organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1-Propyl-2,6-distyryl-1,4-di­hydro­pyridin-4-yl­­idene)malono­nitrile

aSchool of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hyungkim@chonnam.ac.kr

(Received 16 November 2009; accepted 17 November 2009; online 21 November 2009)

In the title compound, C27H23N3, the dihedral angles between the central pyridine ring and the two outer benzene rings are 32.6 (1) and 52.0 (1)°. The compound displays inter­molecular ππ inter­actions between adjacent six-membered rings, the shortest centroid–centroid distance being 3.981 (3) Å.

Related literature

For the synthesis of the starting material, 2-(2,6-dimethyl­pyridin-4(1H)-yl­idene)malononitrile, see: Kato et al. (1960[Kato, H., Ogawa, T. & Ohta, M. (1960). Bull. Chem. Soc. Jpn, 33, 1468-1469.]). For an alternative synthesis of the title compound, see: Peng et al. (2006[Peng, Q., Kang, E. T., Neoh, K. G., Xiao, D. & Zou, D. (2006). J. Mater. Chem. 16, 376-383.]). For the uses and crystal structures of 4-(dicyano­methyl­ene)-2-methyl-6-[(dimethyl­amino)styr­yl]-4H-pyran derivatives, see: Tang et al. (1989[Tang, C. W., VanSlyke, S. A. & Chen, C. H. (1989). J. Appl. Phys. 65, 3610-3616.]); Chen et al. (2000[Chen, C. H., Tang, C. W., Shi, J. & Klubek, K. P. (2000). Thin Solid Films, 363, 327-331.]); Ju et al. (2006[Ju, H., Wan, Y., Yu, W., Liu, A., Liu, Y., Ren, Y., Tao, X. & Zou, D. (2006). Thin Solid Films, 515, 2403-2409.]); Tong et al. (2006[Tong, H., Dong, Y., Häussler, M., Hong, Y., Lam, J. W. Y., Sung, H. H.-Y., Williams, I. D., Kwok, H. S. & Tang, B. Z. (2006). Chem. Phys. Lett. 428, 326-330.]).

[Scheme 1]

Experimental

Crystal data
  • C27H23N3

  • Mr = 389.48

  • Monoclinic, P 21 /c

  • a = 16.586 (2) Å

  • b = 17.827 (2) Å

  • c = 7.4543 (9) Å

  • β = 99.790 (3)°

  • V = 2171.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.630, Tmax = 1.000

  • 12600 measured reflections

  • 4433 independent reflections

  • 2084 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.201

  • S = 1.01

  • 4433 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

4-(Dicyanomethylene)-2-methyl-6-[(dimethylamino)styryl]-4H-pyran (DCM) and its analogs have been utilized as highly fluorescent dopants in organic light-emitting diodes (OLED) (Tang et al., 1989; Chen et al., 2000). In a recent year, a modified DCM, 2-[2,6-bis(2-arylvinyl)pyridin-4-ylidene]malononitrile (BPM), has been prepared from the corresponding (pyran-4-yliden)malononitrile derivative to obtain an efficient fluorescent material for OLED (Peng et al., 2006). However, their yields were low. To improve the yields of BPM derivatives, we synthesized the title compound by Knoevenagel condensation of 2-(2,6-dimethyl-1-propylpyridin-4(1H)-ylidene)malononitrile with benzaldehyde and characterized its structure.

In the title compound, C27H23N3, the dihedral angles between the central pyridine ring and the two outer benzene rings are 32.6 (1)° and 52.0 (1)°, respectively, and the dihedral angle between the benzene rings is 74.3 (1)° (Fig. 1). The dicyanomethylene group lies in the pyridine ring plane with the largest deviation of 0.212 (7) Å (N3) from the least-squares plane of the pyridine ring. The compound displays intermolecular π-π interactions between the adjacent six-membered rings (the symmetry operation for second plane -x,-y,-z), with a shortest centroid-centroid distance of 3.981 (3) Å, and the planes are parallel and shifted for 1.926 Å (Fig. 2).

Related literature top

For the synthesis of the starting material, 2-(2,6-dimethylpyridin-4(1H)-ylidene)malononitrile, see: Kato et al. (1960). For an alternative synthesis of the title compound, see: Peng et al. (2006). For the uses and crystal structures of 4-(dicyanomethylene)-2-methyl-6-[(dimethylamino)styryl]-4H-pyran derivatives, see: Tang et al. (1989); Chen et al. (2000); Ju et al. (2006); Tong et al. (2006).

Experimental top

A mixture of 2-(2,6-dimethyl-1-propylpyridin-4(1H)-ylidene)malononitrile (1.015 g, 4.76 mmol), benzaldehyde (1.111 g, 10.47 mmol) and piperidine (0.5 ml) in DMF (10 ml) was stirred and heated for 12 h at 100 °C under nitrogen. After cooling to room temperature the mixture was concentrated under vacuum to give the crude product, which was column chromatographed (SiO2) by eluting with a mixture of acetone/CHCl3 (1:20) to afford the title compound (1.290 g, 70%) as an orange solid. Crystals suitable for X-ray analysis were obtained by slow evaporation from a CHCl3/EtOH solution. Mp 252–253 °C. 1H NMR (300 MHz, CDCl3): δ 7.55–7.40 (m, 10H, Ph), 7.23 (d, 2H, J = 15.6 Hz, –CH=CH-Ph), 7.01 (s, 2H, CH=C of pyridine), 6.96 (d, 2H, J = 15.6 Hz, –CH=CH—Ph), 4.03 (t, 2H, J = 8.1 Hz, NCH2CH2), 1.87 (m, 2H, –CH2CH2CH3), 1.02 (t, 3H, J = 7.2 Hz, –CH2CH3). 13C NMR (75 MHz, CDCl3): δ 155.8, 148.0, 139.8, 134.8, 130.0, 129.1, 127.5, 118.7, 111.7, 51.4, 47.1, 23.3, 11.0.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 (CH), 0.97 (CH2) or 0.96 Å (CH3) and Uiso(H) = 1.2Ueq or 1.5Ueq(methyl C)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound.
2-(1-Propyl-2,6-distyryl-1,4-dihydropyridin-4-ylidene)malononitrile top
Crystal data top
C27H23N3F(000) = 824
Mr = 389.48Dx = 1.191 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 690 reflections
a = 16.586 (2) Åθ = 2.5–19.1°
b = 17.827 (2) ŵ = 0.07 mm1
c = 7.4543 (9) ÅT = 293 K
β = 99.790 (3)°Stick, orange
V = 2171.9 (5) Å30.20 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
4433 independent reflections
Radiation source: fine-focus sealed tube2084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1720
Tmin = 0.630, Tmax = 1.000k = 2222
12600 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0808P)2 + 0.1288P]
where P = (Fo2 + 2Fc2)/3
4433 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C27H23N3V = 2171.9 (5) Å3
Mr = 389.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.586 (2) ŵ = 0.07 mm1
b = 17.827 (2) ÅT = 293 K
c = 7.4543 (9) Å0.20 × 0.20 × 0.17 mm
β = 99.790 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4433 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2084 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 1.000Rint = 0.033
12600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.01Δρmax = 0.14 e Å3
4433 reflectionsΔρmin = 0.16 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35774 (14)0.08906 (10)0.2536 (3)0.0713 (6)
N20.3616 (3)0.42152 (17)0.2101 (5)0.1696 (17)
N30.1110 (3)0.3314 (2)0.1271 (6)0.186 (2)
C10.4116 (2)0.14869 (13)0.2691 (3)0.0772 (8)
C20.3815 (2)0.21977 (15)0.2438 (4)0.0889 (9)
H20.41820.25960.25180.107*
C30.2971 (3)0.23522 (16)0.2060 (4)0.0938 (10)
C40.2452 (2)0.17187 (15)0.1836 (4)0.0900 (9)
H40.18890.17910.15390.108*
C50.27456 (19)0.10081 (14)0.2040 (4)0.0780 (7)
C60.49940 (19)0.13383 (15)0.3018 (4)0.0803 (8)
H60.51710.08970.25450.096*
C70.5559 (2)0.17842 (14)0.3937 (4)0.0843 (8)
H70.53690.22030.44830.101*
C80.6446 (2)0.16912 (15)0.4189 (4)0.0828 (8)
C90.6811 (2)0.10774 (16)0.3513 (4)0.0902 (9)
H90.64870.06970.29180.108*
C100.7643 (3)0.1027 (2)0.3714 (5)0.1122 (11)
H100.78790.06140.32430.135*
C110.8137 (2)0.1581 (2)0.4608 (5)0.1264 (13)
H110.87030.15470.47220.152*
C120.7787 (3)0.2177 (2)0.5321 (5)0.1301 (14)
H120.81160.25490.59420.156*
C130.6951 (2)0.22324 (18)0.5128 (4)0.1046 (11)
H130.67200.26390.56350.125*
C140.2655 (3)0.30813 (17)0.1869 (4)0.1153 (13)
C150.3178 (3)0.3705 (2)0.2000 (5)0.1326 (16)
C160.1804 (4)0.3210 (2)0.1529 (6)0.143 (2)
C170.22033 (18)0.03589 (15)0.1665 (4)0.0869 (8)
H170.22840.00490.24510.104*
C180.1602 (2)0.03298 (17)0.0248 (5)0.0929 (9)
H180.15230.07590.04710.111*
C190.1048 (2)0.0295 (2)0.0320 (6)0.1017 (10)
C200.0541 (2)0.0257 (2)0.1978 (6)0.1274 (13)
H200.05400.01720.26860.153*
C210.0036 (3)0.0844 (3)0.2604 (8)0.166 (2)
H210.02960.08110.37400.199*
C220.0015 (3)0.1471 (3)0.1589 (12)0.167 (3)
H220.03270.18670.20260.200*
C230.0501 (3)0.1516 (3)0.0085 (10)0.171 (2)
H230.04850.19420.08000.206*
C240.1018 (2)0.0927 (2)0.0712 (7)0.1312 (13)
H240.13480.09600.18490.157*
C250.38929 (15)0.01206 (12)0.2886 (3)0.0690 (7)
H25A0.35200.01590.35060.083*
H25B0.44180.01420.36870.083*
C260.39921 (16)0.02907 (13)0.1163 (3)0.0744 (7)
H26A0.34720.02990.03410.089*
H26B0.43820.00240.05650.089*
C270.4281 (3)0.10736 (17)0.1544 (5)0.1335 (14)
H27A0.47850.10690.23950.200*
H27B0.43680.13070.04320.200*
H27C0.38760.13500.20490.200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0922 (16)0.0552 (12)0.0665 (13)0.0047 (11)0.0136 (11)0.0026 (10)
N20.326 (5)0.0653 (18)0.119 (3)0.013 (3)0.043 (3)0.0021 (19)
N30.238 (5)0.138 (3)0.175 (4)0.105 (3)0.018 (3)0.009 (2)
C10.118 (2)0.0539 (15)0.0615 (16)0.0031 (15)0.0220 (15)0.0006 (12)
C20.137 (3)0.0596 (17)0.0723 (18)0.0013 (17)0.0248 (18)0.0003 (13)
C30.164 (3)0.0635 (18)0.0571 (16)0.023 (2)0.0264 (18)0.0057 (13)
C40.123 (2)0.0749 (19)0.0732 (18)0.0276 (17)0.0181 (16)0.0061 (14)
C50.095 (2)0.0701 (17)0.0693 (17)0.0147 (15)0.0158 (15)0.0058 (13)
C60.109 (2)0.0616 (16)0.0746 (17)0.0105 (16)0.0265 (16)0.0036 (14)
C70.131 (3)0.0583 (16)0.0676 (17)0.0189 (16)0.0293 (17)0.0045 (13)
C80.117 (3)0.0737 (18)0.0625 (16)0.0325 (17)0.0299 (16)0.0055 (13)
C90.114 (3)0.083 (2)0.0746 (19)0.0237 (17)0.0218 (18)0.0060 (15)
C100.124 (3)0.122 (3)0.096 (2)0.021 (2)0.032 (2)0.010 (2)
C110.115 (3)0.159 (4)0.110 (3)0.042 (3)0.033 (2)0.014 (3)
C120.149 (4)0.143 (4)0.106 (3)0.068 (3)0.040 (3)0.028 (2)
C130.138 (3)0.095 (2)0.087 (2)0.047 (2)0.037 (2)0.0206 (17)
C140.202 (4)0.064 (2)0.079 (2)0.044 (2)0.021 (2)0.0034 (16)
C150.254 (5)0.062 (2)0.084 (2)0.039 (3)0.032 (3)0.0040 (19)
C160.237 (6)0.086 (3)0.103 (3)0.077 (3)0.021 (4)0.0076 (19)
C170.086 (2)0.0750 (19)0.101 (2)0.0131 (15)0.0182 (18)0.0124 (16)
C180.092 (2)0.088 (2)0.099 (2)0.0194 (17)0.0166 (19)0.0030 (17)
C190.080 (2)0.095 (3)0.131 (3)0.0138 (18)0.022 (2)0.020 (2)
C200.098 (3)0.147 (4)0.136 (3)0.009 (2)0.014 (3)0.037 (3)
C210.106 (3)0.189 (5)0.196 (6)0.006 (4)0.012 (3)0.087 (5)
C220.086 (3)0.123 (4)0.298 (9)0.004 (3)0.049 (4)0.076 (5)
C230.102 (4)0.111 (4)0.302 (8)0.000 (3)0.036 (4)0.021 (4)
C240.102 (3)0.099 (3)0.192 (4)0.001 (2)0.023 (3)0.001 (3)
C250.0808 (17)0.0565 (14)0.0680 (16)0.0001 (11)0.0082 (13)0.0074 (12)
C260.0885 (18)0.0652 (15)0.0711 (16)0.0002 (13)0.0181 (14)0.0013 (12)
C270.231 (4)0.079 (2)0.102 (3)0.049 (2)0.062 (3)0.0116 (18)
Geometric parameters (Å, º) top
N1—C11.381 (3)C13—H130.9300
N1—C51.382 (3)C14—C151.402 (6)
N1—C251.476 (3)C14—C161.411 (6)
N2—C151.160 (5)C17—C181.324 (4)
N3—C161.148 (6)C17—H170.9300
C1—C21.363 (4)C18—C191.460 (4)
C1—C61.459 (4)C18—H180.9300
C2—C31.408 (4)C19—C241.369 (5)
C2—H20.9300C19—C201.373 (5)
C3—C141.399 (4)C20—C211.372 (5)
C3—C41.413 (4)C20—H200.9300
C4—C51.357 (3)C21—C221.353 (7)
C4—H40.9300C21—H210.9300
C5—C171.463 (4)C22—C231.367 (8)
C6—C71.327 (4)C22—H220.9300
C6—H60.9300C23—C241.386 (6)
C7—C81.461 (4)C23—H230.9300
C7—H70.9300C24—H240.9300
C8—C91.386 (4)C25—C261.512 (3)
C8—C131.387 (4)C25—H25A0.9700
C9—C101.364 (4)C25—H25B0.9700
C9—H90.9300C26—C271.487 (3)
C10—C111.380 (4)C26—H26A0.9700
C10—H100.9300C26—H26B0.9700
C11—C121.362 (5)C27—H27A0.9600
C11—H110.9300C27—H27B0.9600
C12—C131.373 (5)C27—H27C0.9600
C12—H120.9300
C1—N1—C5120.5 (2)N2—C15—C14179.2 (5)
C1—N1—C25119.7 (2)N3—C16—C14179.3 (5)
C5—N1—C25119.7 (2)C18—C17—C5122.6 (3)
C2—C1—N1119.1 (3)C18—C17—H17118.7
C2—C1—C6121.6 (3)C5—C17—H17118.7
N1—C1—C6119.2 (2)C17—C18—C19127.8 (3)
C1—C2—C3122.6 (3)C17—C18—H18116.1
C1—C2—H2118.7C19—C18—H18116.1
C3—C2—H2118.7C24—C19—C20118.1 (4)
C14—C3—C2123.0 (4)C24—C19—C18123.1 (4)
C14—C3—C4121.4 (4)C20—C19—C18118.8 (4)
C2—C3—C4115.6 (3)C21—C20—C19120.9 (5)
C5—C4—C3122.2 (3)C21—C20—H20119.5
C5—C4—H4118.9C19—C20—H20119.5
C3—C4—H4118.9C22—C21—C20120.7 (6)
C4—C5—N1119.7 (3)C22—C21—H21119.6
C4—C5—C17121.3 (3)C20—C21—H21119.6
N1—C5—C17119.0 (2)C21—C22—C23119.5 (5)
C7—C6—C1125.1 (3)C21—C22—H22120.2
C7—C6—H6117.5C23—C22—H22120.2
C1—C6—H6117.5C22—C23—C24119.8 (6)
C6—C7—C8127.3 (3)C22—C23—H23120.1
C6—C7—H7116.4C24—C23—H23120.1
C8—C7—H7116.4C19—C24—C23120.9 (5)
C9—C8—C13118.0 (3)C19—C24—H24119.5
C9—C8—C7122.4 (3)C23—C24—H24119.5
C13—C8—C7119.6 (3)N1—C25—C26112.79 (19)
C10—C9—C8120.5 (3)N1—C25—H25A109.0
C10—C9—H9119.7C26—C25—H25A109.0
C8—C9—H9119.7N1—C25—H25B109.0
C9—C10—C11120.8 (4)C26—C25—H25B109.0
C9—C10—H10119.6H25A—C25—H25B107.8
C11—C10—H10119.6C27—C26—C25111.8 (2)
C12—C11—C10119.3 (4)C27—C26—H26A109.3
C12—C11—H11120.3C25—C26—H26A109.3
C10—C11—H11120.3C27—C26—H26B109.3
C11—C12—C13120.3 (3)C25—C26—H26B109.3
C11—C12—H12119.9H26A—C26—H26B107.9
C13—C12—H12119.9C26—C27—H27A109.5
C12—C13—C8121.0 (3)C26—C27—H27B109.5
C12—C13—H13119.5H27A—C27—H27B109.5
C8—C13—H13119.5C26—C27—H27C109.5
C3—C14—C15120.9 (4)H27A—C27—H27C109.5
C3—C14—C16121.0 (4)H27B—C27—H27C109.5
C15—C14—C16118.1 (3)
C5—N1—C1—C23.2 (3)C10—C11—C12—C131.0 (6)
C25—N1—C1—C2177.3 (2)C11—C12—C13—C80.8 (5)
C5—N1—C1—C6173.3 (2)C9—C8—C13—C122.5 (4)
C25—N1—C1—C66.2 (3)C7—C8—C13—C12177.2 (3)
N1—C1—C2—C31.4 (4)C2—C3—C14—C151.7 (4)
C6—C1—C2—C3177.8 (2)C4—C3—C14—C15176.7 (3)
C1—C2—C3—C14177.4 (3)C2—C3—C14—C16178.6 (3)
C1—C2—C3—C44.1 (4)C4—C3—C14—C163.0 (4)
C14—C3—C4—C5179.1 (3)C4—C5—C17—C1841.4 (4)
C2—C3—C4—C52.4 (4)N1—C5—C17—C18135.8 (3)
C3—C4—C5—N12.0 (4)C5—C17—C18—C19176.8 (3)
C3—C4—C5—C17175.2 (3)C17—C18—C19—C248.4 (5)
C1—N1—C5—C44.9 (4)C17—C18—C19—C20170.6 (3)
C25—N1—C5—C4175.7 (2)C24—C19—C20—C211.8 (5)
C1—N1—C5—C17172.3 (2)C18—C19—C20—C21177.2 (3)
C25—N1—C5—C177.1 (3)C19—C20—C21—C221.1 (7)
C2—C1—C6—C734.3 (4)C20—C21—C22—C230.4 (8)
N1—C1—C6—C7149.3 (2)C21—C22—C23—C241.0 (8)
C1—C6—C7—C8175.1 (2)C20—C19—C24—C231.2 (5)
C6—C7—C8—C92.6 (4)C18—C19—C24—C23177.8 (3)
C6—C7—C8—C13177.1 (3)C22—C23—C24—C190.2 (7)
C13—C8—C9—C102.4 (4)C1—N1—C25—C2696.4 (3)
C7—C8—C9—C10177.3 (3)C5—N1—C25—C2683.0 (3)
C8—C9—C10—C110.6 (5)N1—C25—C26—C27177.9 (3)
C9—C10—C11—C121.1 (6)

Experimental details

Crystal data
Chemical formulaC27H23N3
Mr389.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.586 (2), 17.827 (2), 7.4543 (9)
β (°) 99.790 (3)
V3)2171.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.630, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12600, 4433, 2084
Rint0.033
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.201, 1.01
No. of reflections4433
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

 

Acknowledgements

This study was supported financially by Chonnam National University, 2008.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C. H., Tang, C. W., Shi, J. & Klubek, K. P. (2000). Thin Solid Films, 363, 327–331.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJu, H., Wan, Y., Yu, W., Liu, A., Liu, Y., Ren, Y., Tao, X. & Zou, D. (2006). Thin Solid Films, 515, 2403–2409.  Web of Science CSD CrossRef CAS Google Scholar
First citationKato, H., Ogawa, T. & Ohta, M. (1960). Bull. Chem. Soc. Jpn, 33, 1468–1469.  CrossRef CAS Web of Science Google Scholar
First citationPeng, Q., Kang, E. T., Neoh, K. G., Xiao, D. & Zou, D. (2006). J. Mater. Chem. 16, 376–383.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C. W., VanSlyke, S. A. & Chen, C. H. (1989). J. Appl. Phys. 65, 3610–3616.  CrossRef CAS Web of Science Google Scholar
First citationTong, H., Dong, Y., Häussler, M., Hong, Y., Lam, J. W. Y., Sung, H. H.-Y., Williams, I. D., Kwok, H. S. & Tang, B. Z. (2006). Chem. Phys. Lett. 428, 326–330.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds