organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,4-Di­nitro­phen­yl)-3,3-di­nitro­azetidine

aSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000 Shaanxi, People's Republic of China, and bSchool of Chemical Engineering, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
*Correspondence e-mail: donghuhai@qq.com

(Received 18 November 2009; accepted 20 November 2009; online 25 November 2009)

In the title compound, C9H7N5O8, the dihedral angle between the mean plane of the azetidine ring and that of the benzene ring is 26.1 (1)°; the planes of the two nitro groups of the azetidine ring are aligned at 88.7 (1)°.

Related literature

Highly nitrated small-ring heterocycles are good candidates for energetic materials because of the increased performance from the additional energy release upon opening of the strained ring system during decomposition, see: Frumkin et al. (1999[Frumkin, A. E., Churakov, A. M., Strelenko, Y. A., Kachala, V. V. & Tartakkovsky, V. A. (1999). Org. Lett. 1, 721-724.]). Azetidine-based explosives, such as 1,3,3-trinitro­azetidine (TNAZ) demonstrate excellent performance, see: Archibald et al., (1990[Archibald, T. G., Gilardi, R., Baum, K. & George, C. (1990). J. Org. Chem. 55, 2920-2924.]); Hiskey & Coburn (1994a[Hiskey, M. A. & Coburn, M. D. (1994a). US Patent No. 5 336 784.],b[Hiskey, M. A. & Coburn, M. D. (1994b). Chem. Abstr. 121, 300750s.]). The title compound is a derivative of 3,3-dinitro­azetidine (DNAZ) (Hiskey et al., 1992[Hiskey, M. A., Coburn, M. D., Mitchell, M. A. & Benicewicz, B. C. (1992). J. Heterocycl. Chem. 29, 1855-1856.], 1993[Hiskey, M. A., Stincipher, M. M. & Brown, J. E. (1993). J. Energ. Mater. 11, 157-165.]), which is a derivative of TNAZ. For the use of DNAZ in the preparation of a variety of solid energetic compounds, see: Ma et al. (2009a[Ma, H. X., Yan, B., Li, Z. N., Guan, Y. L., Song, J. R., Xu, K. Z. & Hu, R. Z. (2009a). J. Hazard. Mater. 169, 1068-1073.],b[Ma, H. X., Yan, B., Li, Z. N., Song, J. R. & Hu, R. Z. (2009b). J. Therm. Anal. Calorim. 95, 437-444.],c[Ma, H. X., Yan, B., Song, J. R., Lü, X. Q. & Wang, L. J. (2009c). Chem. J. Chin. Univ. 30, 371-381.]); Gao et al. (2009[Gao, R., Ma, H. X., Yan, B., Song, J. R. & Wang, Y. H. (2009). Chem. J. Chin. Univ. 30, 577-582.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7N5O8

  • Mr = 313.20

  • Monoclinic, P 21 /n

  • a = 8.113 (2) Å

  • b = 10.676 (3) Å

  • c = 14.398 (4) Å

  • β = 104.681 (4)°

  • V = 1206.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.31 × 0.26 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 5860 measured reflections

  • 2140 independent reflections

  • 1670 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.118

  • S = 1.20

  • 2140 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Highly nitrated small-ring heterocycles are good candidates for energetic materials because of the increased performance from the additional energy release upon opening of the strained ring system during decomposition (Frumkin et al., 1999). Azetidine-based explosives, such as 1,3,3-trinitroazetidine (TNAZ) (Archibald et al., 1990; Hiskey et al., 1994a,b) demonstrate excellent performance partly because of the high strain associated with the four-membered ring. As one of the important derivates of TNAZ, 3,3-dinitroazetidine (DNAZ) (Hiskey et al., 1992; Hiskey et al., 1993) can prepare a variety of solid energetic compounds (Ma et al., 2009a,b,c; Gao et al., 2009). The title compound (I) is a DNAZ derivates. The dihedral angle between the azetidine ring and benzene ring is 26.1° and the planes of two nitryl of azetidine ring is 88.7°. There are no important intermolecular contacts in the crystal structure.

Related literature top

Highly nitrated small-ring heterocycles are good candidates for energetic materials because of the increased performance from the additional energy release upon opening of the strained ring system during decomposition, see: Frumkin et al. (1999). Azetidine-based explosives, such as 1,3,3-trinitroazetidine (TNAZ) (Archibald et al., 1990; Hiskey & Coburn, 1994a,b) demonstrate excellent performance partly because of the high strain associated with the four-membered ring. The title compound is a derivative of 3,3-dinitroazetidine (DNAZ) (Hiskey et al., 1992, 1993), which is a derivative of TNAZ. For the use of DNAZ in the preparation of a variety of solid energetic compounds, see: Ma et al. (2009a,b,c); Gao et al. (2009).

Experimental top

A solution of DNAZ (0.2353 g, 1.6 mmol), 2,4-dinitrochlorobenzene (0.33 ml, 1.6 mmol), and NaHCO3 (0.28 g, 3.2 mmol) in dichloromethane (30.0 ml) was stirred under reflux for 20 h. The reaction mixture was concentrated in vacuo, water (30 ml) was added, and the unstable mixture was extracted rapidly with dichloromethane (3 * 15 ml). The combined extracts were dried (MgSO4,), the solvent was concentrated in vacuo, and ethanol (20 ml) was added, and the residue was filtrated to give the yellow compound in 30% yield. Crystals were obtained from dichloromethane, by slow evaporation at room temperature. Elemental analysis calculated for C9H7N5O8: C 34.61, N 22.36, H 2.253%; found: C 34.61, N 22.22, H 2.249%. IR (KBr, cm-1): 3100.29, 1585.18, 1526.85, 1335.18, 1304.76, 869.25, 820.72.

Refinement top

H atoms were placed at calculated idealized positions and refined using a riding model, with C—H distances in the range 0.93–0.97 Å.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELX97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as spheres of arbitrary radius.
1-(2,4-Dinitrophenyl)-3,3-dinitroazetidine top
Crystal data top
C9H7N5O8F(000) = 640
Mr = 313.20Dx = 1.724 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1904 reflections
a = 8.113 (2) Åθ = 2.4–26.0°
b = 10.676 (3) ŵ = 0.15 mm1
c = 14.398 (4) ÅT = 293 K
β = 104.681 (4)°Block, yellow
V = 1206.3 (6) Å30.31 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1670 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.1°, θmin = 2.4°
ϕ and ω scansh = 99
5860 measured reflectionsk = 1112
2140 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.063P)2 + 0.0921P]
where P = (Fo2 + 2Fc2)/3
2140 reflections(Δ/σ)max = 0.028
199 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H7N5O8V = 1206.3 (6) Å3
Mr = 313.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.113 (2) ŵ = 0.15 mm1
b = 10.676 (3) ÅT = 293 K
c = 14.398 (4) Å0.31 × 0.26 × 0.20 mm
β = 104.681 (4)°
Data collection top
Bruker APEXII
diffractometer
1670 reflections with I > 2σ(I)
5860 measured reflectionsRint = 0.019
2140 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.20Δρmax = 0.21 e Å3
2140 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.56725 (18)0.14099 (15)0.95776 (10)0.0576 (4)
N10.06769 (18)0.16834 (14)0.89752 (10)0.0360 (4)
C40.0303 (2)0.25527 (16)0.92696 (11)0.0324 (4)
O80.18514 (19)0.22095 (15)0.72839 (10)0.0566 (4)
N20.4618 (2)0.14859 (15)0.88135 (11)0.0419 (4)
C90.1501 (2)0.33688 (17)0.86745 (11)0.0334 (4)
N30.3038 (2)0.04265 (16)0.84420 (11)0.0435 (4)
N50.20374 (19)0.32296 (17)0.76316 (11)0.0429 (4)
C10.1375 (2)0.16202 (18)0.81278 (12)0.0376 (4)
H1A0.16600.24300.79060.045*
H1B0.06890.11310.76020.045*
C30.2168 (2)0.10713 (18)0.96128 (12)0.0384 (4)
H3B0.19080.02880.98860.046*
H3A0.28340.16181.01050.046*
N40.2936 (2)0.53426 (18)1.04331 (15)0.0556 (5)
C70.2070 (2)0.43720 (19)1.00353 (13)0.0411 (5)
O30.4390 (2)0.07976 (16)0.83333 (12)0.0679 (5)
C60.0999 (2)0.35558 (19)1.06406 (13)0.0441 (5)
H60.08660.36061.13000.053*
C20.2905 (2)0.09108 (16)0.87430 (12)0.0340 (4)
C80.2340 (2)0.42800 (18)0.90514 (13)0.0388 (4)
H80.30820.48280.86480.047*
O10.4830 (2)0.19814 (17)0.80972 (11)0.0655 (5)
O70.2721 (2)0.41195 (17)0.71504 (11)0.0671 (5)
O60.3804 (2)0.61021 (15)0.98923 (15)0.0718 (5)
O40.1762 (2)0.10369 (15)0.83337 (12)0.0678 (5)
C50.0131 (2)0.26685 (19)1.02664 (12)0.0407 (5)
H50.05960.21251.06830.049*
O50.2740 (3)0.5369 (2)1.13090 (13)0.0877 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0396 (8)0.0687 (11)0.0560 (9)0.0018 (7)0.0034 (7)0.0035 (7)
N10.0336 (8)0.0430 (9)0.0315 (7)0.0082 (7)0.0083 (6)0.0019 (6)
C40.0289 (9)0.0349 (10)0.0344 (9)0.0039 (7)0.0098 (7)0.0011 (7)
O80.0486 (9)0.0709 (11)0.0446 (8)0.0096 (8)0.0012 (6)0.0167 (7)
N20.0366 (9)0.0427 (9)0.0457 (9)0.0007 (7)0.0092 (7)0.0018 (7)
C90.0295 (9)0.0389 (10)0.0311 (8)0.0015 (8)0.0062 (7)0.0005 (7)
N30.0490 (10)0.0384 (9)0.0433 (9)0.0025 (8)0.0123 (7)0.0007 (7)
N50.0306 (8)0.0574 (11)0.0387 (9)0.0037 (8)0.0050 (7)0.0027 (8)
C10.0342 (10)0.0451 (11)0.0338 (9)0.0067 (8)0.0089 (7)0.0017 (8)
C30.0375 (10)0.0404 (11)0.0364 (9)0.0059 (8)0.0075 (7)0.0039 (8)
N40.0443 (10)0.0497 (12)0.0779 (13)0.0058 (9)0.0253 (9)0.0222 (10)
C70.0352 (10)0.0414 (11)0.0497 (11)0.0052 (8)0.0164 (8)0.0131 (9)
O30.0609 (10)0.0625 (11)0.0811 (11)0.0189 (8)0.0196 (8)0.0179 (8)
C60.0430 (11)0.0556 (13)0.0356 (9)0.0058 (9)0.0135 (8)0.0069 (9)
C20.0320 (9)0.0330 (10)0.0359 (9)0.0019 (7)0.0068 (7)0.0003 (7)
C80.0309 (9)0.0364 (10)0.0483 (10)0.0013 (8)0.0086 (8)0.0015 (8)
O10.0474 (9)0.0908 (13)0.0596 (9)0.0145 (8)0.0159 (7)0.0171 (8)
O70.0700 (11)0.0777 (12)0.0478 (8)0.0224 (9)0.0043 (7)0.0165 (8)
O60.0689 (11)0.0460 (10)0.1116 (14)0.0094 (9)0.0432 (10)0.0049 (10)
O40.0725 (11)0.0498 (10)0.0845 (11)0.0217 (8)0.0263 (9)0.0118 (8)
C50.0397 (10)0.0480 (12)0.0339 (10)0.0030 (9)0.0083 (8)0.0032 (8)
O50.0877 (13)0.1094 (16)0.0693 (11)0.0103 (11)0.0260 (10)0.0450 (11)
Geometric parameters (Å, º) top
O2—N21.2133 (19)C1—C21.530 (2)
N1—C41.358 (2)C1—H1A0.9700
N1—C11.471 (2)C1—H1B0.9700
N1—C31.473 (2)C3—C21.528 (3)
C4—C51.412 (2)C3—H3B0.9700
C4—C91.420 (2)C3—H3A0.9700
O8—N51.224 (2)N4—O61.217 (2)
N2—O11.209 (2)N4—O51.231 (2)
N2—C21.499 (2)N4—C71.449 (3)
C9—C81.375 (3)C7—C61.375 (3)
C9—N51.461 (2)C7—C81.381 (3)
N3—O41.199 (2)C6—C51.370 (3)
N3—O31.213 (2)C6—H60.9300
N3—C21.504 (2)C8—H80.9300
N5—O71.223 (2)C5—H50.9300
C4—N1—C1132.01 (15)C2—C3—H3B113.9
C4—N1—C3124.20 (14)N1—C3—H3A113.9
C1—N1—C393.91 (13)C2—C3—H3A113.9
N1—C4—C5117.53 (15)H3B—C3—H3A111.1
N1—C4—C9126.61 (15)O6—N4—O5122.96 (19)
C5—C4—C9115.86 (16)O6—N4—C7118.91 (19)
O1—N2—O2125.62 (17)O5—N4—C7118.1 (2)
O1—N2—C2116.82 (15)C6—C7—C8121.05 (18)
O2—N2—C2117.57 (16)C6—C7—N4119.64 (18)
C8—C9—C4121.83 (16)C8—C7—N4119.31 (18)
C8—C9—N5115.41 (15)C5—C6—C7119.63 (17)
C4—C9—N5122.54 (16)C5—C6—H6120.2
O4—N3—O3125.76 (19)C7—C6—H6120.2
O4—N3—C2115.52 (16)N2—C2—N3105.99 (14)
O3—N3—C2118.72 (17)N2—C2—C3116.55 (14)
O7—N5—O8123.01 (16)N3—C2—C3114.47 (15)
O7—N5—C9118.51 (17)N2—C2—C1116.00 (15)
O8—N5—C9118.39 (15)N3—C2—C1114.20 (14)
N1—C1—C288.22 (12)C3—C2—C189.46 (13)
N1—C1—H1A113.9C9—C8—C7119.30 (17)
C2—C1—H1A113.9C9—C8—H8120.3
N1—C1—H1B113.9C7—C8—H8120.4
C2—C1—H1B113.9C6—C5—C4122.15 (17)
H1A—C1—H1B111.1C6—C5—H5118.9
N1—C3—C288.23 (12)C4—C5—H5118.9
N1—C3—H3B113.9
C1—N1—C4—C5151.31 (18)O1—N2—C2—C3140.71 (18)
C3—N1—C4—C515.0 (3)O2—N2—C2—C339.7 (2)
C1—N1—C4—C928.7 (3)O1—N2—C2—C137.3 (2)
C3—N1—C4—C9165.05 (17)O2—N2—C2—C1143.13 (16)
N1—C4—C9—C8175.18 (17)O4—N3—C2—N2178.93 (15)
C5—C4—C9—C84.9 (3)O3—N3—C2—N21.3 (2)
N1—C4—C9—N510.4 (3)O4—N3—C2—C351.2 (2)
C5—C4—C9—N5169.55 (16)O3—N3—C2—C3128.56 (18)
C8—C9—N5—O723.2 (2)O4—N3—C2—C150.0 (2)
C4—C9—N5—O7162.06 (18)O3—N3—C2—C1130.29 (18)
C8—C9—N5—O8153.55 (17)N1—C3—C2—N2122.10 (16)
C4—C9—N5—O821.2 (2)N1—C3—C2—N3113.44 (15)
C4—N1—C1—C2148.25 (19)N1—C3—C2—C13.06 (14)
C3—N1—C1—C23.19 (14)N1—C1—C2—N2122.59 (15)
C4—N1—C3—C2152.23 (17)N1—C1—C2—N3113.68 (16)
C1—N1—C3—C23.19 (14)N1—C1—C2—C33.07 (14)
O6—N4—C7—C6175.89 (19)C4—C9—C8—C72.9 (3)
O5—N4—C7—C63.2 (3)N5—C9—C8—C7171.93 (16)
O6—N4—C7—C84.3 (3)C6—C7—C8—C91.1 (3)
O5—N4—C7—C8176.56 (19)N4—C7—C8—C9179.16 (17)
C8—C7—C6—C52.7 (3)C7—C6—C5—C40.4 (3)
N4—C7—C6—C5177.53 (18)N1—C4—C5—C6176.83 (18)
O1—N2—C2—N390.61 (19)C9—C4—C5—C63.2 (3)
O2—N2—C2—N388.97 (19)

Experimental details

Crystal data
Chemical formulaC9H7N5O8
Mr313.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.113 (2), 10.676 (3), 14.398 (4)
β (°) 104.681 (4)
V3)1206.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.31 × 0.26 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5860, 2140, 1670
Rint0.019
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.118, 1.20
No. of reflections2140
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELX97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the National Natural Science Foundation of China (No. 20603026) and the Natural Science Foundation of Shaanxi Province, China (No. 2009JQ2002) for generously supporting this study.

References

First citationArchibald, T. G., Gilardi, R., Baum, K. & George, C. (1990). J. Org. Chem. 55, 2920–2924.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrumkin, A. E., Churakov, A. M., Strelenko, Y. A., Kachala, V. V. & Tartakkovsky, V. A. (1999). Org. Lett. 1, 721–724.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGao, R., Ma, H. X., Yan, B., Song, J. R. & Wang, Y. H. (2009). Chem. J. Chin. Univ. 30, 577–582.  CAS Google Scholar
First citationHiskey, M. A. & Coburn, M. D. (1994a). US Patent No. 5 336 784.  Google Scholar
First citationHiskey, M. A. & Coburn, M. D. (1994b). Chem. Abstr. 121, 300750s.  Google Scholar
First citationHiskey, M. A., Coburn, M. D., Mitchell, M. A. & Benicewicz, B. C. (1992). J. Heterocycl. Chem. 29, 1855–1856.  CrossRef CAS Google Scholar
First citationHiskey, M. A., Stincipher, M. M. & Brown, J. E. (1993). J. Energ. Mater. 11, 157–165.  CrossRef CAS Google Scholar
First citationMa, H. X., Yan, B., Li, Z. N., Guan, Y. L., Song, J. R., Xu, K. Z. & Hu, R. Z. (2009a). J. Hazard. Mater. 169, 1068–1073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, H. X., Yan, B., Li, Z. N., Song, J. R. & Hu, R. Z. (2009b). J. Therm. Anal. Calorim. 95, 437–444.  Web of Science CrossRef CAS Google Scholar
First citationMa, H. X., Yan, B., Song, J. R., Lü, X. Q. & Wang, L. J. (2009c). Chem. J. Chin. Univ. 30, 371–381.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds