulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006)

Experimental top

The solution of toluene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with o-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 4-methyl-N-(2-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Methyl-N-(2-methylphenyl)benzenesulfonamide top
Crystal data top
C14H15NO2SF(000) = 1104
Mr = 261.33Dx = 1.261 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 14.650 (3) Åθ = 5.7–18.7°
b = 12.019 (1) ŵ = 2.04 mm1
c = 15.634 (3) ÅT = 299 K
V = 2752.8 (8) Å3Prism, colourless
Z = 80.55 × 0.55 × 0.35 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1899 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 66.8°, θmin = 5.5°
ω–2θ scansh = 171
Absorption correction: ψ scan
(North et al., 1968)
k = 141
Tmin = 0.400, Tmax = 0.535l = 618
3596 measured reflections3 standard reflections every 120 min
2450 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.066P)2 + 0.6125P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2450 reflectionsΔρmax = 0.18 e Å3
167 parametersΔρmin = 0.23 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0052 (4)
Crystal data top
C14H15NO2SV = 2752.8 (8) Å3
Mr = 261.33Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 14.650 (3) ŵ = 2.04 mm1
b = 12.019 (1) ÅT = 299 K
c = 15.634 (3) Å0.55 × 0.55 × 0.35 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1899 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.044
Tmin = 0.400, Tmax = 0.5353 standard reflections every 120 min
3596 measured reflections intensity decay: 1.0%
2450 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.18 e Å3
2450 reflectionsΔρmin = 0.23 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03969 (15)0.17693 (18)0.64937 (14)0.0620 (6)
C20.12664 (19)0.1429 (2)0.6286 (2)0.0857 (8)
H20.13590.07540.60080.103*
C30.19886 (19)0.2088 (3)0.6489 (2)0.0898 (8)
H30.25740.18450.63560.108*
C40.18818 (18)0.3102 (2)0.68837 (15)0.0733 (6)
C50.10123 (19)0.3429 (2)0.70810 (17)0.0817 (7)
H50.09230.41120.73480.098*
C60.02714 (18)0.2779 (2)0.68964 (16)0.0744 (7)
H60.03130.30170.70410.089*
C70.12097 (16)0.2537 (2)0.52015 (16)0.0689 (6)
C80.07178 (18)0.3294 (2)0.47154 (17)0.0722 (7)
C90.1070 (2)0.4370 (2)0.4659 (2)0.0922 (9)
H90.07660.48950.43280.111*
C100.1853 (3)0.4672 (3)0.5079 (3)0.1076 (11)
H100.20630.54000.50400.129*
C110.2329 (2)0.3912 (3)0.5557 (2)0.1046 (11)
H110.28620.41180.58390.125*
C120.20070 (18)0.2843 (2)0.5612 (2)0.0871 (8)
H120.23290.23180.59280.105*
C130.2691 (2)0.3820 (3)0.7071 (2)0.1058 (10)
H13A0.31060.34250.74370.127*
H13B0.29930.40080.65460.127*
H13C0.24930.44890.73520.127*
C140.0145 (2)0.2995 (2)0.4273 (2)0.0950 (9)
H14A0.05830.27400.46860.114*
H14B0.00280.24150.38650.114*
H14C0.03810.36370.39830.114*
N10.09033 (14)0.14056 (16)0.52843 (14)0.0700 (5)
H1N0.0544 (16)0.118 (2)0.4904 (15)0.084*
O10.02213 (13)0.01564 (13)0.60343 (13)0.0853 (6)
O20.12395 (13)0.11202 (15)0.68176 (13)0.0885 (6)
S10.05391 (4)0.09508 (5)0.62032 (4)0.0692 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0703 (13)0.0502 (11)0.0654 (12)0.0088 (10)0.0110 (11)0.0036 (9)
C20.0693 (15)0.0638 (14)0.124 (2)0.0106 (13)0.0150 (15)0.0180 (15)
C30.0678 (15)0.0908 (19)0.111 (2)0.0118 (15)0.0145 (15)0.0120 (16)
C40.0772 (15)0.0814 (16)0.0614 (13)0.0030 (13)0.0008 (12)0.0042 (12)
C50.0939 (19)0.0689 (15)0.0821 (16)0.0029 (14)0.0014 (15)0.0193 (13)
C60.0727 (14)0.0705 (15)0.0801 (15)0.0096 (12)0.0102 (13)0.0162 (12)
C70.0686 (13)0.0572 (12)0.0809 (15)0.0060 (11)0.0124 (12)0.0126 (11)
C80.0782 (15)0.0539 (12)0.0844 (16)0.0001 (11)0.0177 (13)0.0083 (11)
C90.111 (2)0.0598 (14)0.106 (2)0.0032 (15)0.0331 (19)0.0051 (14)
C100.121 (3)0.0745 (19)0.127 (3)0.034 (2)0.046 (2)0.025 (2)
C110.094 (2)0.105 (2)0.115 (2)0.038 (2)0.019 (2)0.030 (2)
C120.0727 (15)0.0891 (19)0.0996 (19)0.0145 (14)0.0054 (15)0.0142 (15)
C130.098 (2)0.120 (3)0.099 (2)0.0238 (19)0.0124 (18)0.0002 (19)
C140.110 (2)0.0680 (16)0.107 (2)0.0131 (16)0.0100 (19)0.0042 (15)
N10.0709 (12)0.0544 (10)0.0849 (14)0.0011 (9)0.0057 (10)0.0087 (9)
O10.1035 (13)0.0437 (8)0.1087 (13)0.0029 (9)0.0176 (11)0.0040 (8)
O20.0823 (11)0.0824 (12)0.1009 (13)0.0038 (9)0.0332 (11)0.0064 (10)
S10.0729 (4)0.0495 (3)0.0852 (4)0.0014 (3)0.0171 (3)0.0035 (3)
Geometric parameters (Å, º) top
C1—C21.377 (3)C9—C101.371 (5)
C1—C61.380 (3)C9—H90.9300
C1—S11.748 (2)C10—C111.370 (5)
C2—C31.359 (4)C10—H100.9300
C2—H20.9300C11—C121.371 (4)
C3—C41.375 (4)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C51.368 (4)C13—H13A0.9600
C4—C131.495 (4)C13—H13B0.9600
C5—C61.368 (4)C13—H13C0.9600
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C121.382 (4)C14—H14C0.9600
C7—C81.387 (4)N1—S11.627 (2)
C7—N11.437 (3)N1—H1N0.838 (17)
C8—C91.395 (4)O1—S11.4344 (17)
C8—C141.484 (4)O2—S11.4203 (18)
C2—C1—C6119.5 (2)C9—C10—H10119.6
C2—C1—S1119.82 (18)C10—C11—C12118.9 (3)
C6—C1—S1120.62 (18)C10—C11—H11120.5
C3—C2—C1119.5 (2)C12—C11—H11120.5
C3—C2—H2120.3C11—C12—C7120.7 (3)
C1—C2—H2120.3C11—C12—H12119.6
C2—C3—C4122.2 (3)C7—C12—H12119.6
C2—C3—H3118.9C4—C13—H13A109.5
C4—C3—H3118.9C4—C13—H13B109.5
C5—C4—C3117.5 (3)H13A—C13—H13B109.5
C5—C4—C13121.9 (3)C4—C13—H13C109.5
C3—C4—C13120.6 (3)H13A—C13—H13C109.5
C6—C5—C4121.8 (2)H13B—C13—H13C109.5
C6—C5—H5119.1C8—C14—H14A109.5
C4—C5—H5119.1C8—C14—H14B109.5
C5—C6—C1119.5 (2)H14A—C14—H14B109.5
C5—C6—H6120.2C8—C14—H14C109.5
C1—C6—H6120.2H14A—C14—H14C109.5
C12—C7—C8121.2 (2)H14B—C14—H14C109.5
C12—C7—N1118.3 (3)C7—N1—S1119.98 (16)
C8—C7—N1120.5 (2)C7—N1—H1N115.9 (19)
C7—C8—C9116.8 (3)S1—N1—H1N108 (2)
C7—C8—C14122.6 (2)O2—S1—O1119.47 (11)
C9—C8—C14120.6 (3)O2—S1—N1108.19 (12)
C10—C9—C8121.6 (3)O1—S1—N1104.81 (11)
C10—C9—H9119.2O2—S1—C1108.08 (11)
C8—C9—H9119.2O1—S1—C1108.39 (11)
C11—C10—C9120.7 (3)N1—S1—C1107.32 (10)
C11—C10—H10119.6
C6—C1—C2—C30.7 (4)C8—C9—C10—C111.5 (5)
S1—C1—C2—C3177.8 (2)C9—C10—C11—C120.3 (5)
C1—C2—C3—C41.3 (5)C10—C11—C12—C70.8 (5)
C2—C3—C4—C50.9 (5)C8—C7—C12—C110.8 (4)
C2—C3—C4—C13178.0 (3)N1—C7—C12—C11179.8 (3)
C3—C4—C5—C60.1 (4)C12—C7—N1—S168.5 (3)
C13—C4—C5—C6178.9 (3)C8—C7—N1—S1112.0 (2)
C4—C5—C6—C10.6 (4)C7—N1—S1—O256.3 (2)
C2—C1—C6—C50.2 (4)C7—N1—S1—O1175.17 (18)
S1—C1—C6—C5176.9 (2)C7—N1—S1—C160.1 (2)
C12—C7—C8—C90.3 (4)C2—C1—S1—O2150.3 (2)
N1—C7—C8—C9179.1 (2)C6—C1—S1—O232.6 (2)
C12—C7—C8—C14179.5 (2)C2—C1—S1—O119.5 (3)
N1—C7—C8—C141.1 (4)C6—C1—S1—O1163.5 (2)
C7—C8—C9—C101.4 (4)C2—C1—S1—N193.2 (2)
C14—C8—C9—C10178.4 (3)C6—C1—S1—N183.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.22 (2)3.036 (3)165 (2)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H15NO2S
Mr261.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)299
a, b, c (Å)14.650 (3), 12.019 (1), 15.634 (3)
V3)2752.8 (8)
Z8
Radiation typeCu Kα
µ (mm1)2.04
Crystal size (mm)0.55 × 0.55 × 0.35
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.400, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
3596, 2450, 1899
Rint0.044
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.134, 1.06
No. of reflections2450
No. of parameters167
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.23

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.838 (17)2.219 (18)3.036 (3)165 (2)
Symmetry code: (i) x, y, z+1.
 

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds