organic compounds
1-(2,4-Dinitrophenyl)-3,3-dinitroazetidine
aSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000 Shaanxi, People's Republic of China, and bSchool of Chemical Engineering, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
*Correspondence e-mail: donghuhai@qq.com
In the title compound, C9H7N5O8, the dihedral angle between the mean plane of the azetidine ring and that of the benzene ring is 26.1 (1)°; the planes of the two nitro groups of the azetidine ring are aligned at 88.7 (1)°.
Related literature
Highly nitrated small-ring heterocycles are good candidates for energetic materials because of the increased performance from the additional energy release upon opening of the strained ring system during decomposition, see: Frumkin et al. (1999). Azetidine-based explosives, such as 1,3,3-trinitroazetidine (TNAZ) demonstrate excellent performance, see: Archibald et al., (1990); Hiskey & Coburn (1994a,b). The title compound is a derivative of 3,3-dinitroazetidine (DNAZ) (Hiskey et al., 1992, 1993), which is a derivative of TNAZ. For the use of DNAZ in the preparation of a variety of solid energetic compounds, see: Ma et al. (2009a,b,c); Gao et al. (2009).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809049861/ng2691sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809049861/ng2691Isup2.hkl
A solution of DNAZ (0.2353 g, 1.6 mmol), 2,4-dinitrochlorobenzene (0.33 ml, 1.6 mmol), and NaHCO3 (0.28 g, 3.2 mmol) in dichloromethane (30.0 ml) was stirred under reflux for 20 h. The reaction mixture was concentrated in vacuo, water (30 ml) was added, and the unstable mixture was extracted rapidly with dichloromethane (3 * 15 ml). The combined extracts were dried (MgSO4,), the solvent was concentrated in vacuo, and ethanol (20 ml) was added, and the residue was filtrated to give the yellow compound in 30% yield. Crystals were obtained from dichloromethane, by slow evaporation at room temperature. Elemental analysis calculated for C9H7N5O8: C 34.61, N 22.36, H 2.253%; found: C 34.61, N 22.22, H 2.249%. IR (KBr, cm-1): 3100.29, 1585.18, 1526.85, 1335.18, 1304.76, 869.25, 820.72.
H atoms were placed at calculated idealized positions and refined using a riding model, with C—H distances in the range 0.93–0.97 Å.
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELX97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as spheres of arbitrary radius. |
C9H7N5O8 | F(000) = 640 |
Mr = 313.20 | Dx = 1.724 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1904 reflections |
a = 8.113 (2) Å | θ = 2.4–26.0° |
b = 10.676 (3) Å | µ = 0.15 mm−1 |
c = 14.398 (4) Å | T = 293 K |
β = 104.681 (4)° | Block, yellow |
V = 1206.3 (6) Å3 | 0.31 × 0.26 × 0.20 mm |
Z = 4 |
Bruker APEXII diffractometer | 1670 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
Graphite monochromator | θmax = 25.1°, θmin = 2.4° |
ϕ and ω scans | h = −9→9 |
5860 measured reflections | k = −11→12 |
2140 independent reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.20 | w = 1/[σ2(Fo2) + (0.063P)2 + 0.0921P] where P = (Fo2 + 2Fc2)/3 |
2140 reflections | (Δ/σ)max = 0.028 |
199 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C9H7N5O8 | V = 1206.3 (6) Å3 |
Mr = 313.20 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.113 (2) Å | µ = 0.15 mm−1 |
b = 10.676 (3) Å | T = 293 K |
c = 14.398 (4) Å | 0.31 × 0.26 × 0.20 mm |
β = 104.681 (4)° |
Bruker APEXII diffractometer | 1670 reflections with I > 2σ(I) |
5860 measured reflections | Rint = 0.019 |
2140 independent reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.20 | Δρmax = 0.21 e Å−3 |
2140 reflections | Δρmin = −0.21 e Å−3 |
199 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.56725 (18) | 0.14099 (15) | 0.95776 (10) | 0.0576 (4) | |
N1 | 0.06769 (18) | 0.16834 (14) | 0.89752 (10) | 0.0360 (4) | |
C4 | −0.0303 (2) | 0.25527 (16) | 0.92696 (11) | 0.0324 (4) | |
O8 | −0.18514 (19) | 0.22095 (15) | 0.72839 (10) | 0.0566 (4) | |
N2 | 0.4618 (2) | 0.14859 (15) | 0.88135 (11) | 0.0419 (4) | |
C9 | −0.1501 (2) | 0.33688 (17) | 0.86745 (11) | 0.0334 (4) | |
N3 | 0.3038 (2) | −0.04265 (16) | 0.84420 (11) | 0.0435 (4) | |
N5 | −0.20374 (19) | 0.32296 (17) | 0.76316 (11) | 0.0429 (4) | |
C1 | 0.1375 (2) | 0.16202 (18) | 0.81278 (12) | 0.0376 (4) | |
H1A | 0.1660 | 0.2430 | 0.7906 | 0.045* | |
H1B | 0.0689 | 0.1131 | 0.7602 | 0.045* | |
C3 | 0.2168 (2) | 0.10713 (18) | 0.96128 (12) | 0.0384 (4) | |
H3B | 0.1908 | 0.0288 | 0.9886 | 0.046* | |
H3A | 0.2834 | 0.1618 | 1.0105 | 0.046* | |
N4 | −0.2936 (2) | 0.53426 (18) | 1.04331 (15) | 0.0556 (5) | |
C7 | −0.2070 (2) | 0.43720 (19) | 1.00353 (13) | 0.0411 (5) | |
O3 | 0.4390 (2) | −0.07976 (16) | 0.83333 (12) | 0.0679 (5) | |
C6 | −0.0999 (2) | 0.35558 (19) | 1.06406 (13) | 0.0441 (5) | |
H6 | −0.0866 | 0.3606 | 1.1300 | 0.053* | |
C2 | 0.2905 (2) | 0.09108 (16) | 0.87430 (12) | 0.0340 (4) | |
C8 | −0.2340 (2) | 0.42800 (18) | 0.90514 (13) | 0.0388 (4) | |
H8 | −0.3082 | 0.4828 | 0.8648 | 0.047* | |
O1 | 0.4830 (2) | 0.19814 (17) | 0.80972 (11) | 0.0655 (5) | |
O7 | −0.2721 (2) | 0.41195 (17) | 0.71504 (11) | 0.0671 (5) | |
O6 | −0.3804 (2) | 0.61021 (15) | 0.98923 (15) | 0.0718 (5) | |
O4 | 0.1762 (2) | −0.10369 (15) | 0.83337 (12) | 0.0678 (5) | |
C5 | −0.0131 (2) | 0.26685 (19) | 1.02664 (12) | 0.0407 (5) | |
H5 | 0.0596 | 0.2125 | 1.0683 | 0.049* | |
O5 | −0.2740 (3) | 0.5369 (2) | 1.13090 (13) | 0.0877 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0396 (8) | 0.0687 (11) | 0.0560 (9) | −0.0018 (7) | −0.0034 (7) | 0.0035 (7) |
N1 | 0.0336 (8) | 0.0430 (9) | 0.0315 (7) | 0.0082 (7) | 0.0083 (6) | 0.0019 (6) |
C4 | 0.0289 (9) | 0.0349 (10) | 0.0344 (9) | −0.0039 (7) | 0.0098 (7) | −0.0011 (7) |
O8 | 0.0486 (9) | 0.0709 (11) | 0.0446 (8) | 0.0096 (8) | 0.0012 (6) | −0.0167 (7) |
N2 | 0.0366 (9) | 0.0427 (9) | 0.0457 (9) | 0.0007 (7) | 0.0092 (7) | 0.0018 (7) |
C9 | 0.0295 (9) | 0.0389 (10) | 0.0311 (8) | −0.0015 (8) | 0.0062 (7) | −0.0005 (7) |
N3 | 0.0490 (10) | 0.0384 (9) | 0.0433 (9) | 0.0025 (8) | 0.0123 (7) | −0.0007 (7) |
N5 | 0.0306 (8) | 0.0574 (11) | 0.0387 (9) | 0.0037 (8) | 0.0050 (7) | 0.0027 (8) |
C1 | 0.0342 (10) | 0.0451 (11) | 0.0338 (9) | 0.0067 (8) | 0.0089 (7) | 0.0017 (8) |
C3 | 0.0375 (10) | 0.0404 (11) | 0.0364 (9) | 0.0059 (8) | 0.0075 (7) | 0.0039 (8) |
N4 | 0.0443 (10) | 0.0497 (12) | 0.0779 (13) | −0.0058 (9) | 0.0253 (9) | −0.0222 (10) |
C7 | 0.0352 (10) | 0.0414 (11) | 0.0497 (11) | −0.0052 (8) | 0.0164 (8) | −0.0131 (9) |
O3 | 0.0609 (10) | 0.0625 (11) | 0.0811 (11) | 0.0189 (8) | 0.0196 (8) | −0.0179 (8) |
C6 | 0.0430 (11) | 0.0556 (13) | 0.0356 (9) | −0.0058 (9) | 0.0135 (8) | −0.0069 (9) |
C2 | 0.0320 (9) | 0.0330 (10) | 0.0359 (9) | 0.0019 (7) | 0.0068 (7) | 0.0003 (7) |
C8 | 0.0309 (9) | 0.0364 (10) | 0.0483 (10) | −0.0013 (8) | 0.0086 (8) | 0.0015 (8) |
O1 | 0.0474 (9) | 0.0908 (13) | 0.0596 (9) | −0.0145 (8) | 0.0159 (7) | 0.0171 (8) |
O7 | 0.0700 (11) | 0.0777 (12) | 0.0478 (8) | 0.0224 (9) | 0.0043 (7) | 0.0165 (8) |
O6 | 0.0689 (11) | 0.0460 (10) | 0.1116 (14) | 0.0094 (9) | 0.0432 (10) | −0.0049 (10) |
O4 | 0.0725 (11) | 0.0498 (10) | 0.0845 (11) | −0.0217 (8) | 0.0263 (9) | −0.0118 (8) |
C5 | 0.0397 (10) | 0.0480 (12) | 0.0339 (10) | 0.0030 (9) | 0.0083 (8) | 0.0032 (8) |
O5 | 0.0877 (13) | 0.1094 (16) | 0.0693 (11) | 0.0103 (11) | 0.0260 (10) | −0.0450 (11) |
O2—N2 | 1.2133 (19) | C1—C2 | 1.530 (2) |
N1—C4 | 1.358 (2) | C1—H1A | 0.9700 |
N1—C1 | 1.471 (2) | C1—H1B | 0.9700 |
N1—C3 | 1.473 (2) | C3—C2 | 1.528 (3) |
C4—C5 | 1.412 (2) | C3—H3B | 0.9700 |
C4—C9 | 1.420 (2) | C3—H3A | 0.9700 |
O8—N5 | 1.224 (2) | N4—O6 | 1.217 (2) |
N2—O1 | 1.209 (2) | N4—O5 | 1.231 (2) |
N2—C2 | 1.499 (2) | N4—C7 | 1.449 (3) |
C9—C8 | 1.375 (3) | C7—C6 | 1.375 (3) |
C9—N5 | 1.461 (2) | C7—C8 | 1.381 (3) |
N3—O4 | 1.199 (2) | C6—C5 | 1.370 (3) |
N3—O3 | 1.213 (2) | C6—H6 | 0.9300 |
N3—C2 | 1.504 (2) | C8—H8 | 0.9300 |
N5—O7 | 1.223 (2) | C5—H5 | 0.9300 |
C4—N1—C1 | 132.01 (15) | C2—C3—H3B | 113.9 |
C4—N1—C3 | 124.20 (14) | N1—C3—H3A | 113.9 |
C1—N1—C3 | 93.91 (13) | C2—C3—H3A | 113.9 |
N1—C4—C5 | 117.53 (15) | H3B—C3—H3A | 111.1 |
N1—C4—C9 | 126.61 (15) | O6—N4—O5 | 122.96 (19) |
C5—C4—C9 | 115.86 (16) | O6—N4—C7 | 118.91 (19) |
O1—N2—O2 | 125.62 (17) | O5—N4—C7 | 118.1 (2) |
O1—N2—C2 | 116.82 (15) | C6—C7—C8 | 121.05 (18) |
O2—N2—C2 | 117.57 (16) | C6—C7—N4 | 119.64 (18) |
C8—C9—C4 | 121.83 (16) | C8—C7—N4 | 119.31 (18) |
C8—C9—N5 | 115.41 (15) | C5—C6—C7 | 119.63 (17) |
C4—C9—N5 | 122.54 (16) | C5—C6—H6 | 120.2 |
O4—N3—O3 | 125.76 (19) | C7—C6—H6 | 120.2 |
O4—N3—C2 | 115.52 (16) | N2—C2—N3 | 105.99 (14) |
O3—N3—C2 | 118.72 (17) | N2—C2—C3 | 116.55 (14) |
O7—N5—O8 | 123.01 (16) | N3—C2—C3 | 114.47 (15) |
O7—N5—C9 | 118.51 (17) | N2—C2—C1 | 116.00 (15) |
O8—N5—C9 | 118.39 (15) | N3—C2—C1 | 114.20 (14) |
N1—C1—C2 | 88.22 (12) | C3—C2—C1 | 89.46 (13) |
N1—C1—H1A | 113.9 | C9—C8—C7 | 119.30 (17) |
C2—C1—H1A | 113.9 | C9—C8—H8 | 120.3 |
N1—C1—H1B | 113.9 | C7—C8—H8 | 120.4 |
C2—C1—H1B | 113.9 | C6—C5—C4 | 122.15 (17) |
H1A—C1—H1B | 111.1 | C6—C5—H5 | 118.9 |
N1—C3—C2 | 88.23 (12) | C4—C5—H5 | 118.9 |
N1—C3—H3B | 113.9 | ||
C1—N1—C4—C5 | −151.31 (18) | O1—N2—C2—C3 | −140.71 (18) |
C3—N1—C4—C5 | −15.0 (3) | O2—N2—C2—C3 | 39.7 (2) |
C1—N1—C4—C9 | 28.7 (3) | O1—N2—C2—C1 | −37.3 (2) |
C3—N1—C4—C9 | 165.05 (17) | O2—N2—C2—C1 | 143.13 (16) |
N1—C4—C9—C8 | −175.18 (17) | O4—N3—C2—N2 | −178.93 (15) |
C5—C4—C9—C8 | 4.9 (3) | O3—N3—C2—N2 | 1.3 (2) |
N1—C4—C9—N5 | 10.4 (3) | O4—N3—C2—C3 | 51.2 (2) |
C5—C4—C9—N5 | −169.55 (16) | O3—N3—C2—C3 | −128.56 (18) |
C8—C9—N5—O7 | 23.2 (2) | O4—N3—C2—C1 | −50.0 (2) |
C4—C9—N5—O7 | −162.06 (18) | O3—N3—C2—C1 | 130.29 (18) |
C8—C9—N5—O8 | −153.55 (17) | N1—C3—C2—N2 | 122.10 (16) |
C4—C9—N5—O8 | 21.2 (2) | N1—C3—C2—N3 | −113.44 (15) |
C4—N1—C1—C2 | 148.25 (19) | N1—C3—C2—C1 | 3.06 (14) |
C3—N1—C1—C2 | 3.19 (14) | N1—C1—C2—N2 | −122.59 (15) |
C4—N1—C3—C2 | −152.23 (17) | N1—C1—C2—N3 | 113.68 (16) |
C1—N1—C3—C2 | −3.19 (14) | N1—C1—C2—C3 | −3.07 (14) |
O6—N4—C7—C6 | 175.89 (19) | C4—C9—C8—C7 | −2.9 (3) |
O5—N4—C7—C6 | −3.2 (3) | N5—C9—C8—C7 | 171.93 (16) |
O6—N4—C7—C8 | −4.3 (3) | C6—C7—C8—C9 | −1.1 (3) |
O5—N4—C7—C8 | 176.56 (19) | N4—C7—C8—C9 | 179.16 (17) |
C8—C7—C6—C5 | 2.7 (3) | C7—C6—C5—C4 | −0.4 (3) |
N4—C7—C6—C5 | −177.53 (18) | N1—C4—C5—C6 | 176.83 (18) |
O1—N2—C2—N3 | 90.61 (19) | C9—C4—C5—C6 | −3.2 (3) |
O2—N2—C2—N3 | −88.97 (19) |
Experimental details
Crystal data | |
Chemical formula | C9H7N5O8 |
Mr | 313.20 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 8.113 (2), 10.676 (3), 14.398 (4) |
β (°) | 104.681 (4) |
V (Å3) | 1206.3 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.15 |
Crystal size (mm) | 0.31 × 0.26 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5860, 2140, 1670 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.118, 1.20 |
No. of reflections | 2140 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.21 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELX97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
We thank the National Natural Science Foundation of China (No. 20603026) and the Natural Science Foundation of Shaanxi Province, China (No. 2009JQ2002) for generously supporting this study.
References
Archibald, T. G., Gilardi, R., Baum, K. & George, C. (1990). J. Org. Chem. 55, 2920–2924. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Frumkin, A. E., Churakov, A. M., Strelenko, Y. A., Kachala, V. V. & Tartakkovsky, V. A. (1999). Org. Lett. 1, 721–724. Web of Science CrossRef PubMed CAS Google Scholar
Gao, R., Ma, H. X., Yan, B., Song, J. R. & Wang, Y. H. (2009). Chem. J. Chin. Univ. 30, 577–582. CAS Google Scholar
Hiskey, M. A. & Coburn, M. D. (1994a). US Patent No. 5 336 784. Google Scholar
Hiskey, M. A. & Coburn, M. D. (1994b). Chem. Abstr. 121, 300750s. Google Scholar
Hiskey, M. A., Coburn, M. D., Mitchell, M. A. & Benicewicz, B. C. (1992). J. Heterocycl. Chem. 29, 1855–1856. CrossRef CAS Google Scholar
Hiskey, M. A., Stincipher, M. M. & Brown, J. E. (1993). J. Energ. Mater. 11, 157–165. CrossRef CAS Google Scholar
Ma, H. X., Yan, B., Li, Z. N., Guan, Y. L., Song, J. R., Xu, K. Z. & Hu, R. Z. (2009a). J. Hazard. Mater. 169, 1068–1073. Web of Science CrossRef PubMed CAS Google Scholar
Ma, H. X., Yan, B., Li, Z. N., Song, J. R. & Hu, R. Z. (2009b). J. Therm. Anal. Calorim. 95, 437–444. Web of Science CrossRef CAS Google Scholar
Ma, H. X., Yan, B., Song, J. R., Lü, X. Q. & Wang, L. J. (2009c). Chem. J. Chin. Univ. 30, 371–381. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Highly nitrated small-ring heterocycles are good candidates for energetic materials because of the increased performance from the additional energy release upon opening of the strained ring system during decomposition (Frumkin et al., 1999). Azetidine-based explosives, such as 1,3,3-trinitroazetidine (TNAZ) (Archibald et al., 1990; Hiskey et al., 1994a,b) demonstrate excellent performance partly because of the high strain associated with the four-membered ring. As one of the important derivates of TNAZ, 3,3-dinitroazetidine (DNAZ) (Hiskey et al., 1992; Hiskey et al., 1993) can prepare a variety of solid energetic compounds (Ma et al., 2009a,b,c; Gao et al., 2009). The title compound (I) is a DNAZ derivates. The dihedral angle between the azetidine ring and benzene ring is 26.1° and the planes of two nitryl of azetidine ring is 88.7°. There are no important intermolecular contacts in the crystal structure.