metal-organic compounds
Bis(tripyrazol-1-ylmethane)nickel(II) tetracyanidonickelate(II) dihydrate
aDepartment of Biology and Chemistry, College of Science and Technology, Southern Arkansas University, Magnolia AR 71753, USA, and bDepartment of Chemistry, University of Kentucky, Lexington KY 40506, USA
*Correspondence e-mail: GannaLyubartseva@saumag.edu
The title complex, [Ni(C10H10N6)2][Ni(CN)4]·2H2O, contains an octahedral nickel(II) cation and a square-planar nickel(II) anion. Both the cation and the anion reside on a crystallographic center of inversion. The NiII center in the cation is coordinated by six pyrazol-1-yl rings of two chelating tripyrazol-1-ylmethane [HC(pz)3] ligands, with Ni—N distances that range between 2.0647 (19) and 2.0828 (19) Å. The NiII center in the anion is coordinated by four cyanide ligands, with Ni—C distances in the range 1.869 (2)–1.869 (3) Å. The [Ni(CN)4]2− anions are linked by inversion-related water molecules into extended chains that run parallel to the a axis.
Related literature
For the ligand synthesis, see: Reger et al. (2000). For allowed and forbidden d–d transitions in poly(3,5-dimethylpyrazolyl)methane complexes of nickel(II), see: Nolet et al. (2006). For coupled electron-transfer and spin-exchange reactions of metal-bis[tris(pyrazolyl)methane] complexes, see: Sheets & Schultz (2004). For structural, spectroscopic and angular-overlap studies of tris(pyrazol-1-yl)methane complexes, see: Astley et al. (1993). For nickel(II) complexes of some poly(1-pyrazolyl)alkane ligands, see: Mesubi & Ekemenzie (1984). For the coordination chemistry of geminal poly(1-pyrazolyl)alkanes, see: Trofimenko et al. (1970).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and local procedures.
Supporting information
10.1107/S1600536809046108/om2294sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809046108/om2294Isup2.hkl
Tris(pyrazolyl)methane ligand was synthesized according to the previously published procedure by Reger et al. (2000). Tetraethyl ammonium cyanide was purchased from Aldrich and used as received. NiCl~2~.6H~2~0(475 mg, 2 mmol) was dissolved in 5 ml methanol. Tris(pyrazolyl)methane (428 mg, 2 mmol) was dissolved in 5 ml methanol. The ligand solution was added dropwise to metal solution and with moderate stirring. Once the addition was complete, solid tetraethylammonium cyanide (938 mg, 6 mmol) was added. The clear solution was filtered and methanol was evaporated slowly. Pink crystals were obtained after 3 days (463 mg, 67% yield). Elemental analysis, calculated for Ni~2~C~24~H~24Ñ~16Õ~2~: C 42.02, H 3.53, N 32.67; found C 41.95, H 3.30, N 32.45. IR (cm^-1^): 3330, 3279, 3145, 3110, 2986, 2132, 1687, 1516, 1450,1441, 1402, 1285, 1252, 1219, 1088, 1057, 987, 859, 791, 770, 658, 607, 414.
H atoms were found in difference Fourier maps and those attached to carbon were subsequently placed in idealized positions with constrained distances of 0.95 Å (CArH), and Uiso(H) values set to 1.2Ueq (C). Water H atoms were refined subject to three geometry retraints (DFIX for the O- –H and H—H distances in SHELXL97) with Uiso set to 1.5Ueq (Owater).
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. |
[Ni(C10H10N6)2][Ni(CN)4]·2H2O | Z = 1 |
Mr = 686.01 | F(000) = 352 |
Triclinic, P1 | Dx = 1.529 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4840 (2) Å | Cell parameters from 3304 reflections |
b = 8.7355 (2) Å | θ = 1.0–27.5° |
c = 10.7522 (3) Å | µ = 1.32 mm−1 |
α = 75.5129 (11)° | T = 90 K |
β = 75.2713 (12)° | Block, pink |
γ = 89.2534 (12)° | 0.24 × 0.21 × 0.20 mm |
V = 745.09 (3) Å3 |
Nonius KappaCCD diffractometer | 3404 independent reflections |
Radiation source: fine-focus sealed tube | 2664 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
Detector resolution: 9.1 pixels mm-1 | θmax = 27.5°, θmin = 2.0° |
ω scans at fixed χ = 55° | h = −10→11 |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | k = −11→11 |
Tmin = 0.743, Tmax = 0.779 | l = −13→13 |
13964 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0568P)2 + 0.2597P] where P = (Fo2 + 2Fc2)/3 |
3404 reflections | (Δ/σ)max < 0.001 |
209 parameters | Δρmax = 0.70 e Å−3 |
3 restraints | Δρmin = −0.80 e Å−3 |
[Ni(C10H10N6)2][Ni(CN)4]·2H2O | γ = 89.2534 (12)° |
Mr = 686.01 | V = 745.09 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.4840 (2) Å | Mo Kα radiation |
b = 8.7355 (2) Å | µ = 1.32 mm−1 |
c = 10.7522 (3) Å | T = 90 K |
α = 75.5129 (11)° | 0.24 × 0.21 × 0.20 mm |
β = 75.2713 (12)° |
Nonius KappaCCD diffractometer | 3404 independent reflections |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | 2664 reflections with I > 2σ(I) |
Tmin = 0.743, Tmax = 0.779 | Rint = 0.063 |
13964 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 3 restraints |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.70 e Å−3 |
3404 reflections | Δρmin = −0.80 e Å−3 |
209 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Three restraints (DFIX in SHELXL97) were used to ensure the geometry of the water molecule remained chemically reasonable. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.5000 | 1.0000 | 0.01475 (13) | |
N1 | 0.7163 (2) | 0.4988 (2) | 0.85558 (19) | 0.0177 (4) | |
C1 | 0.8185 (3) | 0.3933 (3) | 0.8155 (2) | 0.0218 (5) | |
H1 | 0.8023 | 0.2821 | 0.8520 | 0.026* | |
N2 | 0.7864 (2) | 0.6416 (2) | 0.77724 (18) | 0.0165 (4) | |
C2 | 0.9533 (3) | 0.4679 (3) | 0.7125 (2) | 0.0236 (5) | |
H2 | 1.0423 | 0.4185 | 0.6673 | 0.028* | |
N3 | 0.6175 (2) | 0.6834 (2) | 1.03923 (19) | 0.0191 (4) | |
C3 | 0.9294 (3) | 0.6262 (3) | 0.6912 (2) | 0.0204 (5) | |
H3 | 0.9996 | 0.7095 | 0.6281 | 0.024* | |
N4 | 0.7081 (2) | 0.7950 (2) | 0.93389 (19) | 0.0179 (4) | |
C4 | 0.6513 (3) | 0.7139 (3) | 1.1448 (2) | 0.0231 (5) | |
H4 | 0.6050 | 0.6554 | 1.2339 | 0.028* | |
N5 | 0.5640 (2) | 0.3277 (2) | 1.14631 (19) | 0.0193 (4) | |
C5 | 0.7636 (3) | 0.8429 (3) | 1.1081 (3) | 0.0272 (6) | |
H5 | 0.8065 | 0.8873 | 1.1655 | 0.033* | |
N6 | 0.4508 (2) | 0.2078 (2) | 1.21934 (19) | 0.0184 (4) | |
C6 | 0.7992 (3) | 0.8923 (3) | 0.9720 (3) | 0.0237 (5) | |
H6 | 0.8726 | 0.9775 | 0.9159 | 0.028* | |
C7 | 0.5121 (3) | 0.0982 (3) | 1.3053 (2) | 0.0214 (5) | |
H7 | 0.4560 | 0.0050 | 1.3661 | 0.026* | |
C8 | 0.6700 (3) | 0.1472 (3) | 1.2881 (2) | 0.0233 (5) | |
H8 | 0.7458 | 0.0954 | 1.3339 | 0.028* | |
C9 | 0.6972 (3) | 0.2894 (3) | 1.1892 (2) | 0.0214 (5) | |
H9 | 0.7975 | 0.3510 | 1.1567 | 0.026* | |
C10 | 0.7123 (3) | 0.7855 (3) | 0.7998 (2) | 0.0177 (5) | |
H10 | 0.7806 | 0.8779 | 0.7348 | 0.021* | |
Ni2 | 0.5000 | 0.5000 | 0.5000 | 0.01604 (13) | |
N7 | 0.7352 (2) | 0.7733 (3) | 0.4652 (2) | 0.0219 (5) | |
N8 | 0.2614 (3) | 0.7476 (3) | 0.4345 (2) | 0.0258 (5) | |
C11 | 0.6471 (3) | 0.6668 (3) | 0.4813 (2) | 0.0193 (5) | |
C12 | 0.3489 (3) | 0.6500 (3) | 0.4610 (2) | 0.0190 (5) | |
O1W | 0.0369 (2) | 0.9370 (2) | 0.32515 (19) | 0.0279 (4) | |
H1W | 0.101 (3) | 0.877 (3) | 0.358 (3) | 0.042* | |
H2W | −0.053 (3) | 0.894 (3) | 0.369 (3) | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0122 (2) | 0.0154 (2) | 0.0150 (2) | −0.00204 (16) | −0.00209 (16) | −0.00215 (16) |
N1 | 0.0165 (10) | 0.0172 (9) | 0.0178 (10) | −0.0021 (8) | −0.0031 (8) | −0.0027 (8) |
C1 | 0.0178 (12) | 0.0212 (12) | 0.0275 (13) | 0.0020 (10) | −0.0064 (10) | −0.0076 (10) |
N2 | 0.0144 (10) | 0.0186 (10) | 0.0156 (9) | −0.0024 (8) | −0.0028 (8) | −0.0037 (7) |
C2 | 0.0162 (12) | 0.0310 (14) | 0.0243 (13) | 0.0041 (10) | −0.0030 (10) | −0.0109 (11) |
N3 | 0.0175 (10) | 0.0191 (10) | 0.0173 (10) | −0.0041 (8) | −0.0019 (8) | −0.0011 (8) |
C3 | 0.0130 (12) | 0.0304 (13) | 0.0165 (11) | −0.0032 (10) | −0.0014 (9) | −0.0058 (10) |
N4 | 0.0171 (10) | 0.0172 (10) | 0.0166 (10) | −0.0055 (8) | 0.0003 (8) | −0.0040 (8) |
C4 | 0.0246 (13) | 0.0272 (13) | 0.0172 (12) | −0.0033 (10) | −0.0030 (10) | −0.0075 (10) |
N5 | 0.0145 (10) | 0.0209 (10) | 0.0193 (10) | −0.0014 (8) | −0.0023 (8) | −0.0017 (8) |
C5 | 0.0284 (15) | 0.0304 (14) | 0.0254 (13) | −0.0048 (11) | −0.0066 (11) | −0.0120 (11) |
N6 | 0.0187 (10) | 0.0177 (10) | 0.0167 (10) | −0.0013 (8) | −0.0029 (8) | −0.0022 (8) |
C6 | 0.0232 (14) | 0.0200 (12) | 0.0270 (13) | −0.0057 (10) | −0.0039 (10) | −0.0065 (10) |
C7 | 0.0282 (14) | 0.0175 (11) | 0.0170 (12) | 0.0033 (10) | −0.0050 (10) | −0.0025 (9) |
C8 | 0.0221 (13) | 0.0233 (12) | 0.0263 (13) | 0.0059 (10) | −0.0089 (10) | −0.0070 (10) |
C9 | 0.0167 (12) | 0.0246 (12) | 0.0245 (13) | 0.0029 (10) | −0.0072 (10) | −0.0076 (10) |
C10 | 0.0160 (12) | 0.0187 (11) | 0.0162 (11) | −0.0012 (9) | −0.0023 (9) | −0.0020 (9) |
Ni2 | 0.0109 (2) | 0.0195 (2) | 0.0168 (2) | −0.00070 (16) | −0.00297 (16) | −0.00337 (16) |
N7 | 0.0150 (10) | 0.0243 (11) | 0.0240 (11) | −0.0005 (9) | −0.0023 (8) | −0.0046 (9) |
N8 | 0.0160 (11) | 0.0288 (12) | 0.0312 (12) | −0.0002 (9) | −0.0060 (9) | −0.0053 (9) |
C11 | 0.0143 (12) | 0.0240 (12) | 0.0181 (12) | 0.0038 (10) | −0.0053 (9) | −0.0019 (9) |
C12 | 0.0137 (12) | 0.0244 (12) | 0.0180 (12) | −0.0038 (10) | −0.0026 (9) | −0.0051 (9) |
O1W | 0.0168 (9) | 0.0253 (10) | 0.0340 (11) | −0.0026 (8) | −0.0064 (8) | 0.0060 (8) |
Ni1—N5 | 2.0647 (19) | N5—N6 | 1.367 (3) |
Ni1—N5i | 2.0647 (19) | C5—C6 | 1.372 (4) |
Ni1—N3 | 2.081 (2) | C5—H5 | 0.9500 |
Ni1—N3i | 2.081 (2) | N6—C7 | 1.353 (3) |
Ni1—N1 | 2.0828 (19) | N6—C10i | 1.448 (3) |
Ni1—N1i | 2.0828 (19) | C6—H6 | 0.9500 |
N1—C1 | 1.332 (3) | C7—C8 | 1.364 (4) |
N1—N2 | 1.363 (3) | C7—H7 | 0.9500 |
C1—C2 | 1.405 (3) | C8—C9 | 1.396 (3) |
C1—H1 | 0.9500 | C8—H8 | 0.9500 |
N2—C3 | 1.354 (3) | C9—H9 | 0.9500 |
N2—C10 | 1.446 (3) | C10—N6i | 1.448 (3) |
C2—C3 | 1.365 (3) | C10—H10 | 1.0000 |
C2—H2 | 0.9500 | Ni2—C12ii | 1.869 (2) |
N3—C4 | 1.326 (3) | Ni2—C12 | 1.869 (2) |
N3—N4 | 1.360 (3) | Ni2—C11 | 1.869 (3) |
C3—H3 | 0.9500 | Ni2—C11ii | 1.869 (3) |
N4—C6 | 1.356 (3) | N7—C11 | 1.151 (3) |
N4—C10 | 1.457 (3) | N8—C12 | 1.153 (3) |
C4—C5 | 1.396 (4) | O1W—H1W | 0.83 (2) |
C4—H4 | 0.9500 | O1W—H2W | 0.83 (2) |
N5—C9 | 1.334 (3) | ||
N5—Ni1—N5i | 180.00 (10) | C5—C4—H4 | 124.3 |
N5—Ni1—N3 | 93.82 (8) | C9—N5—N6 | 104.52 (18) |
N5i—Ni1—N3 | 86.18 (8) | C9—N5—Ni1 | 137.45 (17) |
N5—Ni1—N3i | 86.18 (8) | N6—N5—Ni1 | 117.85 (14) |
N5i—Ni1—N3i | 93.82 (8) | C6—C5—C4 | 105.8 (2) |
N3—Ni1—N3i | 179.999 (1) | C6—C5—H5 | 127.1 |
N5—Ni1—N1 | 94.89 (8) | C4—C5—H5 | 127.1 |
N5i—Ni1—N1 | 85.12 (8) | C7—N6—N5 | 111.63 (19) |
N3—Ni1—N1 | 85.04 (8) | C7—N6—C10i | 129.2 (2) |
N3i—Ni1—N1 | 94.96 (8) | N5—N6—C10i | 119.13 (18) |
N5—Ni1—N1i | 85.11 (8) | N4—C6—C5 | 106.1 (2) |
N5i—Ni1—N1i | 94.88 (8) | N4—C6—H6 | 127.0 |
N3—Ni1—N1i | 94.96 (8) | C5—C6—H6 | 127.0 |
N3i—Ni1—N1i | 85.04 (8) | N6—C7—C8 | 106.9 (2) |
N1—Ni1—N1i | 180.00 (8) | N6—C7—H7 | 126.6 |
C1—N1—N2 | 104.50 (19) | C8—C7—H7 | 126.6 |
C1—N1—Ni1 | 138.05 (17) | C7—C8—C9 | 105.7 (2) |
N2—N1—Ni1 | 117.40 (14) | C7—C8—H8 | 127.1 |
N1—C1—C2 | 111.3 (2) | C9—C8—H8 | 127.1 |
N1—C1—H1 | 124.4 | N5—C9—C8 | 111.2 (2) |
C2—C1—H1 | 124.4 | N5—C9—H9 | 124.4 |
C3—N2—N1 | 112.04 (19) | C8—C9—H9 | 124.4 |
C3—N2—C10 | 128.24 (19) | N2—C10—N6i | 111.23 (19) |
N1—N2—C10 | 119.54 (18) | N2—C10—N4 | 109.41 (18) |
C3—C2—C1 | 105.5 (2) | N6i—C10—N4 | 110.33 (18) |
C3—C2—H2 | 127.3 | N2—C10—H10 | 108.6 |
C1—C2—H2 | 127.3 | N6i—C10—H10 | 108.6 |
C4—N3—N4 | 104.74 (19) | N4—C10—H10 | 108.6 |
C4—N3—Ni1 | 136.46 (17) | C12ii—Ni2—C12 | 179.999 (1) |
N4—N3—Ni1 | 117.88 (15) | C12ii—Ni2—C11 | 91.72 (10) |
N2—C3—C2 | 106.7 (2) | C12—Ni2—C11 | 88.28 (10) |
N2—C3—H3 | 126.6 | C12ii—Ni2—C11ii | 88.28 (10) |
C2—C3—H3 | 126.6 | C12—Ni2—C11ii | 91.72 (10) |
C6—N4—N3 | 112.08 (19) | C11—Ni2—C11ii | 179.999 (1) |
C6—N4—C10 | 128.5 (2) | N7—C11—Ni2 | 177.0 (2) |
N3—N4—C10 | 118.97 (19) | N8—C12—Ni2 | 176.9 (2) |
N3—C4—C5 | 111.3 (2) | H1W—O1W—H2W | 103 (2) |
N3—C4—H4 | 124.3 | ||
N5—Ni1—N1—C1 | 39.3 (3) | Ni1—N3—C4—C5 | 167.67 (19) |
N5i—Ni1—N1—C1 | −140.7 (3) | N3—Ni1—N5—C9 | −44.9 (3) |
N3—Ni1—N1—C1 | 132.7 (3) | N3i—Ni1—N5—C9 | 135.1 (3) |
N3i—Ni1—N1—C1 | −47.3 (3) | N1—Ni1—N5—C9 | 40.5 (3) |
N5—Ni1—N1—N2 | −137.72 (16) | N1i—Ni1—N5—C9 | −139.5 (3) |
N5i—Ni1—N1—N2 | 42.28 (16) | N3—Ni1—N5—N6 | 140.99 (16) |
N3—Ni1—N1—N2 | −44.30 (16) | N3i—Ni1—N5—N6 | −39.01 (16) |
N3i—Ni1—N1—N2 | 135.70 (16) | N1—Ni1—N5—N6 | −133.67 (16) |
N2—N1—C1—C2 | 0.1 (3) | N1i—Ni1—N5—N6 | 46.33 (16) |
Ni1—N1—C1—C2 | −177.13 (18) | N3—C4—C5—C6 | −0.1 (3) |
C1—N1—N2—C3 | −0.5 (3) | C9—N5—N6—C7 | 0.1 (3) |
Ni1—N1—N2—C3 | 177.41 (15) | Ni1—N5—N6—C7 | 175.99 (15) |
C1—N1—N2—C10 | −176.0 (2) | C9—N5—N6—C10i | 178.2 (2) |
Ni1—N1—N2—C10 | 1.9 (3) | Ni1—N5—N6—C10i | −5.9 (3) |
N1—C1—C2—C3 | 0.3 (3) | N3—N4—C6—C5 | −1.0 (3) |
N5—Ni1—N3—C4 | −30.7 (3) | C10—N4—C6—C5 | −173.0 (2) |
N5i—Ni1—N3—C4 | 149.3 (3) | C4—C5—C6—N4 | 0.6 (3) |
N1—Ni1—N3—C4 | −125.3 (3) | N5—N6—C7—C8 | −0.2 (3) |
N1i—Ni1—N3—C4 | 54.7 (3) | C10i—N6—C7—C8 | −178.1 (2) |
N5—Ni1—N3—N4 | 136.29 (17) | N6—C7—C8—C9 | 0.2 (3) |
N5i—Ni1—N3—N4 | −43.71 (17) | N6—N5—C9—C8 | 0.0 (3) |
N1—Ni1—N3—N4 | 41.71 (16) | Ni1—N5—C9—C8 | −174.60 (18) |
N1i—Ni1—N3—N4 | −138.29 (16) | C7—C8—C9—N5 | −0.1 (3) |
N1—N2—C3—C2 | 0.7 (3) | C3—N2—C10—N6i | 123.8 (2) |
C10—N2—C3—C2 | 175.7 (2) | N1—N2—C10—N6i | −61.6 (3) |
C1—C2—C3—N2 | −0.6 (3) | C3—N2—C10—N4 | −114.1 (2) |
C4—N3—N4—C6 | 0.9 (3) | N1—N2—C10—N4 | 60.6 (3) |
Ni1—N3—N4—C6 | −169.89 (16) | C6—N4—C10—N2 | 107.9 (3) |
C4—N3—N4—C10 | 173.8 (2) | N3—N4—C10—N2 | −63.7 (3) |
Ni1—N3—N4—C10 | 3.0 (3) | C6—N4—C10—N6i | −129.4 (2) |
N4—N3—C4—C5 | −0.5 (3) | N3—N4—C10—N6i | 59.0 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···N8 | 0.83 (2) | 1.97 (2) | 2.798 (3) | 176 (3) |
O1W—H2W···N7iii | 0.83 (2) | 1.99 (2) | 2.815 (3) | 174 (3) |
Symmetry code: (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C10H10N6)2][Ni(CN)4]·2H2O |
Mr | 686.01 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 90 |
a, b, c (Å) | 8.4840 (2), 8.7355 (2), 10.7522 (3) |
α, β, γ (°) | 75.5129 (11), 75.2713 (12), 89.2534 (12) |
V (Å3) | 745.09 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.32 |
Crystal size (mm) | 0.24 × 0.21 × 0.20 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.743, 0.779 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13964, 3404, 2664 |
Rint | 0.063 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.108, 1.08 |
No. of reflections | 3404 |
No. of parameters | 209 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.70, −0.80 |
Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···N8 | 0.83 (2) | 1.97 (2) | 2.798 (3) | 176 (3) |
O1W—H2W···N7i | 0.83 (2) | 1.99 (2) | 2.815 (3) | 174 (3) |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
GL gratefully acknowledges the Department of Biology and Chemistry, Southern Arkansas University, for financial support.
References
Astley, T., Gulbis, J. M., Hitchman, M. A. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. 4, 509–515. CSD CrossRef Web of Science Google Scholar
Mesubi, M. A. & Ekemenzie, P. I. (1984). Transition Met. Chem. 9, 91–96. CrossRef CAS Web of Science Google Scholar
Nolet, M.-C., Michaud, A., Bain, C., Zargarian, D. & Reber, C. (2006). Photochem. Photobiol. 82, 57–63. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120–128. Web of Science CrossRef CAS Google Scholar
Sheets, J. R. & Schultz, F. A. (2004). Polyhedron, 23, 1037–1043. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trofimenko, S. (1970). J. Am. Chem. Soc. 92, 5118–5126. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tris(pyrazolyl)methane ligands, which are isoelectronic to the poly(pyrazolyl)borate ligand, are well known for their modulating ability towards magnetic, spectroscopic and catalytic properties of transition metal compounds (Nolet et al. (2006), Sheets et al. (2004), Astley et al. (1993), by Mesubi et al. (1984), Trofimenko et al. (1970)). They are also relatively easy to synthesize. During our search for a better catalyst for a large range of chemical reactions, we found tris(polypyrazolyl)methane ligand very promising. Here we report a new nickel (II) complex with this ligand as the tetracyanonickelate salt.
The title complex, [Ni(HC(pz)~3~)~2~][Ni(CN)~4~].2H~2Õ, where HC(pz)~3~ is tris(1-pyrazolyl)methane, contains an octahedral nickel(II) cation and a square planar nickel(II) anion (Fig. 1). Both the cation and the anion reside on a crystallographic center of inversion.The nickel atom in the cation is coordinated by six pyrazolyl rings of two chelating HC(pz)~3~ ligands, with Ni—N distances that range between 2.0647 (19) Å and 2.0828 (19) Å. The nickel atom in the anion part is coordinated by four cyanide ligands, with Ni—C distances in the range 1.869 (2) Å to 1.869 (3) Å. The Ni(CN)42- anions are linked by inversion-related water molecules into extended chains that run parallel to the a axis.