metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)zinc(II)]-μ-2,2′-oxydibenzo­ato-κ2O:O′]

aThe Center of Analysis and Determination, Henan University of Traditional Chinese Medicine, No. 1 Jinshui Road, Zhengzhou 450008, Henan, People's Republic of China
*Correspondence e-mail: haiyangong@yeah.net

(Received 20 October 2009; accepted 11 November 2009; online 14 November 2009)

In the title compound, [Zn(C14H8O5)(C15H11N3)]n, both the ZnII ion and the oxydibenzoate ligand are located on a twofold rotation axis. The ZnII centre is coordinated by three N atoms from a chelating 2,2′:6′,2′′-terpyridine ligand and two O atoms from two 2,2′-oxydibenzoate ligands, forming a distorted trigonal-bipyramidal coordination environment. Further coordination via the 2,2′-oxydibenzoate anions forms a one-dimensional coordination polymer extending parallel to [010]. Aromatic ππ stacking inter­actions are observed between adjacent terpyridine ligands with a centroid–centroid distance of 3.568 (2) Å.

Related literature

For related structures, see: Zhao & Li (2009[Zhao, Q.-L. & Li, G.-P. (2009). Acta Cryst. E65, m693.]); Andres & Schubert (2004[Andres, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043-1068.]); Constable (1986[Constable, E. C. (1986). Adv. Inorg. Chem. Radiochem. 30, 69-121.]); Hofmeier & Schubert (2004[Hofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373-399.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C14H8O5)(C15H11N3)]

  • Mr = 554.84

  • Orthorhombic, P c c n

  • a = 8.7985 (17) Å

  • b = 10.694 (2) Å

  • c = 25.535 (5) Å

  • V = 2402.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.815, Tmax = 0.847

  • 15388 measured reflections

  • 2924 independent reflections

  • 2347 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.098

  • S = 1.08

  • 2924 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2':6',2''-Terpyridine and its derivatives have been intensively explored because of the interesting electronic, photonic, magnetic, reactive and structural properties shown by the transition metal complexes of these ligands (Andres & Schubert, 2004; Constable, 1986; Hofmeier & Schubert, 2004). We report here the synthesis and structure of the ZnII complex based on the 2,2':6',2''-terpyridine ligand.

In the crystal structure of the title compound, the Zn atoms are coordinated by three N atoms from a chelating terpy ligand and two O atoms from two 2,2'-oxydibenzoate ligands, forming a distorted trigonal bipyramidal coordination environment (Figure 1). The Zinc atoms are linked by the 2,2-oxydibenzoate anions into a one-dimensional coordination polymer.

Aromatic stacking interactions between Cg1 and Cg2 [Cg1 and Cg2 are (N2, C8 – C12) and (N2i, C8i – C12i) ring centroids, respectively, symmetry code:(i) -1/2 - x,1/2 - y,z] are observed, with a centroid–centroid distances of 3.568 (2) Å.

Related literature top

For related structures, see: Zhao & Li (2009); Andres & Schubert (2004); Constable (1986); Hofmeier & Schubert (2004).

Experimental top

The title complound was synthesized hydrothermally in a Teflon-lined autoclave (25 ml) by heating a mixture of 2,2':6',2''-terpyridine (0.2 mmol), 2,2'-oxydibenzoic acid (0.4 mmol) and ZnSO4.H2O (0.2 mmol) in water (10 ml) at 393 K for 3 d. The autoclave was slowly cooled to room temperature. Crystals suitable for X-ray analysis were obtained.

Refinement top

All the H atoms could be detected in the difference Fourier map. Nevertheless, they were situated into the idealized position and refined using a C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. [Symmetry codes: (i) -x+1/2, -y+1/2, z; (ii) -x+1/2, -y-1/2, z.]
catena-Poly[[(2,2':6',2''-terpyridine- κ3N,N',N'')zinc(II)]-µ-2,2'-oxydibenzoato- κ2O:O'] top
Crystal data top
[Zn(C14H8O5)(C15H11N3)]F(000) = 1136
Mr = 554.84Dx = 1.534 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2235 reflections
a = 8.7985 (17) Åθ = 2.1–25.4°
b = 10.694 (2) ŵ = 1.07 mm1
c = 25.535 (5) ÅT = 296 K
V = 2402.6 (8) Å3Block, colourless
Z = 40.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2924 independent reflections
Radiation source: sealed tube2347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 28.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.815, Tmax = 0.847k = 1014
15388 measured reflectionsl = 2733
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0319P)2 + 2.226P]
where P = (Fo2 + 2Fc2)/3
2924 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Zn(C14H8O5)(C15H11N3)]V = 2402.6 (8) Å3
Mr = 554.84Z = 4
Orthorhombic, PccnMo Kα radiation
a = 8.7985 (17) ŵ = 1.07 mm1
b = 10.694 (2) ÅT = 296 K
c = 25.535 (5) Å0.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2924 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2347 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.847Rint = 0.043
15388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.08Δρmax = 0.39 e Å3
2924 reflectionsΔρmin = 0.31 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1521 (3)0.0127 (2)0.37317 (9)0.0328 (5)
C20.0873 (3)0.0769 (2)0.33333 (8)0.0279 (5)
C30.0284 (3)0.0330 (2)0.30090 (10)0.0371 (6)
H30.06020.04950.30440.045*
C40.0974 (3)0.1075 (3)0.26391 (11)0.0461 (7)
H40.17430.07560.24280.055*
C50.0514 (3)0.2295 (3)0.25857 (11)0.0484 (7)
H50.09710.28070.23370.058*
C60.0626 (3)0.2760 (2)0.29012 (11)0.0428 (6)
H60.09300.35890.28660.051*
C70.1323 (3)0.2002 (2)0.32707 (9)0.0311 (5)
C80.0782 (4)0.3622 (3)0.39283 (15)0.0611 (9)
H80.05980.35780.35700.073*
C90.2154 (4)0.4118 (4)0.4104 (2)0.0781 (12)
H90.28720.44120.38660.094*
C100.2425 (4)0.4166 (3)0.4628 (2)0.0807 (13)
H100.33370.44890.47520.097*
C110.1361 (4)0.3741 (3)0.49663 (16)0.0647 (10)
H110.15400.37660.53250.078*
C120.0007 (3)0.3269 (2)0.47753 (11)0.0450 (7)
C130.1247 (3)0.2844 (2)0.51128 (10)0.0437 (7)
C140.1214 (5)0.2817 (3)0.56602 (12)0.0699 (11)
H140.03270.30130.58400.084*
C150.25000.25000.59255 (18)0.084 (2)
H150.25000.25000.62900.101*
N10.25000.25000.48583 (10)0.0370 (7)
N20.0271 (3)0.3210 (2)0.42577 (9)0.0423 (5)
O30.1871 (2)0.11853 (16)0.35496 (7)0.0425 (4)
O40.1571 (3)0.0158 (2)0.41919 (8)0.0732 (8)
O50.25000.25000.35744 (9)0.0370 (5)
Zn10.25000.25000.404461 (14)0.03014 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0402 (13)0.0278 (13)0.0305 (12)0.0013 (10)0.0055 (10)0.0016 (10)
C20.0331 (12)0.0246 (11)0.0259 (11)0.0057 (10)0.0003 (9)0.0003 (8)
C30.0432 (14)0.0287 (13)0.0395 (13)0.0004 (11)0.0055 (11)0.0021 (10)
C40.0428 (15)0.0493 (17)0.0460 (16)0.0070 (13)0.0156 (13)0.0017 (13)
C50.0465 (15)0.0482 (18)0.0505 (16)0.0109 (13)0.0102 (13)0.0148 (13)
C60.0459 (15)0.0295 (15)0.0528 (16)0.0025 (11)0.0031 (13)0.0125 (11)
C70.0347 (13)0.0285 (12)0.0301 (11)0.0033 (10)0.0026 (10)0.0012 (9)
C80.0508 (18)0.057 (2)0.076 (2)0.0010 (16)0.0083 (17)0.0014 (17)
C90.051 (2)0.052 (2)0.132 (4)0.0036 (16)0.014 (2)0.005 (2)
C100.0508 (19)0.047 (2)0.145 (4)0.0045 (18)0.026 (3)0.028 (2)
C110.059 (2)0.0445 (19)0.090 (3)0.0147 (16)0.029 (2)0.0232 (17)
C120.0480 (16)0.0293 (14)0.0577 (17)0.0145 (12)0.0178 (14)0.0113 (12)
C130.0644 (18)0.0292 (14)0.0377 (14)0.0192 (12)0.0137 (13)0.0066 (10)
C140.120 (3)0.051 (2)0.0386 (17)0.018 (2)0.0285 (19)0.0064 (13)
C150.160 (6)0.065 (3)0.028 (2)0.020 (4)0.0000.000
N10.0537 (18)0.0297 (15)0.0277 (13)0.0183 (15)0.0000.000
N20.0406 (12)0.0377 (13)0.0487 (13)0.0046 (10)0.0024 (10)0.0027 (10)
O30.0645 (12)0.0274 (9)0.0355 (9)0.0114 (9)0.0081 (9)0.0014 (7)
O40.134 (2)0.0536 (14)0.0323 (11)0.0204 (15)0.0225 (12)0.0056 (9)
O50.0421 (13)0.0365 (13)0.0324 (12)0.0100 (12)0.0000.000
Zn10.0392 (2)0.02603 (19)0.02521 (19)0.00652 (18)0.0000.000
Geometric parameters (Å, º) top
C1—O41.215 (3)C10—C111.353 (6)
C1—O31.261 (3)C10—H100.9300
C1—C21.509 (3)C11—C121.383 (4)
C2—C71.387 (3)C11—H110.9300
C2—C31.394 (3)C12—N21.346 (3)
C3—C41.377 (4)C12—C131.472 (4)
C3—H30.9300C13—N11.332 (3)
C4—C51.372 (4)C13—C141.398 (4)
C4—H40.9300C14—C151.362 (5)
C5—C61.379 (4)C14—H140.9300
C5—H50.9300C15—C14i1.362 (5)
C6—C71.387 (3)C15—H150.9300
C6—H60.9300N1—C13i1.332 (3)
C7—O51.399 (3)N1—Zn12.078 (3)
C8—N21.326 (4)N2—Zn12.172 (2)
C8—C91.393 (5)O3—Zn11.9699 (17)
C8—H80.9300O5—C7ii1.399 (3)
C9—C101.360 (6)Zn1—O3i1.9699 (17)
C9—H90.9300Zn1—N2i2.172 (2)
O4—C1—O3124.9 (2)C12—C11—H11120.2
O4—C1—C2120.4 (2)N2—C12—C11121.3 (3)
O3—C1—C2114.4 (2)N2—C12—C13115.1 (2)
C7—C2—C3117.4 (2)C11—C12—C13123.5 (3)
C7—C2—C1125.0 (2)N1—C13—C14119.9 (3)
C3—C2—C1117.6 (2)N1—C13—C12114.8 (2)
C4—C3—C2122.3 (2)C14—C13—C12125.2 (3)
C4—C3—H3118.8C15—C14—C13119.0 (4)
C2—C3—H3118.8C15—C14—H14120.5
C5—C4—C3119.2 (3)C13—C14—H14120.5
C5—C4—H4120.4C14—C15—C14i120.3 (4)
C3—C4—H4120.4C14—C15—H15119.8
C4—C5—C6119.9 (2)C14i—C15—H15119.8
C4—C5—H5120.0C13—N1—C13i121.6 (3)
C6—C5—H5120.0C13—N1—Zn1119.20 (16)
C5—C6—C7120.5 (2)C13i—N1—Zn1119.20 (16)
C5—C6—H6119.7C8—N2—C12118.7 (3)
C7—C6—H6119.7C8—N2—Zn1126.0 (2)
C6—C7—C2120.5 (2)C12—N2—Zn1115.24 (19)
C6—C7—O5118.8 (2)C1—O3—Zn1118.19 (15)
C2—C7—O5120.6 (2)C7ii—O5—C7112.7 (2)
N2—C8—C9121.9 (4)O3—Zn1—O3i100.17 (10)
N2—C8—H8119.1O3—Zn1—N1129.91 (5)
C9—C8—H8119.1O3i—Zn1—N1129.92 (5)
C10—C9—C8118.9 (4)O3—Zn1—N2i99.49 (9)
C10—C9—H9120.6O3i—Zn1—N2i99.01 (9)
C8—C9—H9120.6N1—Zn1—N2i75.49 (6)
C11—C10—C9119.6 (4)O3—Zn1—N299.01 (9)
C11—C10—H10120.2O3i—Zn1—N299.49 (9)
C9—C10—H10120.2N1—Zn1—N275.49 (6)
C10—C11—C12119.6 (4)N2i—Zn1—N2150.99 (12)
C10—C11—H11120.2
O4—C1—C2—C752.7 (4)C9—C8—N2—C120.4 (5)
O3—C1—C2—C7132.5 (3)C9—C8—N2—Zn1176.8 (3)
O4—C1—C2—C3126.2 (3)C11—C12—N2—C80.4 (4)
O3—C1—C2—C348.6 (3)C13—C12—N2—C8177.4 (2)
C7—C2—C3—C40.2 (4)C11—C12—N2—Zn1177.9 (2)
C1—C2—C3—C4178.8 (2)C13—C12—N2—Zn10.1 (3)
C2—C3—C4—C50.1 (4)O4—C1—O3—Zn11.7 (4)
C3—C4—C5—C60.1 (4)C2—C1—O3—Zn1172.90 (16)
C4—C5—C6—C70.5 (4)C6—C7—O5—C7ii55.47 (19)
C5—C6—C7—C20.7 (4)C2—C7—O5—C7ii123.7 (2)
C5—C6—C7—O5178.5 (2)C1—O3—Zn1—O3i173.4 (2)
C3—C2—C7—C60.6 (3)C1—O3—Zn1—N16.6 (2)
C1—C2—C7—C6178.3 (2)C1—O3—Zn1—N2i72.4 (2)
C3—C2—C7—O5178.6 (2)C1—O3—Zn1—N285.2 (2)
C1—C2—C7—O52.5 (4)C13—N1—Zn1—O386.96 (14)
N2—C8—C9—C100.8 (6)C13i—N1—Zn1—O393.04 (14)
C8—C9—C10—C110.4 (6)C13—N1—Zn1—O3i93.04 (14)
C9—C10—C11—C120.3 (5)C13i—N1—Zn1—O3i86.96 (14)
C10—C11—C12—N20.8 (4)C13—N1—Zn1—N2i177.27 (13)
C10—C11—C12—C13176.9 (3)C13i—N1—Zn1—N2i2.73 (13)
N2—C12—C13—N12.2 (3)C13—N1—Zn1—N22.72 (13)
C11—C12—C13—N1175.6 (2)C13i—N1—Zn1—N2177.27 (13)
N2—C12—C13—C14179.8 (3)C8—N2—Zn1—O355.0 (3)
C11—C12—C13—C142.5 (4)C12—N2—Zn1—O3127.67 (18)
N1—C13—C14—C153.4 (4)C8—N2—Zn1—O3i47.0 (3)
C12—C13—C14—C15174.5 (2)C12—N2—Zn1—O3i130.35 (18)
C13—C14—C15—C14i1.67 (19)C8—N2—Zn1—N1175.9 (3)
C14—C13—N1—C13i1.7 (2)C12—N2—Zn1—N11.39 (17)
C12—C13—N1—C13i176.5 (2)C8—N2—Zn1—N2i175.9 (3)
C14—C13—N1—Zn1178.3 (2)C12—N2—Zn1—N2i1.39 (17)
C12—C13—N1—Zn13.5 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Zn(C14H8O5)(C15H11N3)]
Mr554.84
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)296
a, b, c (Å)8.7985 (17), 10.694 (2), 25.535 (5)
V3)2402.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.815, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
15388, 2924, 2347
Rint0.043
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.098, 1.08
No. of reflections2924
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

 

References

First citationAndres, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043–1068.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C. (1986). Adv. Inorg. Chem. Radiochem. 30, 69–121.  CrossRef CAS Web of Science Google Scholar
First citationHofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373–399.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Q.-L. & Li, G.-P. (2009). Acta Cryst. E65, m693.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds