organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,10,10,15,20,20-Hexa­methylcalix[4]pyrrole 5,15-di­ethyl diester

aIstanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
*Correspondence e-mail: akara@itu.edu.tr

(Received 9 October 2009; accepted 13 November 2009; online 21 November 2009)

In the title compound, C32H40N4O4, the pyrrole rings and ester groups adopt a 1,3-alternate conformation in which the alternating pyrrole and ester units are in opposite directions. The structure displays N—H⋯O hydrogen bonding and exhibits disorder [site occupancies of 0.81(2) and 0.71(2)] in the peripheral ethyl groups.

Related literature

For related calix[4]pyrrole structures see: Gale et al. (1998[Gale, P. A., Sessler, J. L. & Kràl, V. (1998). Chem. Commun. 24, 1-8.], 2001[Gale, P. A., Anzenbacher, P. & Sessler, J. L. (2001). Coord. Chem. Rev. 222, 57-102.]). For the synthesis of mono- and di-ester functionalized calix[4]pyrrole structures, see: Akar & Aydogan (2005[Akar, A. & Aydogan, A. (2005). J. Heterocycl. Chem. 42, 931-934.]). For applications of calix[4]pyrroles, see: Varo et al. (1996[Varo, G., Brown, L. S., Needleman, R. & Lanyi, J. K. (1996). Biochemistry, 35, 6604-6611.]); Beer & Gale (2001[Beer, P. D. & Gale, P. A. (2001). Angew. Chem. Int. Ed. 40, 486-516.]); Nishiyabu & Pavel Anzenbacher (2005[Nishiyabu, R. & Pavel Anzenbacher, J. (2005). J. Am. Chem. Soc. 127, 8270-8271.]); Miyaji et al. (1999[Miyaji, H., Pavel Anzenbacher, J., Sessler, J. L., Bleasdaleb, E. R. & Gale, P. A. (1999). Chem. Commun. 17, 1723-1724.]); Nielsen et al. (2004[Nielsen, K. A., Cho, W.-S., Jeppesen, J. O., Lynch, V. M., Becher, J. & Sessler, J. L. (2004). J. Am. Chem. Soc. 126, 16296-16297.]); Sessler et al. (1998[Sessler, J. L., Anzenbacher, P., Jursikova, K., Miyaji, H., Gengezz, J. W., Tvermoes, N. A., Allen, W. E., Shriver, J. A., Gale, P. A. & Kral, V. (1998). Pure Appl. Chem. 70, 2401-2408.]).

[Scheme 1]

Experimental

Crystal data
  • C32H40N4O4

  • Mr = 544.68

  • Monoclinic, P 21 /n

  • a = 10.4392 (3) Å

  • b = 11.6453 (3) Å

  • c = 24.0488 (7) Å

  • β = 95.380 (2)°

  • V = 2910.68 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 153 K

  • 0.30 × 0.30 × 0.23 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 11684 measured reflections

  • 6619 independent reflections

  • 2971 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.135

  • S = 1.09

  • 6619 reflections

  • 390 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O25i 0.86 (2) 2.37 (2) 3.211 (3) 167 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Anion receptors have become a focus of the research field of supramolecular chemistry because of the important roles of anions in biomedicine (Varo et al., 1996) and enviromental processes (Beer & Gale, 2001). In addition anion receptors can be used as ion-selective receptors (Nishiyabu & Pavel Anzenbacher, 2005), phase-transfer catalysts (Miyaji et al., 1999), ion-selective optical sensors (Nielsen et al., 2004) and chromatographic separation systems (Sessler et al., 1998).

In this context, calix[4]pyrroles have emerged as molecules of particular interest because of their simple preparations in one-step and easy modification of their core structures.

The title compound is shown in Fig. 1. It exhibits a strong intermolecular H-bonding interaction as depicted in Fig. 2.

As it can be seen in Fig. 3, pyrrole units of title compound adopt 1,3-alternate conformation which is the nitrogen atoms of neighboring pyrroles oriented in opposite directions. It is also observed that the ester groups are in opposite directions according to calixpyrrole plane and meso-carbon atoms containing ester groups are connected to different pyrrole rings.

Related literature top

For related calix[4]pyrrole structures see: Gale et al. (1998, 2001). For the synthesis of mono- and di-ester functionalized calix[4]pyrrole structures, see: Akar & Aydogan (2005). For applications of calix[4]pyrroles, see: Varo et al. (1996); Beer & Gale (2001); Nishiyabu & Pavel Anzenbacher (2005); Miyaji et al. (1999); Nielsen et al. (2004); Sessler et al. (1998).

Experimental top

Synthesis of the title compound was carried out according to a previously reported procedure (Akar & Aydogan, 2005).

The sample grew as very large, yellow prisms by slow evaporation from methylene chloride/diethylether. The data crystal was cut from a large specimen.

Refinement top

The hydrogen atoms on carbon were calculated in ideal positions with isotropic displacement parameters set to 1.2 x Ueq of the attached atom (1.5 x Ueq for methyl hydrogen atoms). The hydrogen atoms on the pyrrole nitrogen atoms were observed in a difference Fourier map and refined with isotropic displacement parameters. Both methyl groups on the ester moieties were disordered about two orientations. The disorder was modeled in the same way for both groups. The site occupancy for one carbon atom orientation was assigned a variable x. The site occupancy factor for the other conformer was assigned the variable (1 - x). The variable x was refined while refining the two atoms with a single isotropic displacement parameter. At the same time, the geometry of the methyl carbon atoms were restrained to be equivalent. In this way, the site occupancy factor for C36 refined to 81 (2)% and that for C28 refined to 77 (2)%. The lower occupancy carbon atoms, C28A and C36A, were refined isotropically.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level. Most hydrogen atoms have been removed for clarity. The methyl groups on both esters were disordered about two positions as shown. The minor occupancy groups have labels appended by A.
[Figure 2] Fig. 2. View illustrating a portion of the H-bonding interactions between molecules along the twofold screw axis. Displacement ellipsoids are scaled to the 30% probability level. Most hydrogen atoms have been removed for clarity.
[Figure 3] Fig. 3. View of the 1,3-alternate conformation of the title compound. Neighboring pyrrole rings and ester groups are oriented in opposite directions. Hydrogen atoms have been removed for clarity.
5,10,10,15,20,20-hexamethyl-5,10,15,20,22,24-hexahydroporphyrin 5,15-diethyl diester top
Crystal data top
C32H40N4O4F(000) = 1168
Mr = 544.68Dx = 1.243 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.4392 (3) ÅCell parameters from 5852 reflections
b = 11.6453 (3) Åθ = 2.9–27.5°
c = 24.0488 (7) ŵ = 0.08 mm1
β = 95.380 (2)°T = 153 K
V = 2910.68 (14) Å3Prisms, yellow
Z = 40.30 × 0.30 × 0.23 mm
Data collection top
Nonius KappaCCD
diffractometer
2971 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ω scansh = 1313
11684 measured reflectionsk = 1515
6619 independent reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.044P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.035
6619 reflectionsΔρmax = 0.26 e Å3
390 parametersΔρmin = 0.30 e Å3
12 restraintsExtinction correction: SHELXTL/PC (Sheldrick, 1998), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (5)
Crystal data top
C32H40N4O4V = 2910.68 (14) Å3
Mr = 544.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4392 (3) ŵ = 0.08 mm1
b = 11.6453 (3) ÅT = 153 K
c = 24.0488 (7) Å0.30 × 0.30 × 0.23 mm
β = 95.380 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2971 reflections with I > 2σ(I)
11684 measured reflectionsRint = 0.064
6619 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05712 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.26 e Å3
6619 reflectionsΔρmin = 0.30 e Å3
390 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Both methyl groups on the ester moieties were disordered about two orientations. The disorder was modeled in the same way for both groups. The site occupancy for one carbon atom orientation was assigned a variable x. The site occupancy factor for the other conformer was assigned the variable (1 - x). The variable x was refined while refining the two atoms with a single isotropic displacement parameter. At the same time, the geometry of the methyl carbon atoms were restrained to be equivalent. In this way, the site occupancy factor for C36 refined to 81 (2)% and that for C28 refined to 77 (2)%. The lower occupancy carbon atoms, C28A and C36A, were refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.41232 (19)0.58854 (17)0.12330 (8)0.0335 (5)
N20.57872 (18)0.40469 (18)0.21083 (8)0.0320 (5)
N30.86084 (19)0.48641 (18)0.15438 (9)0.0364 (5)
N40.69557 (17)0.70790 (17)0.08407 (9)0.0332 (5)
C10.41029 (19)0.70290 (18)0.10945 (9)0.0294 (6)
C20.3522 (2)0.7587 (2)0.14962 (9)0.0353 (6)
H20.33580.83970.15070.042*
C30.3188 (2)0.6765 (2)0.18906 (10)0.0351 (6)
H30.27770.69200.22240.042*
C40.35692 (19)0.57116 (19)0.17249 (9)0.0289 (6)
C50.3415 (2)0.45208 (18)0.19602 (9)0.0296 (6)
C60.4570 (2)0.38006 (19)0.18602 (9)0.0302 (6)
C70.4680 (2)0.2850 (2)0.15386 (10)0.0373 (6)
H70.39870.24750.13190.045*
C80.5988 (2)0.2511 (2)0.15865 (10)0.0394 (6)
H80.63460.18720.14010.047*
C90.6660 (2)0.32472 (19)0.19419 (9)0.0312 (6)
C100.8051 (2)0.3271 (2)0.21892 (10)0.0372 (6)
C110.8675 (2)0.4401 (2)0.20719 (10)0.0343 (6)
C120.9319 (2)0.5184 (2)0.24153 (10)0.0398 (6)
H120.95050.50870.28110.048*
C130.9654 (2)0.6129 (2)0.20934 (10)0.0395 (6)
H131.01200.67990.22290.047*
C140.9206 (2)0.5919 (2)0.15496 (10)0.0324 (6)
C150.9303 (2)0.65566 (19)0.10072 (10)0.0357 (6)
C160.8010 (2)0.65376 (19)0.06609 (10)0.0314 (6)
C170.7601 (2)0.6029 (2)0.01682 (10)0.0412 (7)
H170.81290.55970.00620.049*
C180.6277 (2)0.6277 (2)0.00454 (10)0.0412 (6)
H180.57280.60120.02720.049*
C190.5895 (2)0.69349 (18)0.04663 (9)0.0282 (5)
C200.4601 (2)0.74499 (18)0.05557 (9)0.0290 (6)
C210.2204 (2)0.39553 (19)0.16701 (10)0.0388 (6)
H21A0.22920.38890.12780.058*
H21B0.20850.32060.18240.058*
H21C0.14720.44270.17250.058*
C220.3263 (2)0.46188 (19)0.25879 (9)0.0380 (6)
H22A0.40220.49630.27740.057*
H22B0.25290.50890.26420.057*
H22C0.31430.38690.27400.057*
C230.8124 (2)0.3064 (2)0.28177 (10)0.0464 (7)
H23A0.77280.36860.30000.070*
H23B0.76760.23620.28810.070*
H23C0.90060.29940.29670.070*
C240.8709 (2)0.2257 (2)0.19279 (11)0.0450 (7)
O250.89367 (17)0.13441 (17)0.21515 (8)0.0633 (6)
O260.89694 (16)0.24818 (15)0.14039 (7)0.0576 (5)
C270.9610 (3)0.1595 (3)0.11130 (14)0.0835 (11)
H27C1.04930.15540.12630.100*0.23
H27D0.92160.08670.11760.100*0.23
H27A1.01730.11770.13790.100*0.77
H27B1.01230.19390.08470.100*0.77
C280.8770 (4)0.0833 (3)0.08351 (19)0.0866 (14)0.77
H28A0.92350.02590.06500.130*0.77
H28B0.82720.04720.11020.130*0.77
H28C0.82060.12390.05640.130*0.77
C28A0.9568 (12)0.1779 (10)0.0542 (3)0.065 (4)*0.23
H28D1.00060.11730.03660.098*0.23
H28E0.86860.18060.03880.098*0.23
H28F0.99760.24990.04760.098*0.23
C291.0315 (2)0.5981 (2)0.06754 (10)0.0445 (7)
H29A1.00520.52070.05880.067*
H29B1.04040.63960.03360.067*
H29C1.11260.59730.09000.067*
C300.9734 (2)0.7806 (2)0.11352 (11)0.0475 (7)
H30A0.91070.81840.13380.071*
H30B1.05470.77910.13580.071*
H30C0.98250.82140.07940.071*
C310.3626 (2)0.7138 (2)0.00625 (9)0.0401 (6)
H31A0.39360.73930.02800.060*
H31B0.35140.63200.00510.060*
H31C0.28170.75000.01080.060*
C320.4738 (2)0.8754 (2)0.06379 (10)0.0350 (6)
O330.56342 (17)0.92236 (14)0.08880 (7)0.0483 (5)
O340.36920 (15)0.93043 (13)0.04203 (7)0.0469 (5)
C350.3633 (3)1.0521 (2)0.05480 (13)0.0615 (9)
H35C0.44561.07840.07100.074*0.19
H35D0.34001.09560.02140.074*0.19
H35A0.43351.09150.04010.074*0.81
H35B0.37001.06260.09460.074*0.81
C360.2440 (3)1.0986 (3)0.03141 (18)0.0751 (13)0.81
H36A0.23991.17900.03990.113*0.81
H36B0.23741.08820.00840.113*0.81
H36C0.17441.05930.04660.113*0.81
C36A0.2700 (13)1.0685 (10)0.0931 (6)0.072 (5)*0.19
H36D0.26371.14820.10260.109*0.19
H36E0.18821.04200.07640.109*0.19
H36F0.29441.02470.12620.109*0.19
H1N0.453 (2)0.5350 (18)0.1093 (9)0.031 (7)*
H2N0.600 (2)0.4638 (19)0.2312 (9)0.040 (8)*
H3N0.819 (2)0.4537 (18)0.1267 (9)0.029 (7)*
H4N0.698 (2)0.752 (2)0.1135 (10)0.053 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0380 (12)0.0285 (13)0.0356 (13)0.0067 (10)0.0116 (10)0.0012 (10)
N20.0303 (12)0.0319 (13)0.0334 (12)0.0028 (10)0.0021 (10)0.0029 (10)
N30.0301 (12)0.0465 (14)0.0320 (14)0.0011 (11)0.0003 (10)0.0010 (12)
N40.0322 (13)0.0405 (13)0.0268 (12)0.0038 (10)0.0030 (10)0.0034 (11)
C10.0247 (12)0.0273 (14)0.0361 (15)0.0016 (10)0.0027 (11)0.0029 (12)
C20.0340 (14)0.0289 (13)0.0448 (16)0.0060 (11)0.0126 (12)0.0005 (13)
C30.0334 (14)0.0359 (15)0.0383 (15)0.0029 (12)0.0144 (12)0.0002 (12)
C40.0222 (12)0.0340 (14)0.0310 (14)0.0021 (11)0.0047 (11)0.0008 (12)
C50.0262 (13)0.0306 (14)0.0322 (14)0.0004 (11)0.0046 (11)0.0013 (11)
C60.0269 (14)0.0312 (14)0.0319 (14)0.0026 (11)0.0001 (11)0.0037 (12)
C70.0354 (15)0.0376 (15)0.0374 (15)0.0017 (12)0.0038 (12)0.0049 (13)
C80.0394 (15)0.0387 (15)0.0398 (16)0.0105 (13)0.0030 (12)0.0015 (13)
C90.0293 (14)0.0355 (14)0.0294 (14)0.0053 (12)0.0058 (11)0.0063 (12)
C100.0292 (14)0.0507 (16)0.0324 (15)0.0067 (12)0.0064 (11)0.0080 (13)
C110.0253 (13)0.0509 (16)0.0270 (15)0.0044 (12)0.0046 (11)0.0087 (13)
C120.0339 (15)0.0558 (17)0.0296 (15)0.0063 (13)0.0021 (12)0.0009 (14)
C130.0327 (14)0.0479 (17)0.0379 (16)0.0016 (12)0.0030 (12)0.0064 (14)
C140.0219 (13)0.0361 (15)0.0396 (16)0.0045 (11)0.0045 (11)0.0032 (12)
C150.0295 (14)0.0411 (15)0.0375 (15)0.0029 (11)0.0093 (12)0.0058 (13)
C160.0275 (13)0.0365 (14)0.0314 (15)0.0033 (11)0.0097 (12)0.0049 (12)
C170.0393 (16)0.0466 (16)0.0389 (16)0.0074 (13)0.0094 (13)0.0089 (13)
C180.0388 (16)0.0494 (16)0.0345 (15)0.0012 (13)0.0014 (12)0.0119 (13)
C190.0305 (13)0.0290 (13)0.0254 (13)0.0001 (11)0.0037 (11)0.0025 (11)
C200.0301 (13)0.0274 (13)0.0298 (14)0.0013 (11)0.0034 (11)0.0005 (11)
C210.0287 (14)0.0377 (15)0.0497 (16)0.0001 (11)0.0014 (12)0.0029 (12)
C220.0345 (14)0.0382 (15)0.0425 (16)0.0006 (12)0.0100 (12)0.0067 (12)
C230.0375 (15)0.0659 (18)0.0349 (15)0.0033 (13)0.0011 (12)0.0147 (14)
C240.0305 (15)0.0565 (19)0.0478 (18)0.0063 (13)0.0030 (13)0.0123 (16)
O250.0570 (13)0.0590 (13)0.0736 (15)0.0257 (10)0.0044 (10)0.0218 (11)
O260.0627 (12)0.0598 (12)0.0536 (13)0.0199 (10)0.0230 (10)0.0037 (10)
C270.089 (3)0.082 (3)0.082 (3)0.036 (2)0.026 (2)0.015 (2)
C280.087 (3)0.070 (3)0.098 (4)0.034 (3)0.015 (3)0.025 (3)
C290.0347 (15)0.0597 (18)0.0408 (16)0.0062 (13)0.0123 (12)0.0075 (14)
C300.0375 (15)0.0481 (17)0.0568 (18)0.0038 (13)0.0043 (13)0.0081 (14)
C310.0380 (15)0.0440 (15)0.0379 (16)0.0027 (12)0.0005 (12)0.0045 (13)
C320.0332 (15)0.0375 (15)0.0352 (15)0.0027 (13)0.0084 (12)0.0042 (13)
O330.0475 (11)0.0368 (10)0.0592 (13)0.0056 (9)0.0024 (9)0.0044 (9)
O340.0428 (11)0.0307 (10)0.0671 (13)0.0075 (8)0.0047 (9)0.0049 (9)
C350.069 (2)0.0301 (16)0.088 (2)0.0102 (14)0.0207 (18)0.0045 (15)
C360.051 (2)0.045 (2)0.129 (4)0.0151 (19)0.010 (2)0.008 (2)
Geometric parameters (Å, º) top
N1—C11.372 (3)C21—H21A0.9601
N1—C41.379 (3)C21—H21B0.9600
N1—H1N0.84 (2)C21—H21C0.9600
N2—C61.382 (3)C22—H22A0.9600
N2—C91.387 (3)C22—H22B0.9600
N2—H2N0.86 (2)C22—H22C0.9600
N3—C111.376 (3)C23—H23A0.9600
N3—C141.377 (3)C23—H23B0.9600
N3—H3N0.85 (2)C23—H23C0.9600
N4—C191.370 (3)C24—O251.205 (3)
N4—C161.373 (3)C24—O261.340 (3)
N4—H4N0.87 (2)O26—C271.446 (3)
C1—C21.354 (3)C27—C281.375 (4)
C1—C201.522 (3)C27—C28A1.387 (7)
C2—C31.414 (3)C27—H27C0.9599
C2—H20.9601C27—H27D0.9600
C3—C41.360 (3)C27—H27A0.9600
C3—H30.9602C27—H27B0.9601
C4—C51.512 (3)C28—H28A0.9600
C5—C61.507 (3)C28—H28B0.9601
C5—C211.534 (3)C28—H28C0.9600
C5—C221.537 (3)C28A—H28D0.9601
C6—C71.361 (3)C28A—H28E0.9600
C7—C81.417 (3)C28A—H28F0.9600
C7—H70.9600C29—H29A0.9600
C8—C91.358 (3)C29—H29B0.9597
C8—H80.9600C29—H29C0.9602
C9—C101.518 (3)C30—H30A0.9600
C10—C111.506 (3)C30—H30B0.9600
C10—C231.526 (3)C30—H30C0.9600
C10—C241.531 (3)C31—H31A0.9603
C11—C121.364 (3)C31—H31B0.9600
C12—C131.409 (3)C31—H31C0.9599
C12—H120.9601C32—O331.196 (3)
C13—C141.369 (3)C32—O341.330 (3)
C13—H130.9600O34—C351.453 (3)
C14—C151.513 (3)C35—C36A1.414 (7)
C15—C161.518 (3)C35—C361.424 (4)
C15—C291.537 (3)C35—H35C0.9600
C15—C301.545 (3)C35—H35D0.9599
C16—C171.358 (3)C35—H35A0.9599
C17—C181.416 (3)C35—H35B0.9604
C17—H170.9598C36—H36A0.9601
C18—C191.359 (3)C36—H36B0.9600
C18—H180.9599C36—H36C0.9600
C19—C201.512 (3)C36A—H36D0.9600
C20—C311.532 (3)C36A—H36E0.9601
C20—C321.536 (3)C36A—H36F0.9601
C1—N1—C4110.63 (19)C5—C22—H22A109.3
C1—N1—H1N128.3 (14)C5—C22—H22B109.4
C4—N1—H1N120.1 (15)H22A—C22—H22B109.5
C6—N2—C9109.7 (2)C5—C22—H22C109.7
C6—N2—H2N125.8 (15)H22A—C22—H22C109.5
C9—N2—H2N124.2 (15)H22B—C22—H22C109.5
C11—N3—C14110.9 (2)C10—C23—H23A110.4
C11—N3—H3N121.6 (15)C10—C23—H23B108.2
C14—N3—H3N127.3 (15)H23A—C23—H23B109.5
C19—N4—C16111.1 (2)C10—C23—H23C109.8
C19—N4—H4N124.6 (16)H23A—C23—H23C109.5
C16—N4—H4N123.9 (16)H23B—C23—H23C109.5
C2—C1—N1106.9 (2)O25—C24—O26122.9 (2)
C2—C1—C20131.7 (2)O25—C24—C10125.1 (2)
N1—C1—C20121.36 (19)O26—C24—C10112.0 (2)
C1—C2—C3108.0 (2)C24—O26—C27117.3 (2)
C1—C2—H2125.7C28—C27—O26113.2 (3)
C3—C2—H2126.3C28A—C27—O26113.3 (5)
C4—C3—C2108.44 (19)C28A—C27—H27C108.7
C4—C3—H3125.5O26—C27—H27C108.9
C2—C3—H3126.1C28A—C27—H27D108.6
C3—C4—N1106.06 (19)O26—C27—H27D109.3
C3—C4—C5132.3 (2)H27C—C27—H27D107.9
N1—C4—C5121.57 (19)C28—C27—H27A108.7
C6—C5—C4109.62 (17)O26—C27—H27A108.7
C6—C5—C21109.06 (18)C28—C27—H27B108.4
C4—C5—C21109.60 (18)O26—C27—H27B109.6
C6—C5—C22110.87 (18)H27A—C27—H27B108.1
C4—C5—C22108.90 (18)C27—C28—H28A110.4
C21—C5—C22108.77 (17)C27—C28—H28B108.5
C7—C6—N2106.9 (2)H28A—C28—H28B109.5
C7—C6—C5130.9 (2)C27—C28—H28C109.5
N2—C6—C5122.2 (2)H28A—C28—H28C109.5
C6—C7—C8108.2 (2)H28B—C28—H28C109.5
C6—C7—H7125.7H28A—C28—H28E100.7
C8—C7—H7126.1C27—C28A—H28D110.5
C9—C8—C7108.2 (2)H28C—C28A—H28D101.1
C9—C8—H8125.5C27—C28A—H28E109.0
C7—C8—H8126.3H28D—C28A—H28E109.5
C8—C9—N2106.9 (2)C27—C28A—H28F108.9
C8—C9—C10132.6 (2)H28D—C28A—H28F109.5
N2—C9—C10120.3 (2)H28E—C28A—H28F109.5
C11—C10—C9110.98 (19)C15—C29—H29A109.1
C11—C10—C23110.0 (2)C15—C29—H29B110.3
C9—C10—C23110.00 (18)H29A—C29—H29B109.5
C11—C10—C24112.22 (18)C15—C29—H29C109.0
C9—C10—C24105.9 (2)H29A—C29—H29C109.5
C23—C10—C24107.6 (2)H29B—C29—H29C109.5
C12—C11—N3106.0 (2)C15—C30—H30A109.5
C12—C11—C10131.9 (2)C15—C30—H30B108.7
N3—C11—C10122.0 (2)H30A—C30—H30B109.5
C11—C12—C13108.9 (2)C15—C30—H30C110.3
C11—C12—H12124.3H30A—C30—H30C109.5
C13—C12—H12126.8H30B—C30—H30C109.5
C14—C13—C12107.7 (2)C20—C31—H31A109.8
C14—C13—H13125.9C20—C31—H31B109.2
C12—C13—H13126.4H31A—C31—H31B109.4
C13—C14—N3106.5 (2)C20—C31—H31C109.5
C13—C14—C15133.7 (2)H31A—C31—H31C109.5
N3—C14—C15119.8 (2)H31B—C31—H31C109.5
C14—C15—C16109.75 (17)O33—C32—O34123.5 (2)
C14—C15—C29109.79 (19)O33—C32—C20125.1 (2)
C16—C15—C29109.15 (19)O34—C32—C20111.3 (2)
C14—C15—C30109.4 (2)C32—O34—C35115.9 (2)
C16—C15—C30110.53 (19)C36A—C35—O34108.3 (5)
C29—C15—C30108.18 (18)C36—C35—O34109.9 (2)
C17—C16—N4106.2 (2)C36A—C35—H35C109.8
C17—C16—C15132.6 (2)O34—C35—H35C110.0
N4—C16—C15121.2 (2)C36A—C35—H35D109.7
C16—C17—C18108.3 (2)O34—C35—H35D110.5
C16—C17—H17125.6H35C—C35—H35D108.6
C18—C17—H17126.1C36—C35—H35A110.0
C19—C18—C17108.0 (2)O34—C35—H35A109.8
C19—C18—H18125.3C36—C35—H35B109.0
C17—C18—H18126.7O34—C35—H35B109.5
C18—C19—N4106.4 (2)H35A—C35—H35B108.6
C18—C19—C20131.2 (2)C35—C36—H36A110.0
N4—C19—C20122.40 (19)C35—C36—H36B108.9
C19—C20—C1111.99 (17)H36A—C36—H36B109.5
C19—C20—C31109.46 (18)C35—C36—H36C109.5
C1—C20—C31109.13 (17)H36A—C36—H36C109.5
C19—C20—C32109.68 (18)H36B—C36—H36C109.5
C1—C20—C32104.12 (17)C35—C36A—H36D110.6
C31—C20—C32112.4 (2)H36C—C36A—H36D101.6
C5—C21—H21A109.3C35—C36A—H36E108.9
C5—C21—H21B110.2H36D—C36A—H36E109.5
H21A—C21—H21B109.5C35—C36A—H36F108.8
C5—C21—H21C108.9H36D—C36A—H36F109.5
H21A—C21—H21C109.5H36E—C36A—H36F109.5
H21B—C21—H21C109.5
C4—N1—C1—C20.6 (3)N3—C14—C15—C1646.3 (3)
C4—N1—C1—C20177.20 (18)C13—C14—C15—C29102.7 (3)
N1—C1—C2—C30.4 (3)N3—C14—C15—C2973.7 (3)
C20—C1—C2—C3176.5 (2)C13—C14—C15—C3015.9 (3)
C1—C2—C3—C40.0 (3)N3—C14—C15—C30167.72 (19)
C2—C3—C4—N10.4 (2)C19—N4—C16—C170.9 (3)
C2—C3—C4—C5176.6 (2)C19—N4—C16—C15179.13 (19)
C1—N1—C4—C30.6 (3)C14—C15—C16—C17112.8 (3)
C1—N1—C4—C5177.35 (19)C29—C15—C16—C177.6 (3)
C3—C4—C5—C6146.8 (2)C30—C15—C16—C17126.4 (3)
N1—C4—C5—C637.4 (3)C14—C15—C16—N464.9 (3)
C3—C4—C5—C2193.5 (3)C29—C15—C16—N4174.8 (2)
N1—C4—C5—C2182.2 (2)C30—C15—C16—N455.9 (3)
C3—C4—C5—C2225.3 (3)N4—C16—C17—C180.5 (3)
N1—C4—C5—C22158.90 (19)C15—C16—C17—C18178.5 (2)
C9—N2—C6—C70.1 (2)C16—C17—C18—C190.0 (3)
C9—N2—C6—C5179.93 (19)C17—C18—C19—N40.5 (3)
C4—C5—C6—C7114.5 (3)C17—C18—C19—C20179.8 (2)
C21—C5—C6—C75.5 (3)C16—N4—C19—C180.9 (3)
C22—C5—C6—C7125.2 (3)C16—N4—C19—C20179.41 (19)
C4—C5—C6—N265.3 (3)C18—C19—C20—C1120.4 (3)
C21—C5—C6—N2174.73 (19)N4—C19—C20—C159.2 (3)
C22—C5—C6—N255.0 (3)C18—C19—C20—C310.7 (3)
N2—C6—C7—C80.4 (2)N4—C19—C20—C31179.66 (19)
C5—C6—C7—C8179.4 (2)C18—C19—C20—C32124.5 (3)
C6—C7—C8—C90.8 (3)N4—C19—C20—C3255.9 (3)
C7—C8—C9—N20.8 (3)C2—C1—C20—C19137.3 (2)
C7—C8—C9—C10174.5 (2)N1—C1—C20—C1947.1 (3)
C6—N2—C9—C80.6 (2)C2—C1—C20—C31101.4 (3)
C6—N2—C9—C10175.44 (19)N1—C1—C20—C3174.3 (3)
C8—C9—C10—C11125.4 (3)C2—C1—C20—C3218.9 (3)
N2—C9—C10—C1159.8 (3)N1—C1—C20—C32165.5 (2)
C8—C9—C10—C23112.7 (3)C11—C10—C24—O25138.4 (3)
N2—C9—C10—C2362.2 (3)C9—C10—C24—O25100.4 (3)
C8—C9—C10—C243.3 (3)C23—C10—C24—O2517.2 (3)
N2—C9—C10—C24178.14 (19)C11—C10—C24—O2644.0 (3)
C14—N3—C11—C120.4 (2)C9—C10—C24—O2677.3 (2)
C14—N3—C11—C10177.46 (19)C23—C10—C24—O26165.12 (19)
C9—C10—C11—C12126.1 (3)O25—C24—O26—C273.1 (4)
C23—C10—C11—C124.2 (3)C10—C24—O26—C27179.1 (2)
C24—C10—C11—C12115.5 (3)C24—O26—C27—C2888.2 (4)
C9—C10—C11—N350.1 (3)C24—O26—C27—C28A165.5 (6)
C23—C10—C11—N3172.0 (2)C19—C20—C32—O3337.8 (3)
C24—C10—C11—N368.3 (3)C1—C20—C32—O3382.2 (3)
N3—C11—C12—C130.3 (3)C31—C20—C32—O33159.8 (2)
C10—C11—C12—C13177.0 (2)C19—C20—C32—O34145.66 (19)
C11—C12—C13—C140.2 (3)C1—C20—C32—O3494.3 (2)
C12—C13—C14—N30.1 (2)C31—C20—C32—O3423.6 (3)
C12—C13—C14—C15176.7 (2)O33—C32—O34—C355.7 (3)
C11—N3—C14—C130.3 (2)C20—C32—O34—C35170.92 (19)
C11—N3—C14—C15177.00 (18)C32—O34—C35—C36A107.8 (8)
C13—C14—C15—C16137.3 (3)C32—O34—C35—C36177.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O25i0.86 (2)2.37 (2)3.211 (3)167 (2)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC32H40N4O4
Mr544.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)10.4392 (3), 11.6453 (3), 24.0488 (7)
β (°) 95.380 (2)
V3)2910.68 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.23
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11684, 6619, 2971
Rint0.064
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.135, 1.09
No. of reflections6619
No. of parameters390
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.30

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O25i0.86 (2)2.37 (2)3.211 (3)167 (2)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We would like to express our special thanks to Jonathan L. Sessler and Vincent M. Lynch, the University of Texas at Austin, USA, for their valuable instrumental support.

References

First citationAkar, A. & Aydogan, A. (2005). J. Heterocycl. Chem. 42, 931–934.  CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeer, P. D. & Gale, P. A. (2001). Angew. Chem. Int. Ed. 40, 486–516.  CrossRef CAS Google Scholar
First citationGale, P. A., Anzenbacher, P. & Sessler, J. L. (2001). Coord. Chem. Rev. 222, 57–102.  Web of Science CrossRef CAS Google Scholar
First citationGale, P. A., Sessler, J. L. & Kràl, V. (1998). Chem. Commun. 24, 1–8.  Web of Science CrossRef Google Scholar
First citationMiyaji, H., Pavel Anzenbacher, J., Sessler, J. L., Bleasdaleb, E. R. & Gale, P. A. (1999). Chem. Commun. 17, 1723–1724.  Web of Science CrossRef Google Scholar
First citationNielsen, K. A., Cho, W.-S., Jeppesen, J. O., Lynch, V. M., Becher, J. & Sessler, J. L. (2004). J. Am. Chem. Soc. 126, 16296–16297.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNishiyabu, R. & Pavel Anzenbacher, J. (2005). J. Am. Chem. Soc. 127, 8270–8271.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSessler, J. L., Anzenbacher, P., Jursikova, K., Miyaji, H., Gengezz, J. W., Tvermoes, N. A., Allen, W. E., Shriver, J. A., Gale, P. A. & Kral, V. (1998). Pure Appl. Chem. 70, 2401–2408.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaro, G., Brown, L. S., Needleman, R. & Lanyi, J. K. (1996). Biochemistry, 35, 6604–6611.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds