metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(m-Phenyl­enedi­methyl­ene)bis­­(tri­phenyl­phospho­nium) bis­­[chlorido(penta­fluoro­phen­yl)aurate(I)] di­chloro­methane disolvate

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
*Correspondence e-mail: hgr@sun.ac.za

(Received 17 September 2009; accepted 29 October 2009; online 4 November 2009)

The title compound, (C44H38P2)[AuCl(C6F5)]2·2CH2Cl2, crystallizes with a twofold rotation axis through the central benzene ring in the bis-phospho­nium dication. In the crystal, the dications and anions are ordered into columns running parallel to the c axis by contacts of the pro-ylidic CH2 groups with the Cl atom of one and an ortho-F atom of another anion. The space between the columns is occupied by CH2Cl2 solvent mol­ecules.

Related literature

For related structures, see: Briggs et al. (1988[Briggs, D. A., Raptis, R. G. & Fackler, J. P. Jnr (1988). Acta Cryst. C44, 1313-1315.]); Phillips et al. (2008[Phillips, V., Doerrer, L. H. & Rheingold, A. L. (2008). Private communication (Refcode: PONGAB). CCDC, Cambridge, England.]). For the synthesis of the [AuCl(C6F5)] anion, see: Usón et al. (1977[Usón, R., Laguna, A. & Vicente, J. (1977). J. Organomet. Chem. 131, 471-475.]). For synthetic details, see: Friedrich & Henning (1959[Friedrich, K. & Henning, H. (1959). Chem. Ber. 92, 2756-2760.]); Horner et al. (1962[Horner, L., Hoffmann, H., Klink, W., Ertel, H. & Toscano, V. G. (1962). Chem. Ber. 95, 581-601.]); Usón et al. (1989[Usón, R., Laguna, A. & Laguna, M. (1989). Inorg. Synth. 26, 85-91.]).

[Scheme 1]

Experimental

Crystal data
  • (C44H38P2)[AuCl(C6F5)]2·2CH2Cl2

  • Mr = 1597.5

  • Orthorhombic, P b a 2

  • a = 14.506 (3) Å

  • b = 22.083 (4) Å

  • c = 8.9439 (18) Å

  • V = 2865.1 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.52 mm−1

  • T = 203 K

  • 0.35 × 0.12 × 0.12 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (DENZO; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.207, Tmax = 0.516

  • 60733 measured reflections

  • 6565 independent reflections

  • 5638 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.052

  • S = 1.03

  • 6565 reflections

  • 353 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3067 Friedel pairs

  • Flack parameter: 0.034 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯Cl1 0.98 2.60 3.579 (5) 174
C5—H5B⋯F1i 0.98 2.29 3.263 (4) 171
Symmetry code: (i) x, y, z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT, Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]; Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

Only one half of the bisphosphonium dication in the title compound shown in Scheme 1 is unique, a twofold rotation axis passes through C1 and C4 of the central benzene ring (Figure 1). The pro-ylidic methylene group is engaged in two contacts directed towards the chloro ligand of one [AuCl(C6F5)]- complex and the other to the ortho-fluoro substituent of another anion related by a unit cell translation along the crystallographic c axis, Table 1 shows the geometric parameters. The dication thus forms contacts to two anion pairs related by a 2-fold operation. Each pair forms contacts to another dication forming a one-dimensional polar chain illustrated in Scheme 2. The dichloromethane solvent molecules fill channels that run parallel to the anion-cation columns. Cl2 of the CH2Cl2 molecules is engaged in a Cl···π contact with an electron-withdrawing C6F5 group [Cl—C6 (centroid) distance 3.364 Å)]

A crystal structure that contains the present dication has not been reported. The orientation of the triphenylphosphonium groups in opposite directions is most likely favoured due to steric requirements.

The present crystal structure is one of few that contains the [AuCl(C6F5)]- anion. One has been reported by Briggs et al. (1988) with the (phenylmethyl)triphenylphosphonium cation and another one was reported by Phillips et al. (2008) with the tetrabutylammonium cation. The Au—Cl and Au—C bond lengths are comparable to the values found in the present structure, the Au—Cl distance in the structure of Phillips et al. is longer at 2.3194 (16) Å. No structure incorporating the [AuCl(C6F5)]- anion exhibits aurophilic interactions. In the structure of Briggs et al., H···Cl interactions between the pro-ylidic methylene group and the anions also seem to be present, but no hydrogen atom coordinates are supplied for the respective carbon atoms. The [AuCl(C6F5)]- anion is a valuable starting material for the synthesis of complexes containing the AuC6F5 fragment (Usón et al., 1977).

Related literature top

For related structures, see: Briggs et al. (1988); Phillips et al. (2008). For the synthesis of the [AuCl(C6F5)]- anion, see: Usón et al. (1977). For synthetic details, see: Friedrich & Henning (1959); Horner et al. (1962); Usón et al. (1989).

Experimental top

The title compound was isolated during an attempted preparation of the bis-ylide complex with Au(C6F5) fragments. 1,3-Bis[(triphenylphosphonio)methyl]benzene(2+) dibromide was prepared according to a modified literature procedure (Friedrich et al., 1959; Horner et al., 1962). The bromide was exchanged by excess NaBF4 in 50% aqueous ethanol. The bis(tetrafluoroborate) was suspended in dry thf and cooled to -45 °C. The mixture turned dark brown upon addition of 1.6 M n-butyllithium, was subsequently stirred for 10 min and [Au(C6F5)(tht)] (tht = tetrahydrothiophene; Usón et al., 1989) in thf was added. The dry residue after removal of solvent was extracted with diethyl ether and dichloromethane. Crystals of the title compound were obtained after two recrystallizations from dichloromethane/hexane.

The chloride in the title compound originates from incomplete reaction during the preparation of [Au(C6F5)(tht)], in which [AuCl(tht)] is used. Traces of LiCl are thought to have been carried over to form the title compound which crystallizes preferentially. The Au1—Cl1 bond length of 2.3051 (18) Å excludes the presence of bromide from the phosphonium salt.

Refinement top

All H atoms were positioned geometrically (C—H = 0.94, and 0.98 Å for CH and CH2 groups, respectively) and constrained to ride on their parent atoms; Uiso(H) values were set at 1.2 times Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Atwood & Barbour, 2003; Barbour, 2001); software used to prepare material for publication: X-SEED (Atwood & Barbour, 2003; Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure omitting hydrogen atoms and non-covalent interactions. Ellipsoids are drawn at the 50% probability level; the part of the cation related by a twofold rotation is shown in stick representation with symmetry code: ii = -x + 1, -y, z.
[Figure 2] Fig. 2. The hydrogen-bonding scheme in (I).
(m-Phenylenedimethylene)bis(triphenylphosphonium) bis[chlorido(pentafluorophenyl)aurate(I)] dichloromethane disolvate top
Crystal data top
(C44H38P2)[AuCl(C6F5)]2·2CH2Cl2Z = 2
Mr = 1597.5F(000) = 1540
Orthorhombic, Pba2Dx = 1.852 Mg m3
Hall symbol: P 2 -2abMo Kα radiation, λ = 0.71073 Å
a = 14.506 (3) ŵ = 5.52 mm1
b = 22.083 (4) ÅT = 203 K
c = 8.9439 (18) ÅNeedle, colourless
V = 2865.1 (10) Å30.35 × 0.12 × 0.12 mm
Data collection top
Nonius Kappa CCD
diffractometer
6565 independent reflections
Radiation source: fine-focus sealed tube5638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan
(DENZO; Otwinowski & Minor, 1997)
h = 1818
Tmin = 0.207, Tmax = 0.516k = 2828
60733 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0174P)2 + 1.2785P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6565 reflectionsΔρmax = 0.50 e Å3
353 parametersΔρmin = 0.50 e Å3
1 restraintAbsolute structure: Flack (1983), 3067 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.034 (5)
Crystal data top
(C44H38P2)[AuCl(C6F5)]2·2CH2Cl2V = 2865.1 (10) Å3
Mr = 1597.5Z = 2
Orthorhombic, Pba2Mo Kα radiation
a = 14.506 (3) ŵ = 5.52 mm1
b = 22.083 (4) ÅT = 203 K
c = 8.9439 (18) Å0.35 × 0.12 × 0.12 mm
Data collection top
Nonius Kappa CCD
diffractometer
6565 independent reflections
Absorption correction: multi-scan
(DENZO; Otwinowski & Minor, 1997)
5638 reflections with I > 2σ(I)
Tmin = 0.207, Tmax = 0.516Rint = 0.042
60733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.50 e Å3
S = 1.03Δρmin = 0.50 e Å3
6565 reflectionsAbsolute structure: Flack (1983), 3067 Friedel pairs
353 parametersAbsolute structure parameter: 0.034 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.29554 (5)0.10315 (3)0.61705 (15)0.02913 (17)
C10.50000.00000.9430 (6)0.0381 (13)
C20.4610 (2)0.04836 (16)0.8664 (4)0.0343 (8)
C30.4600 (2)0.04836 (15)0.7119 (4)0.0277 (7)
C40.50000.00000.6346 (10)0.0269 (9)
C50.42041 (17)0.10111 (12)0.6264 (6)0.0302 (6)
C60.2517 (2)0.03869 (15)0.5151 (4)0.0330 (8)
C70.3065 (3)0.01043 (16)0.4097 (4)0.0387 (9)
C80.2733 (3)0.0392 (2)0.3333 (5)0.0518 (11)
C90.1845 (3)0.05876 (18)0.3566 (5)0.0536 (11)
C100.1293 (3)0.0300 (2)0.4562 (5)0.0597 (12)
C110.1620 (3)0.0191 (2)0.5372 (5)0.0497 (10)
C120.2605 (2)0.17233 (15)0.5272 (4)0.0319 (8)
C130.1674 (3)0.1861 (2)0.5250 (6)0.0599 (12)
C140.1374 (3)0.2384 (2)0.4552 (6)0.0643 (13)
C150.2002 (3)0.2769 (2)0.3882 (5)0.0539 (11)
C160.2905 (3)0.2621 (2)0.3868 (6)0.0643 (13)
C170.3224 (3)0.20981 (19)0.4564 (5)0.0536 (12)
C180.2512 (2)0.10380 (16)0.8034 (4)0.0341 (8)
C190.2495 (3)0.1577 (2)0.8821 (5)0.0476 (10)
C200.2253 (3)0.1578 (3)1.0317 (6)0.0675 (14)
C210.2029 (3)0.1045 (3)1.1023 (6)0.0701 (14)
C220.2034 (3)0.0508 (3)1.0243 (5)0.0650 (14)
C230.2284 (3)0.04949 (19)0.8757 (5)0.0466 (10)
H10.50000.00001.04810.046*
H20.43540.08100.91960.041*
H40.50000.00000.52950.032*
H5A0.44480.10000.52420.036*
H5B0.44200.13870.67290.036*
H70.36610.02500.39020.046*
H80.31150.05970.26510.062*
H90.16190.09230.30310.064*
H100.06850.04340.47050.072*
H110.12370.03890.60640.060*
H130.12470.16000.57080.072*
H140.07420.24780.45340.077*
H150.18010.31320.34380.065*
H160.33260.28760.33780.077*
H170.38560.20020.45510.064*
H190.26480.19420.83400.057*
H200.22410.19451.08530.081*
H210.18710.10471.20420.084*
H220.18660.01471.07280.078*
H230.23020.01260.82330.056*
Au10.488135 (8)0.198870 (5)0.12628 (4)0.04045 (5)
Cl10.50324 (7)0.10795 (5)0.24986 (12)0.0484 (3)
F10.4675 (2)0.23148 (12)0.2198 (3)0.0672 (7)
F20.45501 (18)0.33720 (11)0.3633 (5)0.0731 (7)
F30.4605 (2)0.44303 (12)0.2066 (4)0.0832 (9)
F40.47789 (18)0.44033 (11)0.0945 (5)0.0713 (11)
F50.48874 (17)0.33557 (15)0.2410 (4)0.0608 (8)
C240.4787 (3)0.27811 (19)0.0173 (5)0.0419 (10)
C250.4702 (3)0.28254 (19)0.1338 (6)0.0474 (10)
C260.4645 (3)0.3359 (2)0.2122 (6)0.0548 (11)
C270.4675 (3)0.38949 (19)0.1351 (6)0.0551 (12)
C280.4747 (3)0.3880 (2)0.0179 (6)0.0522 (12)
C290.4806 (3)0.3329 (2)0.0903 (5)0.0452 (14)
Cl20.24384 (10)0.33560 (10)1.00079 (18)0.1041 (6)
Cl30.20261 (13)0.38659 (9)0.71284 (19)0.1085 (6)
C300.1618 (4)0.3621 (3)0.8821 (7)0.103 (2)
H30B0.12950.39570.93080.123*
H30A0.11660.32990.86460.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0292 (4)0.0248 (4)0.0334 (4)0.0028 (3)0.0009 (6)0.0018 (6)
C10.037 (3)0.051 (4)0.026 (3)0.007 (2)0.0000.000
C20.0310 (18)0.037 (2)0.035 (2)0.0065 (16)0.0015 (15)0.0067 (16)
C40.0248 (19)0.030 (2)0.026 (2)0.0013 (15)0.0000.000
C30.0250 (17)0.0260 (18)0.0322 (19)0.0016 (14)0.0016 (14)0.0007 (15)
C50.0280 (14)0.0258 (14)0.0369 (16)0.0011 (11)0.000 (3)0.000 (3)
C60.036 (2)0.0265 (18)0.037 (2)0.0015 (15)0.0052 (16)0.0040 (15)
C70.042 (2)0.032 (2)0.042 (2)0.0031 (16)0.0067 (17)0.0000 (17)
C80.060 (3)0.047 (2)0.048 (3)0.011 (2)0.015 (2)0.010 (2)
C90.062 (3)0.036 (2)0.062 (3)0.004 (2)0.021 (2)0.008 (2)
C100.045 (3)0.060 (3)0.074 (3)0.025 (2)0.007 (2)0.003 (3)
C110.041 (2)0.050 (2)0.057 (3)0.008 (2)0.001 (2)0.003 (2)
C120.035 (2)0.0254 (18)0.035 (2)0.0057 (15)0.0021 (16)0.0020 (15)
C130.039 (3)0.052 (3)0.088 (3)0.006 (2)0.002 (2)0.029 (2)
C140.043 (3)0.051 (3)0.099 (4)0.019 (2)0.009 (2)0.016 (3)
C150.064 (3)0.037 (2)0.061 (3)0.017 (2)0.004 (2)0.009 (2)
C160.063 (3)0.041 (3)0.089 (4)0.004 (2)0.009 (3)0.028 (2)
C170.039 (2)0.042 (2)0.080 (3)0.0096 (18)0.008 (2)0.021 (2)
C180.0258 (18)0.039 (2)0.038 (2)0.0060 (15)0.0003 (14)0.0046 (17)
C190.044 (2)0.051 (3)0.048 (3)0.0028 (19)0.005 (2)0.009 (2)
C200.056 (3)0.093 (4)0.054 (3)0.014 (3)0.000 (2)0.034 (3)
C210.055 (3)0.118 (4)0.037 (3)0.016 (3)0.004 (2)0.007 (3)
C220.056 (3)0.090 (4)0.049 (3)0.005 (3)0.002 (2)0.026 (3)
C230.048 (2)0.046 (3)0.046 (3)0.0036 (19)0.0011 (19)0.0130 (19)
Au10.03975 (8)0.03337 (8)0.04823 (9)0.00044 (5)0.0041 (2)0.00390 (14)
Cl10.0664 (7)0.0379 (6)0.0408 (6)0.0042 (4)0.0087 (5)0.0024 (4)
F10.090 (2)0.0504 (17)0.0612 (17)0.0021 (14)0.0002 (14)0.0054 (14)
F20.0798 (16)0.0718 (15)0.0676 (18)0.0066 (13)0.011 (2)0.012 (2)
F30.085 (2)0.0458 (16)0.119 (3)0.0025 (15)0.0096 (19)0.0261 (16)
F40.0790 (17)0.0310 (12)0.104 (3)0.0003 (10)0.0047 (17)0.0101 (16)
F50.0653 (18)0.0474 (19)0.070 (2)0.0042 (12)0.0004 (14)0.0151 (18)
C240.033 (2)0.036 (2)0.058 (3)0.0002 (16)0.0033 (18)0.000 (2)
C250.044 (2)0.030 (2)0.068 (3)0.0009 (18)0.004 (2)0.006 (2)
C260.044 (3)0.057 (3)0.063 (3)0.004 (2)0.008 (2)0.005 (2)
C270.040 (2)0.033 (2)0.093 (4)0.0023 (18)0.007 (2)0.008 (2)
C280.039 (2)0.037 (3)0.081 (4)0.0027 (18)0.006 (2)0.006 (2)
C290.033 (2)0.038 (2)0.065 (4)0.0004 (15)0.0047 (19)0.005 (2)
Cl20.0567 (9)0.1708 (17)0.0849 (11)0.0179 (10)0.0005 (8)0.0315 (11)
Cl30.1261 (14)0.1259 (15)0.0733 (9)0.0085 (11)0.0209 (9)0.0275 (9)
C300.047 (3)0.155 (6)0.106 (5)0.015 (4)0.009 (3)0.066 (4)
Geometric parameters (Å, º) top
P1—C51.814 (3)C7—H70.9400
P1—C61.806 (3)C8—H80.9400
P1—C121.799 (3)C9—H90.9400
P1—C181.787 (4)C10—H100.9400
C1—C21.389 (4)C11—H110.9400
C1—C2i1.389 (4)C13—H130.9400
C3—C21.382 (5)C14—H140.9400
C3—C41.399 (5)C15—H150.9400
C3—C51.507 (5)C16—H160.9400
C4—C3i1.399 (5)C17—H170.9400
C6—C71.382 (5)C19—H190.9400
C6—C111.385 (5)C20—H200.9400
C7—C81.378 (6)C21—H210.9400
C8—C91.375 (6)C22—H220.9400
C9—C101.356 (6)C23—H230.9400
C10—C111.387 (6)Au1—Cl12.3024 (12)
C12—C131.385 (6)Au1—C242.008 (4)
C12—C171.376 (5)F1—C251.365 (5)
C13—C141.382 (6)F2—C261.359 (6)
C14—C151.383 (6)F3—C271.348 (5)
C15—C161.351 (6)F4—C281.343 (5)
C16—C171.391 (6)F5—C291.354 (6)
C18—C191.383 (5)C24—C251.361 (6)
C18—C231.402 (5)C24—C291.375 (7)
C19—C201.384 (6)C25—C261.373 (7)
C20—C211.376 (7)C26—C271.371 (7)
C21—C221.375 (7)C27—C281.373 (7)
C22—C231.378 (6)C28—C291.382 (7)
C1—H10.9400Cl2—C301.698 (5)
C2—H20.9400Cl3—C301.714 (6)
C4—H40.9400C30—H30B0.9800
C5—H5A0.9800C30—H30A0.9800
C5—H5B0.9800
P1—C5—H5A108.5C9—C8—H8120.0
P1—C5—H5B108.5C9—C10—H10119.8
C6—P1—C5110.82 (16)C10—C9—H9119.8
C12—P1—C5108.89 (16)C10—C11—H11120.3
C12—P1—C6110.12 (17)C11—C10—H10119.8
C18—P1—C5108.5 (2)C12—C13—H13120.1
C18—P1—C6110.52 (17)C12—C17—H17120.4
C18—P1—C12107.94 (17)C13—C14—H14119.9
C3—C5—P1115.0 (2)C14—C13—H13120.1
C7—C6—P1119.8 (3)C14—C15—H15120.2
C11—C6—P1120.3 (3)C15—C14—H14119.9
C13—C12—P1117.9 (3)C15—C16—H16119.3
C17—C12—P1122.1 (3)C16—C15—H15120.2
C19—C18—P1119.2 (3)C16—C17—H17120.4
C23—C18—P1120.5 (3)C17—C16—H16119.3
C2i—C1—C2120.9 (5)C18—C19—H19120.1
C2—C3—C4119.3 (4)C18—C23—H23120.4
C2—C3—C5120.8 (3)C19—C20—H20119.9
C3—C2—C1119.8 (4)C20—C19—H19120.1
C3i—C4—C3120.7 (7)C20—C21—H21119.9
C4—C3—C5119.8 (4)C21—C20—H20119.9
C6—C11—C10119.4 (4)C21—C22—H22119.7
C7—C6—C11119.8 (3)C22—C21—H21119.9
C8—C7—C6119.8 (4)C22—C23—H23120.4
C9—C8—C7120.1 (4)C23—C22—H22119.7
C9—C10—C11120.5 (4)H5A—C5—H5B107.5
C10—C9—C8120.4 (4)F1—C25—C24120.2 (4)
C12—C17—C16119.2 (4)F1—C25—C26114.8 (4)
C13—C14—C15120.2 (4)F2—C26—C25122.2 (4)
C14—C13—C12119.8 (4)F2—C26—C27119.0 (4)
C15—C16—C17121.3 (4)F3—C27—C26121.1 (5)
C16—C15—C14119.6 (4)F3—C27—C28119.9 (4)
C17—C12—C13119.9 (3)F4—C28—C27119.4 (4)
C19—C18—C23119.9 (3)F4—C28—C29121.1 (5)
C20—C19—C18119.9 (4)F5—C29—C24120.9 (5)
C21—C20—C19120.1 (5)F5—C29—C28115.7 (5)
C22—C21—C20120.3 (5)C24—Au1—Cl1178.43 (11)
C22—C23—C18119.2 (4)C25—C24—Au1123.4 (3)
C23—C22—C21120.6 (4)C29—C24—Au1122.3 (4)
C1—C2—H2120.1C24—C25—C26125.0 (4)
C2—C1—H1119.5C24—C29—C28123.5 (5)
C2i—C1—H1119.5C25—C24—C29114.2 (4)
C3—C2—H2120.1C26—C27—C28118.9 (4)
C3—C4—H4119.7C27—C26—C25118.8 (5)
C3i—C4—H4119.7C27—C28—C29119.5 (4)
C3—C5—H5A108.5Cl2—C30—Cl3114.8 (3)
C3—C5—H5B108.5Cl2—C30—H30A108.6
C6—C7—H7120.1Cl2—C30—H30B108.6
C6—C11—H11120.3Cl3—C30—H30A108.6
C7—C8—H8120.0Cl3—C30—H30B108.6
C8—C7—H7120.1H30B—C30—H30A107.6
C8—C9—H9119.8
P1—C6—C7—C8179.2 (3)C9—C10—C11—C60.2 (7)
P1—C6—C11—C10179.1 (3)C11—C6—C7—C83.6 (6)
P1—C12—C13—C14179.1 (4)C12—C13—C14—C150.2 (7)
P1—C12—C17—C16178.8 (4)C13—C12—C17—C161.7 (7)
P1—C18—C19—C20172.7 (3)C13—C14—C15—C162.3 (7)
P1—C18—C23—C22173.4 (3)C14—C15—C16—C172.4 (8)
C5—P1—C6—C725.6 (3)C15—C16—C17—C120.4 (8)
C5—P1—C6—C11157.3 (3)C17—C12—C13—C141.8 (7)
C5—P1—C12—C13172.4 (3)C18—C19—C20—C210.0 (7)
C5—P1—C12—C1710.4 (4)C19—C18—C23—C220.8 (6)
C5—P1—C18—C1980.3 (3)C19—C20—C21—C220.7 (7)
C5—P1—C18—C2392.2 (3)C20—C21—C22—C231.5 (7)
C6—P1—C5—C364.2 (4)C21—C22—C23—C181.6 (7)
C6—P1—C12—C1365.9 (4)C23—C18—C19—C200.0 (6)
C6—P1—C12—C17111.3 (4)Au1—C24—C25—F10.1 (6)
C6—P1—C18—C19158.0 (3)Au1—C24—C29—F50.2 (5)
C6—P1—C18—C2329.4 (4)Au1—C24—C25—C26179.3 (3)
C12—P1—C5—C3174.5 (3)Au1—C24—C29—C28179.6 (3)
C12—P1—C6—C794.9 (3)F1—C25—C26—F21.3 (6)
C12—P1—C6—C1182.2 (3)F2—C26—C27—F30.5 (6)
C12—P1—C18—C1937.5 (3)F3—C27—C28—F42.2 (6)
C12—P1—C18—C23149.9 (3)F4—C28—C29—F50.5 (6)
C18—P1—C5—C357.3 (3)F1—C25—C26—C27179.4 (4)
C18—P1—C6—C7145.9 (3)F2—C26—C27—C28178.4 (4)
C18—P1—C6—C1137.0 (4)F3—C27—C28—C29179.1 (4)
C18—P1—C12—C1354.8 (4)F4—C28—C29—C24179.3 (4)
C18—P1—C12—C17128.0 (4)C24—C25—C26—F2179.2 (4)
C2—C3—C5—P178.2 (4)C25—C24—C29—F5180.0 (4)
C4—C3—C5—P1104.8 (3)C25—C26—C27—F3178.8 (4)
C2i—C1—C2—C30.7 (2)C26—C27—C28—F4179.9 (4)
C2—C3—C4—C3i0.6 (2)C27—C28—C29—F5179.2 (4)
C4—C3—C2—C11.3 (5)C29—C24—C25—F1179.9 (3)
C5—C3—C2—C1178.3 (3)C24—C25—C26—C270.1 (7)
C5—C3—C4—C3i177.7 (3)C25—C24—C29—C280.2 (6)
C6—C7—C8—C93.1 (6)C25—C26—C27—C281.0 (7)
C7—C6—C11—C102.0 (6)C26—C27—C28—C291.2 (6)
C7—C8—C9—C100.9 (6)C27—C28—C29—C240.6 (6)
C8—C9—C10—C110.7 (7)C29—C24—C25—C260.5 (6)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cl10.982.603.579 (5)174
C5—H5B···F1ii0.982.293.263 (4)171
Symmetry code: (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula(C44H38P2)[AuCl(C6F5)]2·2CH2Cl2
Mr1597.5
Crystal system, space groupOrthorhombic, Pba2
Temperature (K)203
a, b, c (Å)14.506 (3), 22.083 (4), 8.9439 (18)
V3)2865.1 (10)
Z2
Radiation typeMo Kα
µ (mm1)5.52
Crystal size (mm)0.35 × 0.12 × 0.12
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(DENZO; Otwinowski & Minor, 1997)
Tmin, Tmax0.207, 0.516
No. of measured, independent and
observed [I > 2σ(I)] reflections
60733, 6565, 5638
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.052, 1.03
No. of reflections6565
No. of parameters353
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.50
Absolute structureFlack (1983), 3067 Friedel pairs
Absolute structure parameter0.034 (5)

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Atwood & Barbour, 2003; Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cl10.982.603.579 (5)174.4
C5—H5B···F1i0.982.293.263 (4)170.5
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

We would like to thank the National Research Foundation (NRF) of South Africa and Mintek (KC) for financial support.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBriggs, D. A., Raptis, R. G. & Fackler, J. P. Jnr (1988). Acta Cryst. C44, 1313–1315.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedrich, K. & Henning, H. (1959). Chem. Ber. 92, 2756–2760.  CrossRef CAS Web of Science Google Scholar
First citationHorner, L., Hoffmann, H., Klink, W., Ertel, H. & Toscano, V. G. (1962). Chem. Ber. 95, 581–601.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT, Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPhillips, V., Doerrer, L. H. & Rheingold, A. L. (2008). Private communication (Refcode: PONGAB). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsón, R., Laguna, A. & Laguna, M. (1989). Inorg. Synth. 26, 85–91.  Google Scholar
First citationUsón, R., Laguna, A. & Vicente, J. (1977). J. Organomet. Chem. 131, 471–475.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds