metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido­cyclo­hexyl[(1,2,5,6-η)-cyclo­octa-1,5-diene]platinum(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 25 November 2009; accepted 26 November 2009; online 28 November 2009)

In the title complex, [Pt(C6H11)Cl(C8H12)], the PtII ion lies in a distorted square-planar environment defined by the Cl and cyclo­hexyl C atoms and the mid-points of the two π-coordinated double bonds of cyclo­octa-1,5-diene. As a result of the different trans influences of the Cl atom and the cyclo­hexyl group, the Pt—C bonds trans to the cyclo­hexyl group are longer than those trans to the Cl atom.

Related literature

For the crystal structure of [(cod)PtCl2] (cod = cyclo­octa-1,5-diene), see: Goel et al. (1982[ Goel, A. B., Goel, S. & van der Veer, D. (1982). Inorg. Chim. Acta, 65, L205-L206.]); Syed et al. (1984[ Syed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem. 23, 3673-3674.]). For the crystal structures of [(cod)Pt(CH3)L] (L = OH, CH3 or Cl), see: Klein et al. (1999[ Klein, A., Klinkhammer, K.-W. & Scheiring, T. (1999). J. Organomet. Chem. 592, 128-135.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C6H11)Cl(C8H12)]

  • Mr = 421.86

  • Monoclinic, P 21 /n

  • a = 10.6505 (5) Å

  • b = 12.3514 (6) Å

  • c = 11.1609 (6) Å

  • β = 105.175 (1)°

  • V = 1417.01 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.06 mm−1

  • T = 296 K

  • 0.20 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[ Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.122, Tmax = 0.221

  • 10108 measured reflections

  • 3481 independent reflections

  • 2343 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.083

  • S = 1.12

  • 3481 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −1.79 e Å−3

Data collection: SMART (Bruker, 2000[ Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[ Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[ Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[ Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title complex, [Pt(C6H11)Cl(C8H12)], the central PtII ion lies in a distorted square-planar environment defined by the Cl and cyclohexyl C atoms and the two mid-points (M1, M2) of the π-coordinated double bonds of cycloocta-1,5-diene (cod) ligand (M1 and M2 denote the mid-points of the olefinic bonds C1—C2 and C5—C6, respectively) (Fig. 1 and Fig. 2). The Pt, Cl, C9 atoms and the mid-points lie in a coordination plane with the largest deviation of 0.021 Å (C9) from the least-squares plane, and with bond angles in the range of 85.2°–92.2°. Because of the different trans influences of the Cl atom and the cyclohexyl group, the Pt—C bonds trans to C9 of the cyclohexyl group are on average 0.215 Å longer than those trans to the Cl atom (Pt1—C1/C2 = 2.316 (7) and 2.337 (8) Å, Pt1—C5/C6 = 2.111 (8) and 2.112 (8) Å). The distances between the Pt atom and the mid-points are 2.228 Å (M1) and 1.992 Å (M2). The cod ligand coordinates to the Pt atom in the twist-boat conformation with the coordinated double-bond lengths of 1.339 (11) and 1.402 (12) Å, and the cod ring angles lie in the range of 113.0 (8)°–127.1 (8)°. The σ-bonded cyclohexyl ring is in the chair conformation with the ring angles of 109.9 (8)°–112.0 (8)°.

Related literature top

For the crystal structure of [(cod)PtCl2] (cod = cycloocta-1,5-diene), see: Goel et al. (1982); Syed et al. (1984). For the crystal structures of [(cod)Pt(CH3)L] (L = OH, CH3 or Cl), see: Klein et al. (1999).

Experimental top

To a suspension of [(cod)PtCl2] (0.5015 g, 1.34 mmol) in ether (30 ml) was added cyclohexylmagnesium chloride (2.0 M solution in ether, 4.1 ml, 8.04 mmol) and stirred for 24 h at -5 °C. After methanolysis with 1 ml MeOH, the resulting mixture was diluted with ether (20 ml), and then filtered directly through a plug of Al2O3 (3 cm x 2 cm) and eluted with ether (80 ml). The solvent was removed under vacuum and the residue was dried, to give a white powder (0.3655 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an ethyl acetate solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.98 (CH) or 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound.
Chloridocyclohexyl[(1,2,5,6-η)-cycloocta-1,5-diene]platinum(II) top
Crystal data top
[Pt(C6H11)Cl(C8H12)]F(000) = 808
Mr = 421.86Dx = 1.977 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3669 reflections
a = 10.6505 (5) Åθ = 2.4–27.8°
b = 12.3514 (6) ŵ = 10.06 mm1
c = 11.1609 (6) ÅT = 296 K
β = 105.175 (1)°Block, colorless
V = 1417.01 (12) Å30.20 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3481 independent reflections
Radiation source: fine-focus sealed tube2343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1414
Tmin = 0.122, Tmax = 0.221k = 816
10108 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0112P)2 + 4.7457P]
where P = (Fo2 + 2Fc2)/3
3481 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 1.79 e Å3
Crystal data top
[Pt(C6H11)Cl(C8H12)]V = 1417.01 (12) Å3
Mr = 421.86Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6505 (5) ŵ = 10.06 mm1
b = 12.3514 (6) ÅT = 296 K
c = 11.1609 (6) Å0.20 × 0.16 × 0.15 mm
β = 105.175 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3481 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2343 reflections with I > 2σ(I)
Tmin = 0.122, Tmax = 0.221Rint = 0.050
10108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.12Δρmax = 1.12 e Å3
3481 reflectionsΔρmin = 1.79 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.23435 (3)0.38659 (3)0.59178 (3)0.03388 (11)
Cl10.0531 (2)0.2747 (2)0.5501 (2)0.0491 (6)
C10.1992 (9)0.4337 (7)0.7812 (7)0.043 (2)
H10.13720.38700.80780.051*
C20.1440 (8)0.5121 (8)0.7019 (8)0.044 (2)
H20.04870.51320.68010.052*
C30.2067 (9)0.6204 (8)0.6984 (8)0.053 (2)
H3A0.26250.63640.78020.064*
H3B0.13960.67550.67850.064*
C40.2864 (10)0.6255 (8)0.6048 (9)0.063 (3)
H4A0.22990.64770.52560.076*
H4B0.35220.68120.63080.076*
C50.3523 (8)0.5229 (7)0.5861 (8)0.043 (2)
H50.38650.52430.51280.052*
C60.4195 (8)0.4513 (8)0.6782 (9)0.052 (3)
H60.49210.41350.65780.062*
C70.4382 (10)0.4719 (9)0.8158 (9)0.068 (3)
H7A0.51690.43510.86070.082*
H7B0.45220.54890.83070.082*
C80.3306 (11)0.4376 (9)0.8696 (8)0.065 (3)
H8A0.32760.48700.93640.078*
H8B0.35100.36630.90580.078*
C90.3060 (8)0.3085 (8)0.4561 (8)0.044 (2)
H90.38820.34380.45540.053*
C100.2166 (11)0.3210 (9)0.3290 (8)0.064 (3)
H10A0.20230.39740.30990.076*
H10B0.13320.28830.32670.076*
C110.2741 (13)0.2672 (11)0.2310 (10)0.087 (4)
H11A0.21160.27180.15040.105*
H11B0.35170.30600.22620.105*
C120.3075 (11)0.1516 (9)0.2608 (10)0.071 (3)
H12A0.35130.12270.20170.085*
H12B0.22820.11050.25300.085*
C130.3945 (10)0.1387 (9)0.3909 (9)0.067 (3)
H13A0.47850.17130.39520.080*
H13B0.40830.06220.40960.080*
C140.3359 (9)0.1916 (8)0.4883 (8)0.051 (2)
H14A0.25670.15400.49110.061*
H14B0.39680.18630.56960.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.03384 (17)0.03547 (19)0.03338 (16)0.00364 (17)0.01065 (11)0.00381 (18)
Cl10.0403 (12)0.0527 (15)0.0538 (13)0.0132 (10)0.0116 (10)0.0063 (12)
C10.070 (6)0.037 (5)0.028 (4)0.006 (5)0.025 (4)0.004 (4)
C20.042 (5)0.048 (6)0.043 (5)0.007 (4)0.015 (4)0.006 (5)
C30.056 (6)0.054 (7)0.048 (5)0.012 (5)0.010 (4)0.002 (5)
C40.075 (7)0.046 (7)0.072 (7)0.006 (5)0.026 (6)0.009 (6)
C50.049 (5)0.044 (6)0.049 (5)0.020 (4)0.031 (4)0.019 (5)
C60.030 (5)0.053 (6)0.068 (6)0.015 (4)0.005 (4)0.018 (6)
C70.062 (7)0.067 (8)0.058 (6)0.000 (6)0.014 (5)0.007 (6)
C80.096 (9)0.055 (7)0.035 (5)0.017 (6)0.000 (5)0.006 (5)
C90.049 (5)0.047 (6)0.042 (5)0.008 (4)0.022 (4)0.018 (4)
C100.096 (8)0.056 (7)0.046 (6)0.018 (6)0.033 (6)0.007 (5)
C110.121 (11)0.108 (12)0.047 (6)0.015 (9)0.046 (7)0.009 (7)
C120.084 (8)0.061 (8)0.080 (8)0.000 (6)0.042 (7)0.024 (7)
C130.072 (7)0.064 (8)0.072 (7)0.010 (6)0.032 (6)0.012 (6)
C140.056 (6)0.045 (6)0.057 (6)0.008 (5)0.026 (5)0.013 (5)
Geometric parameters (Å, º) top
Pt1—C92.100 (8)C7—H7A0.9700
Pt1—C52.111 (8)C7—H7B0.9700
Pt1—C62.112 (8)C8—H8A0.9700
Pt1—C12.316 (7)C8—H8B0.9700
Pt1—Cl12.320 (2)C9—C101.495 (12)
Pt1—C22.337 (8)C9—C141.502 (12)
C1—C21.339 (11)C9—H90.9800
C1—C81.487 (13)C10—C111.538 (12)
C1—H10.9800C10—H10A0.9700
C2—C31.500 (13)C10—H10B0.9700
C2—H20.9800C11—C121.488 (15)
C3—C41.510 (12)C11—H11A0.9700
C3—H3A0.9700C11—H11B0.9700
C3—H3B0.9700C12—C131.513 (14)
C4—C51.490 (13)C12—H12A0.9700
C4—H4A0.9700C12—H12B0.9700
C4—H4B0.9700C13—C141.534 (11)
C5—C61.402 (12)C13—H13A0.9700
C5—H50.9800C13—H13B0.9700
C6—C71.517 (12)C14—H14A0.9700
C6—H60.9800C14—H14B0.9700
C7—C81.487 (14)
C9—Pt1—C590.8 (3)Pt1—C6—H6114.4
C9—Pt1—C691.8 (4)C8—C7—C6116.8 (8)
C5—Pt1—C638.8 (3)C8—C7—H7A108.1
C9—Pt1—C1161.8 (3)C6—C7—H7A108.1
C5—Pt1—C193.8 (3)C8—C7—H7B108.1
C6—Pt1—C180.9 (4)C6—C7—H7B108.1
C9—Pt1—Cl191.3 (2)H7A—C7—H7B107.3
C5—Pt1—Cl1159.9 (3)C7—C8—C1115.6 (8)
C6—Pt1—Cl1160.9 (3)C7—C8—H8A108.4
C1—Pt1—Cl190.5 (2)C1—C8—H8A108.4
C9—Pt1—C2164.0 (3)C7—C8—H8B108.4
C5—Pt1—C279.5 (3)C1—C8—H8B108.4
C6—Pt1—C288.4 (4)H8A—C8—H8B107.4
C1—Pt1—C233.5 (3)C10—C9—C14111.7 (8)
Cl1—Pt1—C293.7 (2)C10—C9—Pt1112.0 (6)
C2—C1—C8126.1 (9)C14—C9—Pt1111.3 (6)
C2—C1—Pt174.1 (5)C10—C9—H9107.2
C8—C1—Pt1105.4 (6)C14—C9—H9107.2
C2—C1—H1114.3Pt1—C9—H9107.2
C8—C1—H1114.3C9—C10—C11110.9 (9)
Pt1—C1—H1114.3C9—C10—H10A109.5
C1—C2—C3122.7 (8)C11—C10—H10A109.5
C1—C2—Pt172.4 (5)C9—C10—H10B109.5
C3—C2—Pt1109.3 (6)C11—C10—H10B109.5
C1—C2—H2114.9H10A—C10—H10B108.0
C3—C2—H2114.9C12—C11—C10111.9 (9)
Pt1—C2—H2114.9C12—C11—H11A109.2
C2—C3—C4113.0 (8)C10—C11—H11A109.2
C2—C3—H3A109.0C12—C11—H11B109.2
C4—C3—H3A109.0C10—C11—H11B109.2
C2—C3—H3B109.0H11A—C11—H11B107.9
C4—C3—H3B109.0C11—C12—C13111.5 (10)
H3A—C3—H3B107.8C11—C12—H12A109.3
C5—C4—C3115.5 (9)C13—C12—H12A109.3
C5—C4—H4A108.4C11—C12—H12B109.3
C3—C4—H4A108.4C13—C12—H12B109.3
C5—C4—H4B108.4H12A—C12—H12B108.0
C3—C4—H4B108.4C12—C13—C14112.0 (8)
H4A—C4—H4B107.5C12—C13—H13A109.2
C6—C5—C4127.1 (8)C14—C13—H13A109.2
C6—C5—Pt170.7 (5)C12—C13—H13B109.2
C4—C5—Pt1111.6 (6)C14—C13—H13B109.2
C6—C5—H5113.2H13A—C13—H13B107.9
C4—C5—H5113.2C9—C14—C13109.9 (8)
Pt1—C5—H5113.2C9—C14—H14A109.7
C5—C6—C7122.9 (9)C13—C14—H14A109.7
C5—C6—Pt170.6 (5)C9—C14—H14B109.7
C7—C6—Pt1112.7 (6)C13—C14—H14B109.7
C5—C6—H6114.4H14A—C14—H14B108.2
C7—C6—H6114.4
C9—Pt1—C1—C2168.5 (9)C9—Pt1—C6—C589.0 (6)
C5—Pt1—C1—C264.3 (6)C1—Pt1—C6—C5107.8 (5)
C6—Pt1—C1—C2101.0 (6)Cl1—Pt1—C6—C5171.9 (6)
Cl1—Pt1—C1—C296.1 (6)C2—Pt1—C6—C575.0 (5)
C9—Pt1—C1—C844.6 (14)C9—Pt1—C6—C7152.5 (8)
C5—Pt1—C1—C859.5 (7)C5—Pt1—C6—C7118.5 (10)
C6—Pt1—C1—C822.8 (7)C1—Pt1—C6—C710.6 (7)
Cl1—Pt1—C1—C8140.1 (6)Cl1—Pt1—C6—C753.4 (13)
C2—Pt1—C1—C8123.8 (9)C2—Pt1—C6—C743.4 (8)
C8—C1—C2—C34.3 (14)C5—C6—C7—C884.8 (12)
Pt1—C1—C2—C3102.0 (8)Pt1—C6—C7—C84.0 (12)
C8—C1—C2—Pt197.7 (9)C6—C7—C8—C126.2 (14)
C9—Pt1—C2—C1166.9 (10)C2—C1—C8—C749.3 (13)
C5—Pt1—C2—C1113.8 (6)Pt1—C1—C8—C732.0 (10)
C6—Pt1—C2—C175.9 (6)C5—Pt1—C9—C1097.5 (7)
Cl1—Pt1—C2—C185.2 (6)C6—Pt1—C9—C10136.2 (7)
C9—Pt1—C2—C347.6 (15)C1—Pt1—C9—C10157.9 (9)
C5—Pt1—C2—C35.4 (6)Cl1—Pt1—C9—C1062.6 (7)
C6—Pt1—C2—C343.4 (6)C2—Pt1—C9—C1045.7 (15)
C1—Pt1—C2—C3119.3 (9)C5—Pt1—C9—C14136.7 (7)
Cl1—Pt1—C2—C3155.5 (6)C6—Pt1—C9—C1498.0 (7)
C1—C2—C3—C493.5 (10)C1—Pt1—C9—C1432.1 (14)
Pt1—C2—C3—C412.5 (9)Cl1—Pt1—C9—C1463.2 (6)
C2—C3—C4—C533.3 (12)C2—Pt1—C9—C14171.5 (10)
C3—C4—C5—C643.5 (13)C14—C9—C10—C1156.8 (11)
C3—C4—C5—Pt138.1 (10)Pt1—C9—C10—C11177.6 (7)
C9—Pt1—C5—C691.9 (6)C9—C10—C11—C1254.8 (14)
C1—Pt1—C5—C670.4 (6)C10—C11—C12—C1353.3 (14)
Cl1—Pt1—C5—C6172.3 (6)C11—C12—C13—C1454.1 (13)
C2—Pt1—C5—C6100.8 (6)C10—C9—C14—C1356.9 (10)
C9—Pt1—C5—C4144.8 (7)Pt1—C9—C14—C13177.1 (6)
C6—Pt1—C5—C4123.2 (9)C12—C13—C14—C955.3 (12)
C1—Pt1—C5—C452.8 (7)C1—C2—C5—C67.2 (7)
Cl1—Pt1—C5—C449.1 (11)C3—C4—C7—C822.4 (8)
C2—Pt1—C5—C422.5 (7)C3—C2—C1—C84.3 (14)
C4—C5—C6—C72.0 (14)C4—C5—C6—C72.0 (14)
Pt1—C5—C6—C7105.0 (9)C2—C3—C4—C533.3 (12)
C4—C5—C6—Pt1103.0 (9)C6—C7—C8—C126.2 (14)

Experimental details

Crystal data
Chemical formula[Pt(C6H11)Cl(C8H12)]
Mr421.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.6505 (5), 12.3514 (6), 11.1609 (6)
β (°) 105.175 (1)
V3)1417.01 (12)
Z4
Radiation typeMo Kα
µ (mm1)10.06
Crystal size (mm)0.20 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.122, 0.221
No. of measured, independent and
observed [I > 2σ(I)] reflections
10108, 3481, 2343
Rint0.050
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.083, 1.12
No. of reflections3481
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 1.79

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

 

Acknowledgements

This work was supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

References

First citation Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Goel, A. B., Goel, S. & van der Veer, D. (1982). Inorg. Chim. Acta, 65, L205–L206.  CSD CrossRef CAS Web of Science Google Scholar
First citation Klein, A., Klinkhammer, K.-W. & Scheiring, T. (1999). J. Organomet. Chem. 592, 128–135.  Web of Science CSD CrossRef CAS Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Spek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Syed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem. 23, 3673–3674.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds