metal-organic compounds
Poly[μ-aqua-diaqua(μ2-pyrazine-2,3-dicarboxylato)dilithium(I)]
aDepartment of Chemistry, Faculty of Art and Science, University of Kirikkale, Campus, Yahsihan, Kirikkale, 71450 Kirikkale, Turkey, and bDepartment of Physics, Faculty of Art and Science, University of Kirikkale, Campus, Yahsihan, Kirikkale, 71450 Kirikkale, Turkey
*Correspondence e-mail: mustafatombul38@gmail.com
The 2(C6H2N2O4)(H2O)3]n, consists of two independent Li+ cations, one pyrazine-2,3-dicarboxylate dianion and three water molecules. One of the Li+ cations has a distorted tetrahedral geometry, coordinated by one of the carboxylate O atoms of the pyrazine-2,3-dicarboxylate ligand and three O atoms from three water molecules, whereas the other Li+ cation has a distorted trigonal-bipyramidal geometry, coordinated by a carboxylate O atom of a symmetry-related pyrazine-2,3-dicarboxylate ligand, two water molecules and a chelating pyrazine-2,3-dicarboxylate ligand (by utilizing both N and O atoms) of an adjacent molecule. The synthesis of a hydrated polymeric dinuclear lithium complex formed with two pyrazine-2,3-dicarboxylic acid ligands has been reported previously [Tombul et al. (2008a). Acta Cryst. E64, m491–m492]. By comparision to the complex reported here, the dinuclear complex formed with two pyrazine-2,3-dicarboxylic acid ligands differs in the coordination geometry of both Li atoms. The further features O—H⋯O and O—H⋯N hydrogen-bonding interactions involving the water molecules and carboxylate O atoms.
of the title compound, [LiRelated literature
For a general background to multidendate ); Ye et al. (2005); Fei et al. (2006). For further information on pyrazine-2,3-dicarboxylic acid, see: Takusagawa & Shimada (1973); Richard et al. (1973); Nepveu et al. (1993). For further information on the synthesis of metal complexes with pyrazine-2,3-dicarboxylic acid ligand, see: Tombul & Güven (2009); Tombul et al. (2006, 2007, 2008b). For a related structure of lithium with pyrazine-2,3-dicarboxylic acid ligand, see: Tombul et al. (2008a). For Li—O bond distances, see: Chen et al. (2007); Kim et al. (2007). For Li—N bond lengths, see: Grossie et al. (2006); Boyd et al. (2002).
see: Erxleben (2003Experimental
Crystal data
|
Refinement
|
|
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809050570/om2293sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809050570/om2293Isup2.hkl
To an aqueous solution (30 ml) of pyrazine 2,3-dicarboxylic acid (1681 mg, 1 mmol), LiOH (479 mg, 2 mmol) was carefully added. The reaction mixture gave a colourless and clear solution which was stirred at 303 K for 4 h. After solvent removal in vacuo, the white solid product was then redissolved in water (5 ml) and allowed to stand for 15 d at ambient temperature, after which transparent fine crystals were harvested from the mother liquor.
H atoms associated with water molecules were located in the difference map and freely refined during subsequent cycles of least squares. H atoms of carbons were repositioned geometrically. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93 Å) and Uĩso~(H) (in the range 1.2–1.5 times U~eq~ of the parent atom) ,after which the positions were refined with riding constraints.
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell
MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); data reduction: TEXSAN (Molecular Structure Corporation, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2009).Fig. 1. Showing the atom-labelling scheme with symmetry codes: ii = -x, y + 1/2, -z + 1/2; iii = -x, -y + 1, -z + 1.)] Atoms were drawn with 50% thermal ellipsoid probability contours. | |
Fig. 2. A view of the hydrogen bonding interactions in the structure. Symmetry codes: iv = -x + 1, -y + 1, -z + 1; v = -x, -y + 1, -z; vi = x - 1, y, z]. Atoms were drawn with 50% thermal ellipsoid probability contours. |
[Li2(C6H2N2O4)(H2O)3] | F(000) = 480 |
Mr = 234.02 | Dx = 1.592 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 7.487 (3) Å | θ = 3.0–7.9° |
b = 16.409 (8) Å | µ = 0.14 mm−1 |
c = 7.958 (2) Å | T = 298 K |
β = 92.92 (3)° | Prism, yellow |
V = 976.4 (7) Å3 | 0.4 × 0.2 × 0.06 mm |
Z = 4 |
Rigaku diffractometer | 2427 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.120 |
Graphite monochromator | θmax = 40.0°, θmin = 2.7° |
ω–2θ scans | h = 0→13 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→29 |
Tmin = 0.948, Tmax = 0.994 | l = −14→14 |
6366 measured reflections | 3 standard reflections every 150 reflections |
6045 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.211 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0977P)2] where P = (Fo2 + 2Fc2)/3 |
6045 reflections | (Δ/σ)max < 0.001 |
178 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
[Li2(C6H2N2O4)(H2O)3] | V = 976.4 (7) Å3 |
Mr = 234.02 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.487 (3) Å | µ = 0.14 mm−1 |
b = 16.409 (8) Å | T = 298 K |
c = 7.958 (2) Å | 0.4 × 0.2 × 0.06 mm |
β = 92.92 (3)° |
Rigaku diffractometer | 2427 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.120 |
Tmin = 0.948, Tmax = 0.994 | 3 standard reflections every 150 reflections |
6366 measured reflections | intensity decay: none |
6045 independent reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.211 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.96 | Δρmax = 0.49 e Å−3 |
6045 reflections | Δρmin = −0.54 e Å−3 |
178 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.01123 (18) | 0.24672 (8) | 0.0505 (2) | 0.0341 (3) | |
O2 | 0.06063 (17) | 0.37715 (7) | 0.09640 (16) | 0.0236 (3) | |
O3 | 0.20616 (17) | 0.43281 (7) | 0.43623 (16) | 0.0238 (3) | |
O4 | 0.39167 (18) | 0.47554 (7) | 0.24601 (18) | 0.0277 (3) | |
O5 | 0.03262 (19) | 0.56609 (8) | 0.21735 (17) | 0.0252 (3) | |
H5A | 0.004 (4) | 0.5875 (17) | 0.129 (4) | 0.043 (8)* | |
H5B | 0.147 (5) | 0.558 (2) | 0.222 (4) | 0.069 (10)* | |
O6 | 0.17467 (17) | 0.58515 (8) | 0.56590 (16) | 0.0224 (2) | |
H6A | 0.272 (4) | 0.613 (2) | 0.581 (4) | 0.058 (9)* | |
H6B | 0.206 (4) | 0.5391 (19) | 0.519 (3) | 0.048 (8)* | |
O7 | −0.2951 (2) | 0.46974 (13) | 0.0850 (2) | 0.0479 (5) | |
H7A | −0.316 (5) | 0.501 (2) | −0.004 (5) | 0.082 (12)* | |
H7B | −0.394 (5) | 0.465 (2) | 0.139 (4) | 0.064 (10)* | |
N1 | 0.29092 (19) | 0.19673 (8) | 0.21499 (19) | 0.0228 (3) | |
N2 | 0.52735 (19) | 0.30911 (9) | 0.3651 (2) | 0.0246 (3) | |
C1 | 0.0838 (2) | 0.30153 (9) | 0.1146 (2) | 0.0195 (3) | |
C2 | 0.2524 (2) | 0.27631 (9) | 0.2158 (2) | 0.0172 (3) | |
C3 | 0.4472 (3) | 0.17365 (11) | 0.2881 (3) | 0.0296 (4) | |
H3 | 0.4761 | 0.1185 | 0.2920 | 0.036* | |
C4 | 0.5669 (2) | 0.22967 (11) | 0.3582 (3) | 0.0300 (4) | |
H4 | 0.6777 | 0.2118 | 0.4017 | 0.036* | |
C5 | 0.3672 (2) | 0.33240 (9) | 0.2984 (2) | 0.0171 (3) | |
C6 | 0.31766 (19) | 0.42055 (9) | 0.3264 (2) | 0.0168 (3) | |
Li1 | −0.0795 (5) | 0.4524 (2) | 0.2209 (4) | 0.0289 (7) | |
Li2 | −0.0490 (4) | 0.63229 (18) | 0.4210 (4) | 0.0252 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0312 (7) | 0.0205 (6) | 0.0488 (9) | −0.0017 (5) | −0.0159 (6) | −0.0045 (6) |
O2 | 0.0304 (6) | 0.0161 (5) | 0.0240 (6) | 0.0064 (4) | −0.0028 (5) | −0.0005 (4) |
O3 | 0.0310 (6) | 0.0158 (5) | 0.0257 (6) | 0.0022 (4) | 0.0123 (5) | 0.0002 (4) |
O4 | 0.0300 (6) | 0.0176 (5) | 0.0367 (7) | −0.0035 (4) | 0.0129 (5) | 0.0050 (5) |
O5 | 0.0298 (6) | 0.0255 (6) | 0.0201 (6) | 0.0068 (5) | 0.0016 (5) | 0.0034 (5) |
O6 | 0.0224 (5) | 0.0192 (5) | 0.0253 (6) | −0.0002 (4) | −0.0005 (4) | −0.0020 (4) |
O7 | 0.0300 (8) | 0.0775 (14) | 0.0371 (9) | 0.0162 (8) | 0.0109 (6) | 0.0208 (9) |
N1 | 0.0256 (7) | 0.0129 (5) | 0.0297 (7) | 0.0026 (5) | −0.0004 (5) | −0.0022 (5) |
N2 | 0.0191 (6) | 0.0208 (6) | 0.0334 (8) | 0.0025 (5) | −0.0024 (5) | −0.0025 (5) |
C1 | 0.0225 (7) | 0.0161 (6) | 0.0197 (7) | 0.0025 (5) | −0.0008 (5) | −0.0017 (5) |
C2 | 0.0178 (6) | 0.0133 (5) | 0.0209 (7) | 0.0012 (5) | 0.0024 (5) | −0.0005 (5) |
C3 | 0.0296 (8) | 0.0169 (7) | 0.0417 (11) | 0.0074 (6) | −0.0043 (7) | −0.0015 (7) |
C4 | 0.0229 (7) | 0.0224 (7) | 0.0438 (11) | 0.0083 (6) | −0.0060 (7) | −0.0020 (7) |
C5 | 0.0180 (6) | 0.0132 (5) | 0.0201 (7) | 0.0007 (5) | 0.0022 (5) | 0.0000 (5) |
C6 | 0.0174 (6) | 0.0120 (5) | 0.0212 (7) | −0.0002 (4) | 0.0016 (5) | 0.0002 (5) |
Li1 | 0.0367 (17) | 0.0197 (13) | 0.0312 (17) | 0.0031 (12) | 0.0100 (13) | 0.0010 (12) |
Li2 | 0.0300 (15) | 0.0163 (12) | 0.0294 (16) | 0.0004 (11) | 0.0045 (12) | 0.0027 (11) |
O5—Li1 | 2.046 (4) | N2—C4 | 1.338 (2) |
O5—Li2 | 2.069 (4) | N2—C5 | 1.342 (2) |
O5—H5B | 0.87 (4) | C2—C5 | 1.400 (2) |
O5—H5A | 0.80 (3) | C2—C1 | 1.519 (2) |
O4—C6 | 1.2517 (19) | C5—C6 | 1.513 (2) |
O6—Li2 | 2.129 (4) | C4—C3 | 1.382 (3) |
O6—H6A | 0.87 (3) | C4—H4 | 0.9300 |
O6—H6B | 0.88 (3) | C3—H3 | 0.9300 |
O1—C1 | 1.241 (2) | Li2—O1ii | 1.942 (3) |
O2—C1 | 1.260 (2) | Li2—O3iii | 1.988 (3) |
O2—Li1 | 1.927 (3) | Li2—N1ii | 2.317 (4) |
O3—C6 | 1.2552 (19) | Li1—O7 | 1.918 (4) |
N1—C3 | 1.335 (2) | Li1—O6iii | 1.973 (4) |
N1—C2 | 1.337 (2) | O7—H7A | 0.88 (4) |
N1—Li2i | 2.317 (4) | O7—H7B | 0.88 (4) |
Li1—O5—Li2 | 109.27 (14) | N1—C3—C4 | 121.58 (16) |
Li1—O5—H5B | 105 (2) | N1—C3—H3 | 119.2 |
Li2—O5—H5B | 112 (2) | C4—C3—H3 | 119.2 |
Li1—O5—H5A | 109 (2) | O1—C1—O2 | 126.41 (15) |
Li2—O5—H5A | 112 (2) | O1—C1—C2 | 117.66 (14) |
H5B—O5—H5A | 109 (3) | O2—C1—C2 | 115.79 (14) |
Li1iii—O6—Li2 | 105.71 (15) | O4—C6—O3 | 124.60 (14) |
Li1iii—O6—H6A | 112 (2) | O4—C6—C5 | 119.72 (14) |
Li2—O6—H6A | 121 (2) | O3—C6—C5 | 115.64 (13) |
Li1iii—O6—H6B | 102.5 (18) | O1ii—Li2—O3iii | 126.42 (18) |
Li2—O6—H6B | 107.5 (18) | O1ii—Li2—O5 | 121.53 (17) |
H6A—O6—H6B | 106 (3) | O3iii—Li2—O5 | 111.87 (15) |
C1—O1—Li2i | 121.88 (15) | O1ii—Li2—O6 | 96.70 (15) |
C1—O2—Li1 | 130.35 (15) | O3iii—Li2—O6 | 88.14 (13) |
C6—O3—Li2iii | 138.22 (14) | O5—Li2—O6 | 88.74 (13) |
C3—N1—C2 | 117.34 (14) | O1ii—Li2—N1ii | 77.56 (12) |
C3—N1—Li2i | 136.14 (14) | O3iii—Li2—N1ii | 92.34 (14) |
C2—N1—Li2i | 106.51 (13) | O5—Li2—N1ii | 97.38 (14) |
C4—N2—C5 | 117.17 (15) | O6—Li2—N1ii | 173.18 (17) |
N1—C2—C5 | 121.12 (14) | O7—Li1—O2 | 105.65 (18) |
N1—C2—C1 | 115.90 (13) | O7—Li1—O6iii | 101.58 (17) |
C5—C2—C1 | 122.89 (13) | O2—Li1—O6iii | 118.14 (18) |
N2—C5—C2 | 120.88 (14) | O7—Li1—O5 | 101.05 (17) |
N2—C5—C6 | 115.78 (13) | O2—Li1—O5 | 110.05 (17) |
C2—C5—C6 | 123.27 (13) | O6iii—Li1—O5 | 117.60 (17) |
N2—C4—C3 | 121.58 (16) | Li1—O7—H7A | 130 (3) |
N2—C4—H4 | 119.2 | Li1—O7—H7B | 115 (2) |
C3—C4—H4 | 119.2 | H7A—O7—H7B | 109 (3) |
C3—N1—C2—C5 | −3.5 (2) | C5—C2—C1—O2 | 6.1 (2) |
Li2i—N1—C2—C5 | 176.03 (15) | Li2iii—O3—C6—O4 | 174.97 (19) |
C3—N1—C2—C1 | 173.33 (16) | Li2iii—O3—C6—C5 | −7.5 (3) |
Li2i—N1—C2—C1 | −7.18 (18) | N2—C5—C6—O4 | 73.8 (2) |
C4—N2—C5—C2 | −4.0 (3) | C2—C5—C6—O4 | −109.25 (19) |
C4—N2—C5—C6 | 172.98 (16) | N2—C5—C6—O3 | −103.86 (18) |
N1—C2—C5—N2 | 6.5 (3) | C2—C5—C6—O3 | 73.1 (2) |
C1—C2—C5—N2 | −170.03 (15) | Li1—O5—Li2—O1ii | −174.09 (18) |
N1—C2—C5—C6 | −170.25 (15) | Li1—O5—Li2—O3iii | 1.3 (2) |
C1—C2—C5—C6 | 13.2 (2) | Li1—O5—Li2—O6 | 88.83 (16) |
C5—N2—C4—C3 | −1.1 (3) | Li1—O5—Li2—N1ii | −94.19 (16) |
C2—N1—C3—C4 | −1.6 (3) | Li1iii—O6—Li2—O1ii | 105.93 (16) |
Li2i—N1—C3—C4 | 179.05 (19) | Li1iii—O6—Li2—O3iii | −20.53 (16) |
N2—C4—C3—N1 | 4.1 (3) | Li1iii—O6—Li2—O5 | −132.46 (14) |
Li2i—O1—C1—O2 | 176.24 (17) | C1—O2—Li1—O7 | −101.2 (2) |
Li2i—O1—C1—C2 | 0.7 (2) | C1—O2—Li1—O6iii | 11.5 (3) |
Li1—O2—C1—O1 | 87.8 (3) | C1—O2—Li1—O5 | 150.45 (16) |
Li1—O2—C1—C2 | −96.7 (2) | Li2—O5—Li1—O7 | 91.67 (18) |
N1—C2—C1—O1 | 5.3 (2) | Li2—O5—Li1—O2 | −156.99 (16) |
C5—C2—C1—O1 | −177.97 (16) | Li2—O5—Li1—O6iii | −17.8 (2) |
N1—C2—C1—O2 | −170.67 (15) |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O2iv | 0.81 (3) | 1.92 (3) | 2.723 (3) | 172.60 (3) |
O5—H5B···O4 | 0.87 (4) | 2.28 (4) | 3.068 (3) | 152 (3) |
O6—H6A···N2v | 0.86 (3) | 2.00 (3) | 2.857 (3) | 169.66 (4) |
O6—H6B···O3 | 0.88 (3) | 1.86 (3) | 2.719 (3) | 163 (3) |
O7—H7A···O4iv | 0.88 (4) | 2.02 (4) | 2.841 (3) | 154.89 (6) |
O7—H7B···O4vi | 0.88 (4) | 1.86 (4) | 2.730 (3) | 169.51 (6) |
Symmetry codes: (iv) −x, −y+1, −z; (v) −x+1, −y+1, −z+1; (vi) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Li2(C6H2N2O4)(H2O)3] |
Mr | 234.02 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 7.487 (3), 16.409 (8), 7.958 (2) |
β (°) | 92.92 (3) |
V (Å3) | 976.4 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.4 × 0.2 × 0.06 |
Data collection | |
Diffractometer | Rigaku diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.948, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6366, 6045, 2427 |
Rint | 0.120 |
(sin θ/λ)max (Å−1) | 0.904 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.211, 0.96 |
No. of reflections | 6045 |
No. of parameters | 178 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.49, −0.54 |
Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989), TEXSAN (Molecular Structure Corporation, 1993), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2009).
O5—Li1 | 2.046 (4) | Li2—O1ii | 1.942 (3) |
O5—Li2 | 2.069 (4) | Li2—O3iii | 1.988 (3) |
O6—Li2 | 2.129 (4) | Li2—N1ii | 2.317 (4) |
O2—Li1 | 1.927 (3) | Li1—O7 | 1.918 (4) |
N1—Li2i | 2.317 (4) | Li1—O6iii | 1.973 (4) |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O2iv | 0.81 (3) | 1.92 (3) | 2.723 (3) | 172.60 (3) |
O5—H5B···O4 | 0.87 (4) | 2.28 (4) | 3.068 (3) | 152 (3) |
O6—H6A···N2v | 0.86 (3) | 2.00 (3) | 2.857 (3) | 169.66 (4) |
O6—H6B···O3 | 0.88 (3) | 1.86 (3) | 2.719 (3) | 163 (3) |
O7—H7A···O4iv | 0.88 (4) | 2.02 (4) | 2.841 (3) | 154.89 (6) |
O7—H7B···O4vi | 0.88 (4) | 1.86 (4) | 2.730 (3) | 169.51 (6) |
Symmetry codes: (iv) −x, −y+1, −z; (v) −x+1, −y+1, −z+1; (vi) x−1, y, z. |
Acknowledgements
The authors are grateful to Kirikkale University Scientific Research Centre, (BAP-Kirikkale), Turkey, for their generous support.
References
Boyd, C. L., Tyrrell, B. R. & Mountford, P. (2002). Acta Cryst. E58, m597–m598. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chen, Z., Fei, Z., Zhao, D., Feng, Y. & Yu, K. (2007). Inorg. Chem. Commun. 10, 77–79. Web of Science CrossRef CAS Google Scholar
Erxleben, A. (2003). Coord. Chem. Rev. 246, 203–228. Web of Science CrossRef CAS Google Scholar
Fei, Z., Geldbach, T. J., Zhao, D. & Dyson, P. J. (2006). Chem. Eur. J. 12, 2122–2130. Web of Science CrossRef PubMed CAS Google Scholar
Grossie, D. A., Feld, W. A., Scanlon, L., Sandi, G. & Wawrzak, Z. (2006). Acta Cryst. E62, m827–m829. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kim, E.-J., Kim, C.-H. & Yun, S.-S. (2007). Acta Cryst. C63, m427–m429. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Molecular Structure Corporation (1989). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA. Google Scholar
Molecular Structure Corporation (1993). TEXSAN. TEXRAY Structure Analysis Package. MSC, The Woodlands, Texas, USA. Google Scholar
Nepveu, F., Berkaoui, M. 'H. & Walz, L. (1993). Acta Cryst. C49, 1465–1466. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Richard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111–1115. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef IUCr Journals Google Scholar
Takusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121–1126. CrossRef Web of Science Google Scholar
Tombul, M. & Güven, K. (2009). Acta Cryst. E65, m213–m214. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945–m947. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783–m1784. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tombul, M., Güven, K. & Büyükgüngör, O. (2008a). Acta Cryst. E64, m491–m492. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tombul, M., Güven, K. & Svoboda, I. (2008b). Acta Cryst. E64, m246–m247. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Multidendate carboxylic acids are found to be excellent ligands for the synthesis of coordination polymers, giving structures with a diverse range of topologies and conformations, owing to the carboxylate groups being able to coordinate to a metal centre as a mono-, bi-, or multidentate ligand (Erxleben, 2003; Ye et al., 2005; Fei et al., 2006). Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu et al., 1993) have been reported to be well suited for the construction of multidimentional frameworks (nD, n = 1–3), due to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). In recent years, metal complexes with pyrazine-2,3-dicarboxylic acid ligand have been extensively studied because of their wide applications and growing interest in supramolecular chemistry. Examples include sodium (Tombul et al., 2006), caesium (Tombul et al., 2007), potassium (Tombul et al., 2008b), lithium (Tombul et al., 2008a) and rubidium (Tombul & Guven, 2009) complexes. As a continuation of our ongoing research on Group I dicarboxylates, we report here the synthesis and crystal structure of the hydrated polymeric dinuclear lithium complex formed with one molar equivalent of pyrazine-2,3-dicarboxylic acid.
As shown in Fig. 1, the title compound is a polymeric dinuclear complex with two kinds of Li atoms, one pyrazine-2,3-dicarboxylate ligand and three water molecules in the asymmetric unit. The geometries of the two independent Li atoms are different and the coordination modes of the pyrazine-2,3-dicarboxylate towards the cations are dissimilar. The Li1 ion has a distorted four-coordinate geometry and achieves the coordination number by bonding to one of the carboxylate O atom of pyrazine-2,3-dicarboxylate ligand, three O atoms from three water molecules, one of which is a symmetry-related bridging O atom. The Li2 ion has a distorted trigonal bipyramidal geometry, with one water molecule in bridging mode that connects the two distinct Li ions, one symmetry related carboxylate O atom of pyrazine-2,3-dicarboxylate ligand and a chelated pyrazine-2,3-dicarboxylate ligand (through the interactions of both N and O atoms) of the adjacent molecule. It should be emphasized that, depending on the starting material and stoichiometric ratio utilized, the synthesis of dinuclear lithium complexes formed with one or two pyrazine-2,3-dicarboxylic acid ligands can be accessible (Tombul et al., 2008a). The Li–O distances are in the range 1.918 (4)Å to 2.046 (4)Å (for Li1) and 1.942 (3)Å to 2.129 (4)Å (for Li2), in good agreement with the corresponding values reported for other lithium complexes (Chen et al., 2007; Kim et al., 2007). It is interesting to note that Li–N bond lengths are in accord with the normal ranges reported for the dinuclear bis-structure (Tombul et al., 2008a), however, the Li–N distances are notably longer than similar bond lengths reported in the literature (Grossie et al., 2006; Boyd et al., 2002). The dinuclear complex is linked in a three-dimensional manner by further intra- and intermolecular O—H–O and O—H–N hydrogen bonds (Figure 2 and Table 2).