metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tripyrazol-1-ylmethane)nickel(II) tetra­cyanidonickelate(II) dihydrate

aDepartment of Biology and Chemistry, College of Science and Technology, Southern Arkansas University, Magnolia AR 71753, USA, and bDepartment of Chemistry, University of Kentucky, Lexington KY 40506, USA
*Correspondence e-mail: GannaLyubartseva@saumag.edu

(Received 21 October 2009; accepted 2 November 2009; online 7 November 2009)

The title complex, [Ni(C10H10N6)2][Ni(CN)4]·2H2O, contains an octa­hedral nickel(II) cation and a square-planar nickel(II) anion. Both the cation and the anion reside on a crystallographic center of inversion. The NiII center in the cation is coordinated by six pyrazol-1-yl rings of two chelating tripyrazol-1-ylmethane [HC(pz)3] ligands, with Ni—N distances that range between 2.0647 (19) and 2.0828 (19) Å. The NiII center in the anion is coordinated by four cyanide ligands, with Ni—C distances in the range 1.869 (2)–1.869 (3) Å. The [Ni(CN)4]2− anions are linked by inversion-related water mol­ecules into extended chains that run parallel to the a axis.

Related literature

For the ligand synthesis, see: Reger et al. (2000[Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120-128.]). For allowed and forbidden dd transitions in poly(3,5-dimethyl­pyrazol­yl)methane complexes of nickel(II), see: Nolet et al. (2006[Nolet, M.-C., Michaud, A., Bain, C., Zargarian, D. & Reber, C. (2006). Photochem. Photobiol. 82, 57-63.]). For coupled electron-transfer and spin-exchange reactions of metal-bis­[tris­(pyrazol­yl)methane] complexes, see: Sheets & Schultz (2004[Sheets, J. R. & Schultz, F. A. (2004). Polyhedron, 23, 1037-1043.]). For structural, spectroscopic and angular-overlap studies of tris­(pyrazol-1-yl)methane complexes, see: Astley et al. (1993[Astley, T., Gulbis, J. M., Hitchman, M. A. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. 4, 509-515.]). For nickel(II) complexes of some poly(1-pyrazol­yl)alkane ligands, see: Mesubi & Ekemenzie (1984[Mesubi, M. A. & Ekemenzie, P. I. (1984). Transition Met. Chem. 9, 91-96.]). For the coordination chemistry of geminal poly(1-pyrazol­yl)alkanes, see: Trofimenko et al. (1970[Trofimenko, S. (1970). J. Am. Chem. Soc. 92, 5118-5126.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H10N6)2][Ni(CN)4]·2H2O

  • Mr = 686.01

  • Triclinic, [P \overline 1]

  • a = 8.4840 (2) Å

  • b = 8.7355 (2) Å

  • c = 10.7522 (3) Å

  • α = 75.5129 (11)°

  • β = 75.2713 (12)°

  • γ = 89.2534 (12)°

  • V = 745.09 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 90 K

  • 0.24 × 0.21 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.743, Tmax = 0.779

  • 13964 measured reflections

  • 3404 independent reflections

  • 2664 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.08

  • 3404 reflections

  • 209 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N8 0.83 (2) 1.97 (2) 2.798 (3) 176 (3)
O1W—H2W⋯N7i 0.83 (2) 1.99 (2) 2.815 (3) 174 (3)
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Tris(pyrazolyl)methane ligands, which are isoelectronic to the poly(pyrazolyl)borate ligand, are well known for their modulating ability towards magnetic, spectroscopic and catalytic properties of transition metal compounds (Nolet et al. (2006), Sheets et al. (2004), Astley et al. (1993), by Mesubi et al. (1984), Trofimenko et al. (1970)). They are also relatively easy to synthesize. During our search for a better catalyst for a large range of chemical reactions, we found tris(polypyrazolyl)methane ligand very promising. Here we report a new nickel (II) complex with this ligand as the tetracyanonickelate salt.

The title complex, [Ni(HC(pz)~3~)~2~][Ni(CN)~4~].2H~2Õ, where HC(pz)~3~ is tris(1-pyrazolyl)methane, contains an octahedral nickel(II) cation and a square planar nickel(II) anion (Fig. 1). Both the cation and the anion reside on a crystallographic center of inversion.The nickel atom in the cation is coordinated by six pyrazolyl rings of two chelating HC(pz)~3~ ligands, with Ni—N distances that range between 2.0647 (19) Å and 2.0828 (19) Å. The nickel atom in the anion part is coordinated by four cyanide ligands, with Ni—C distances in the range 1.869 (2) Å to 1.869 (3) Å. The Ni(CN)42- anions are linked by inversion-related water molecules into extended chains that run parallel to the a axis.

Related literature top

For the ligand synthesis, see: Reger et al. (2000). For allowed and forbidden dd transitions in poly(3,5-dimethylpyrazolyl)methane complexes of nickel(II), see: Nolet et al. (2006). For coupled electron-transfer and spin-exchange reactions of metal-bis[tris(pyrazolyl)methane] complexes, see: Sheets et al. (2004). For structural, spectroscopic and angular-overlap studies of tris(pyrazol-1-yl)methane complexes, see: Astley et al. (1993). For nickel(II) complexes of some poly(1-pyrazolyl)alkane ligands, see: Mesubi et al. (1984). For the coordination chemistry of geminal poly(1-pyrazolyl)alkanes, see: Trofimenko et al. (1970).

Experimental top

Tris(pyrazolyl)methane ligand was synthesized according to the previously published procedure by Reger et al. (2000). Tetraethyl ammonium cyanide was purchased from Aldrich and used as received. NiCl~2~.6H~2~0(475 mg, 2 mmol) was dissolved in 5 ml methanol. Tris(pyrazolyl)methane (428 mg, 2 mmol) was dissolved in 5 ml methanol. The ligand solution was added dropwise to metal solution and with moderate stirring. Once the addition was complete, solid tetraethylammonium cyanide (938 mg, 6 mmol) was added. The clear solution was filtered and methanol was evaporated slowly. Pink crystals were obtained after 3 days (463 mg, 67% yield). Elemental analysis, calculated for Ni~2~C~24~H~24Ñ~16Õ~2~: C 42.02, H 3.53, N 32.67; found C 41.95, H 3.30, N 32.45. IR (cm^-1^): 3330, 3279, 3145, 3110, 2986, 2132, 1687, 1516, 1450,1441, 1402, 1285, 1252, 1219, 1088, 1057, 987, 859, 791, 770, 658, 607, 414.

Refinement top

H atoms were found in difference Fourier maps and those attached to carbon were subsequently placed in idealized positions with constrained distances of 0.95 Å (CArH), and Uiso(H) values set to 1.2Ueq (C). Water H atoms were refined subject to three geometry retraints (DFIX for the O- –H and H—H distances in SHELXL97) with Uiso set to 1.5Ueq (Owater).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Bis(tripyrazol-1-ylmethane)nickel(II) tetracyanidonickelate(II) dihydrate top
Crystal data top
[Ni(C10H10N6)2][Ni(CN)4]·2H2OZ = 1
Mr = 686.01F(000) = 352
Triclinic, P1Dx = 1.529 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4840 (2) ÅCell parameters from 3304 reflections
b = 8.7355 (2) Åθ = 1.0–27.5°
c = 10.7522 (3) ŵ = 1.32 mm1
α = 75.5129 (11)°T = 90 K
β = 75.2713 (12)°Block, pink
γ = 89.2534 (12)°0.24 × 0.21 × 0.20 mm
V = 745.09 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
3404 independent reflections
Radiation source: fine-focus sealed tube2664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 9.1 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scans at fixed χ = 55°h = 1011
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.743, Tmax = 0.779l = 1313
13964 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.2597P]
where P = (Fo2 + 2Fc2)/3
3404 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.70 e Å3
3 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Ni(C10H10N6)2][Ni(CN)4]·2H2Oγ = 89.2534 (12)°
Mr = 686.01V = 745.09 (3) Å3
Triclinic, P1Z = 1
a = 8.4840 (2) ÅMo Kα radiation
b = 8.7355 (2) ŵ = 1.32 mm1
c = 10.7522 (3) ÅT = 90 K
α = 75.5129 (11)°0.24 × 0.21 × 0.20 mm
β = 75.2713 (12)°
Data collection top
Nonius KappaCCD
diffractometer
3404 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2664 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.779Rint = 0.063
13964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.70 e Å3
3404 reflectionsΔρmin = 0.80 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Three restraints (DFIX in SHELXL97) were used to ensure the geometry of the water molecule remained chemically reasonable.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50001.00000.01475 (13)
N10.7163 (2)0.4988 (2)0.85558 (19)0.0177 (4)
C10.8185 (3)0.3933 (3)0.8155 (2)0.0218 (5)
H10.80230.28210.85200.026*
N20.7864 (2)0.6416 (2)0.77724 (18)0.0165 (4)
C20.9533 (3)0.4679 (3)0.7125 (2)0.0236 (5)
H21.04230.41850.66730.028*
N30.6175 (2)0.6834 (2)1.03923 (19)0.0191 (4)
C30.9294 (3)0.6262 (3)0.6912 (2)0.0204 (5)
H30.99960.70950.62810.024*
N40.7081 (2)0.7950 (2)0.93389 (19)0.0179 (4)
C40.6513 (3)0.7139 (3)1.1448 (2)0.0231 (5)
H40.60500.65541.23390.028*
N50.5640 (2)0.3277 (2)1.14631 (19)0.0193 (4)
C50.7636 (3)0.8429 (3)1.1081 (3)0.0272 (6)
H50.80650.88731.16550.033*
N60.4508 (2)0.2078 (2)1.21934 (19)0.0184 (4)
C60.7992 (3)0.8923 (3)0.9720 (3)0.0237 (5)
H60.87260.97750.91590.028*
C70.5121 (3)0.0982 (3)1.3053 (2)0.0214 (5)
H70.45600.00501.36610.026*
C80.6700 (3)0.1472 (3)1.2881 (2)0.0233 (5)
H80.74580.09541.33390.028*
C90.6972 (3)0.2894 (3)1.1892 (2)0.0214 (5)
H90.79750.35101.15670.026*
C100.7123 (3)0.7855 (3)0.7998 (2)0.0177 (5)
H100.78060.87790.73480.021*
Ni20.50000.50000.50000.01604 (13)
N70.7352 (2)0.7733 (3)0.4652 (2)0.0219 (5)
N80.2614 (3)0.7476 (3)0.4345 (2)0.0258 (5)
C110.6471 (3)0.6668 (3)0.4813 (2)0.0193 (5)
C120.3489 (3)0.6500 (3)0.4610 (2)0.0190 (5)
O1W0.0369 (2)0.9370 (2)0.32515 (19)0.0279 (4)
H1W0.101 (3)0.877 (3)0.358 (3)0.042*
H2W0.053 (3)0.894 (3)0.369 (3)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0122 (2)0.0154 (2)0.0150 (2)0.00204 (16)0.00209 (16)0.00215 (16)
N10.0165 (10)0.0172 (9)0.0178 (10)0.0021 (8)0.0031 (8)0.0027 (8)
C10.0178 (12)0.0212 (12)0.0275 (13)0.0020 (10)0.0064 (10)0.0076 (10)
N20.0144 (10)0.0186 (10)0.0156 (9)0.0024 (8)0.0028 (8)0.0037 (7)
C20.0162 (12)0.0310 (14)0.0243 (13)0.0041 (10)0.0030 (10)0.0109 (11)
N30.0175 (10)0.0191 (10)0.0173 (10)0.0041 (8)0.0019 (8)0.0011 (8)
C30.0130 (12)0.0304 (13)0.0165 (11)0.0032 (10)0.0014 (9)0.0058 (10)
N40.0171 (10)0.0172 (10)0.0166 (10)0.0055 (8)0.0003 (8)0.0040 (8)
C40.0246 (13)0.0272 (13)0.0172 (12)0.0033 (10)0.0030 (10)0.0075 (10)
N50.0145 (10)0.0209 (10)0.0193 (10)0.0014 (8)0.0023 (8)0.0017 (8)
C50.0284 (15)0.0304 (14)0.0254 (13)0.0048 (11)0.0066 (11)0.0120 (11)
N60.0187 (10)0.0177 (10)0.0167 (10)0.0013 (8)0.0029 (8)0.0022 (8)
C60.0232 (14)0.0200 (12)0.0270 (13)0.0057 (10)0.0039 (10)0.0065 (10)
C70.0282 (14)0.0175 (11)0.0170 (12)0.0033 (10)0.0050 (10)0.0025 (9)
C80.0221 (13)0.0233 (12)0.0263 (13)0.0059 (10)0.0089 (10)0.0070 (10)
C90.0167 (12)0.0246 (12)0.0245 (13)0.0029 (10)0.0072 (10)0.0076 (10)
C100.0160 (12)0.0187 (11)0.0162 (11)0.0012 (9)0.0023 (9)0.0020 (9)
Ni20.0109 (2)0.0195 (2)0.0168 (2)0.00070 (16)0.00297 (16)0.00337 (16)
N70.0150 (10)0.0243 (11)0.0240 (11)0.0005 (9)0.0023 (8)0.0046 (9)
N80.0160 (11)0.0288 (12)0.0312 (12)0.0002 (9)0.0060 (9)0.0053 (9)
C110.0143 (12)0.0240 (12)0.0181 (12)0.0038 (10)0.0053 (9)0.0019 (9)
C120.0137 (12)0.0244 (12)0.0180 (12)0.0038 (10)0.0026 (9)0.0051 (9)
O1W0.0168 (9)0.0253 (10)0.0340 (11)0.0026 (8)0.0064 (8)0.0060 (8)
Geometric parameters (Å, º) top
Ni1—N52.0647 (19)N5—N61.367 (3)
Ni1—N5i2.0647 (19)C5—C61.372 (4)
Ni1—N32.081 (2)C5—H50.9500
Ni1—N3i2.081 (2)N6—C71.353 (3)
Ni1—N12.0828 (19)N6—C10i1.448 (3)
Ni1—N1i2.0828 (19)C6—H60.9500
N1—C11.332 (3)C7—C81.364 (4)
N1—N21.363 (3)C7—H70.9500
C1—C21.405 (3)C8—C91.396 (3)
C1—H10.9500C8—H80.9500
N2—C31.354 (3)C9—H90.9500
N2—C101.446 (3)C10—N6i1.448 (3)
C2—C31.365 (3)C10—H101.0000
C2—H20.9500Ni2—C12ii1.869 (2)
N3—C41.326 (3)Ni2—C121.869 (2)
N3—N41.360 (3)Ni2—C111.869 (3)
C3—H30.9500Ni2—C11ii1.869 (3)
N4—C61.356 (3)N7—C111.151 (3)
N4—C101.457 (3)N8—C121.153 (3)
C4—C51.396 (4)O1W—H1W0.83 (2)
C4—H40.9500O1W—H2W0.83 (2)
N5—C91.334 (3)
N5—Ni1—N5i180.00 (10)C5—C4—H4124.3
N5—Ni1—N393.82 (8)C9—N5—N6104.52 (18)
N5i—Ni1—N386.18 (8)C9—N5—Ni1137.45 (17)
N5—Ni1—N3i86.18 (8)N6—N5—Ni1117.85 (14)
N5i—Ni1—N3i93.82 (8)C6—C5—C4105.8 (2)
N3—Ni1—N3i179.999 (1)C6—C5—H5127.1
N5—Ni1—N194.89 (8)C4—C5—H5127.1
N5i—Ni1—N185.12 (8)C7—N6—N5111.63 (19)
N3—Ni1—N185.04 (8)C7—N6—C10i129.2 (2)
N3i—Ni1—N194.96 (8)N5—N6—C10i119.13 (18)
N5—Ni1—N1i85.11 (8)N4—C6—C5106.1 (2)
N5i—Ni1—N1i94.88 (8)N4—C6—H6127.0
N3—Ni1—N1i94.96 (8)C5—C6—H6127.0
N3i—Ni1—N1i85.04 (8)N6—C7—C8106.9 (2)
N1—Ni1—N1i180.00 (8)N6—C7—H7126.6
C1—N1—N2104.50 (19)C8—C7—H7126.6
C1—N1—Ni1138.05 (17)C7—C8—C9105.7 (2)
N2—N1—Ni1117.40 (14)C7—C8—H8127.1
N1—C1—C2111.3 (2)C9—C8—H8127.1
N1—C1—H1124.4N5—C9—C8111.2 (2)
C2—C1—H1124.4N5—C9—H9124.4
C3—N2—N1112.04 (19)C8—C9—H9124.4
C3—N2—C10128.24 (19)N2—C10—N6i111.23 (19)
N1—N2—C10119.54 (18)N2—C10—N4109.41 (18)
C3—C2—C1105.5 (2)N6i—C10—N4110.33 (18)
C3—C2—H2127.3N2—C10—H10108.6
C1—C2—H2127.3N6i—C10—H10108.6
C4—N3—N4104.74 (19)N4—C10—H10108.6
C4—N3—Ni1136.46 (17)C12ii—Ni2—C12179.999 (1)
N4—N3—Ni1117.88 (15)C12ii—Ni2—C1191.72 (10)
N2—C3—C2106.7 (2)C12—Ni2—C1188.28 (10)
N2—C3—H3126.6C12ii—Ni2—C11ii88.28 (10)
C2—C3—H3126.6C12—Ni2—C11ii91.72 (10)
C6—N4—N3112.08 (19)C11—Ni2—C11ii179.999 (1)
C6—N4—C10128.5 (2)N7—C11—Ni2177.0 (2)
N3—N4—C10118.97 (19)N8—C12—Ni2176.9 (2)
N3—C4—C5111.3 (2)H1W—O1W—H2W103 (2)
N3—C4—H4124.3
N5—Ni1—N1—C139.3 (3)Ni1—N3—C4—C5167.67 (19)
N5i—Ni1—N1—C1140.7 (3)N3—Ni1—N5—C944.9 (3)
N3—Ni1—N1—C1132.7 (3)N3i—Ni1—N5—C9135.1 (3)
N3i—Ni1—N1—C147.3 (3)N1—Ni1—N5—C940.5 (3)
N5—Ni1—N1—N2137.72 (16)N1i—Ni1—N5—C9139.5 (3)
N5i—Ni1—N1—N242.28 (16)N3—Ni1—N5—N6140.99 (16)
N3—Ni1—N1—N244.30 (16)N3i—Ni1—N5—N639.01 (16)
N3i—Ni1—N1—N2135.70 (16)N1—Ni1—N5—N6133.67 (16)
N2—N1—C1—C20.1 (3)N1i—Ni1—N5—N646.33 (16)
Ni1—N1—C1—C2177.13 (18)N3—C4—C5—C60.1 (3)
C1—N1—N2—C30.5 (3)C9—N5—N6—C70.1 (3)
Ni1—N1—N2—C3177.41 (15)Ni1—N5—N6—C7175.99 (15)
C1—N1—N2—C10176.0 (2)C9—N5—N6—C10i178.2 (2)
Ni1—N1—N2—C101.9 (3)Ni1—N5—N6—C10i5.9 (3)
N1—C1—C2—C30.3 (3)N3—N4—C6—C51.0 (3)
N5—Ni1—N3—C430.7 (3)C10—N4—C6—C5173.0 (2)
N5i—Ni1—N3—C4149.3 (3)C4—C5—C6—N40.6 (3)
N1—Ni1—N3—C4125.3 (3)N5—N6—C7—C80.2 (3)
N1i—Ni1—N3—C454.7 (3)C10i—N6—C7—C8178.1 (2)
N5—Ni1—N3—N4136.29 (17)N6—C7—C8—C90.2 (3)
N5i—Ni1—N3—N443.71 (17)N6—N5—C9—C80.0 (3)
N1—Ni1—N3—N441.71 (16)Ni1—N5—C9—C8174.60 (18)
N1i—Ni1—N3—N4138.29 (16)C7—C8—C9—N50.1 (3)
N1—N2—C3—C20.7 (3)C3—N2—C10—N6i123.8 (2)
C10—N2—C3—C2175.7 (2)N1—N2—C10—N6i61.6 (3)
C1—C2—C3—N20.6 (3)C3—N2—C10—N4114.1 (2)
C4—N3—N4—C60.9 (3)N1—N2—C10—N460.6 (3)
Ni1—N3—N4—C6169.89 (16)C6—N4—C10—N2107.9 (3)
C4—N3—N4—C10173.8 (2)N3—N4—C10—N263.7 (3)
Ni1—N3—N4—C103.0 (3)C6—N4—C10—N6i129.4 (2)
N4—N3—C4—C50.5 (3)N3—N4—C10—N6i59.0 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N80.83 (2)1.97 (2)2.798 (3)176 (3)
O1W—H2W···N7iii0.83 (2)1.99 (2)2.815 (3)174 (3)
Symmetry code: (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C10H10N6)2][Ni(CN)4]·2H2O
Mr686.01
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)8.4840 (2), 8.7355 (2), 10.7522 (3)
α, β, γ (°)75.5129 (11), 75.2713 (12), 89.2534 (12)
V3)745.09 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.24 × 0.21 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.743, 0.779
No. of measured, independent and
observed [I > 2σ(I)] reflections
13964, 3404, 2664
Rint0.063
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.08
No. of reflections3404
No. of parameters209
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.80

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N80.83 (2)1.97 (2)2.798 (3)176 (3)
O1W—H2W···N7i0.83 (2)1.99 (2)2.815 (3)174 (3)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

GL gratefully acknowledges the Department of Biology and Chemistry, Southern Arkansas University, for financial support.

References

First citationAstley, T., Gulbis, J. M., Hitchman, M. A. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. 4, 509–515.  CSD CrossRef Web of Science Google Scholar
First citationMesubi, M. A. & Ekemenzie, P. I. (1984). Transition Met. Chem. 9, 91–96.  CrossRef CAS Web of Science Google Scholar
First citationNolet, M.-C., Michaud, A., Bain, C., Zargarian, D. & Reber, C. (2006). Photochem. Photobiol. 82, 57–63.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120–128.  Web of Science CrossRef CAS Google Scholar
First citationSheets, J. R. & Schultz, F. A. (2004). Polyhedron, 23, 1037–1043.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrofimenko, S. (1970). J. Am. Chem. Soc. 92, 5118–5126.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds