metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­aqua­(pyridine-κN)nickel(II)]-μ-sulfato-κ2O:O′]

aKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry & Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: chenzfgxnu@yahoo.com

(Received 2 November 2009; accepted 19 November 2009; online 25 November 2009)

The title compound, [Ni(SO4)(C5H5N)(H2O)3]n, was synthesized by the hydro­thermal reaction of NiSO4·6H2O, pyridine and water. The central NiII atom is coordinated in a distorted octa­hedral environment by a pyridine N atom, three aqua O atoms and two O atoms of bridging sulfate anions, yielding a zigzag chain. A three-dimensional network is generated via complex hydrogen bonds involving the sulfate and aqua ligands and a pyridine C—H group.

Related literature

For the structures of related nickel(II) complexes, see: Wang et al. (2006[Wang, Y., Su, Z.-M., Hao, X.-R., Shao, K.-Z. & Zhao, Y.-H. (2006). Acta Cryst. E62, m322-m324.]); Stein et al. (2007[Stein, I., Speldrich, M., Schilder, H., Lueken, H. & Ruschewitz, U. (2007). Z. Anorg. Allg. Chem. 633, 1382-1390.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(SO4)(C5H5N)(H2O)3]

  • Mr = 287.92

  • Monoclinic, P 21 /c

  • a = 11.868 (3) Å

  • b = 7.5745 (14) Å

  • c = 11.420 (3) Å

  • β = 110.724 (4)°

  • V = 960.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.26 mm−1

  • T = 193 K

  • 0.30 × 0.20 × 0.14 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.465, Tmax = 0.729

  • 8854 measured reflections

  • 1746 independent reflections

  • 1641 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.110

  • S = 1.16

  • 1746 reflections

  • 161 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4i 0.82 (3) 2.04 (3) 2.849 (3) 170 (4)
O5—H5B⋯O1ii 0.818 (10) 1.939 (12) 2.753 (3) 173 (4)
O6—H6A⋯O3i 0.821 (10) 1.949 (12) 2.764 (3) 172 (4)
O6—H6B⋯O4 0.82 (3) 2.15 (3) 2.821 (3) 139 (4)
O7—H7A⋯O2ii 0.82 (3) 2.00 (3) 2.817 (3) 176 (4)
O7—H7B⋯O4iii 0.815 (10) 1.94 (2) 2.690 (3) 153 (4)
C4—H4⋯O3iv 0.95 2.57 3.304 (5) 135
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z.

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2000[Rigaku/MSC & Rigaku (2000). CrystalStructure. Rigaku/MSC, The Woodands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit contains one independent Ni atom, which is octahedrally coordinated by two sulfato anions, three aqua ligands and one pyridine molecule. The bond lengths and angles involving Ni—O(aqua), Ni—N are similar to those of other nickel-carboxylate coordination polymers with pyridine (Wang et al., 2006; Stein et al., 2007), with the Ni center displaying the typical distorted octahedral coordination, which can be viewed from the angles of N1—Ni1—O1 177.81 (10)°, N1—Ni1—O7 91.13 (11)°, O1—Ni1—O6 92.13 (9)°, O5—Ni1—O6 92.91 (10)° (Fig. 1). The SO42- dianion acts as a µ2 bridging ligand, linking two adjacent metal ions and generating a one-dimensional zigzag chain (Fig. 2). The aqua ligands, sulfato groups and C—H of pyridine form extensive hydrogen-bonding interactions (Table 1), resulting in a three-dimensional network (Fig. 3).

Related literature top

For the structures of related nickel(II) complexes, see: Wang et al. (2006); Stein et al. (2007).

Experimental top

Samples of NiSO4.6H2O (0.1 mmol) and pyridine (0.1 mmol) were placed in a thick-walled Pyrex tube (ca 20 cm long). After addition of H2O (1 ml), the tube was frozen with liquid nitrogen, evacuated under vacuum and sealed with a torch. The tube was heated at 110°C for 2 days and then was slowly cooled down to room temperature, and light-green block-shaped crystals were obtained. Yield: 35%.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C) (C—H = 0.95 Å). Water H positions were located in an electron-density difference map and refined freely.

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the one-dimensional chain structure that propagates along the b axis.
[Figure 3] Fig. 3. A packing diagram viewed approximately down the b axis.
catena-poly[[triaqua(pyridine-κN)nickel(II)]- µ-sulfato-κ2O:O'] top
Crystal data top
[Ni(SO4)(C5H5N)(H2O)3]F(000) = 592
Mr = 287.92Dx = 1.992 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 3550 reflections
a = 11.868 (3) Åθ = 3.1–25.3°
b = 7.5745 (14) ŵ = 2.26 mm1
c = 11.420 (3) ÅT = 193 K
β = 110.724 (4)°Block, light-green
V = 960.2 (3) Å30.30 × 0.20 × 0.14 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
1746 independent reflections
Radiation source: fine-focus sealed tube1641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.3°
ω scansh = 1413
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 99
Tmin = 0.465, Tmax = 0.729l = 1312
8854 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.4274P]
where P = (Fo2 + 2Fc2)/3
1746 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.57 e Å3
6 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Ni(SO4)(C5H5N)(H2O)3]V = 960.2 (3) Å3
Mr = 287.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.868 (3) ŵ = 2.26 mm1
b = 7.5745 (14) ÅT = 193 K
c = 11.420 (3) Å0.30 × 0.20 × 0.14 mm
β = 110.724 (4)°
Data collection top
Rigaku Mercury CCD
diffractometer
1746 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1641 reflections with I > 2σ(I)
Tmin = 0.465, Tmax = 0.729Rint = 0.040
8854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0366 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.57 e Å3
1746 reflectionsΔρmin = 0.84 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.65136 (3)0.59664 (5)0.21049 (4)0.0112 (2)
S10.37812 (7)0.51034 (10)0.20733 (7)0.0111 (2)
O10.4632 (2)0.5757 (3)0.1473 (2)0.0144 (5)
O20.3600 (2)0.3178 (3)0.1818 (2)0.0148 (5)
O30.2651 (2)0.6067 (3)0.1535 (2)0.0185 (6)
O40.4322 (2)0.5392 (3)0.3441 (2)0.0163 (5)
O50.6504 (2)0.3741 (3)0.1062 (2)0.0139 (5)
H5A0.626 (3)0.283 (3)0.128 (3)0.017 (10)*
H5B0.619 (4)0.381 (6)0.0300 (11)0.033 (13)*
O60.6708 (2)0.4525 (3)0.3691 (2)0.0165 (5)
H6A0.687 (4)0.3472 (19)0.367 (4)0.037 (13)*
H6B0.611 (2)0.435 (5)0.387 (4)0.028 (12)*
O70.6283 (2)0.7484 (3)0.0563 (2)0.0212 (6)
H7A0.632 (4)0.724 (5)0.0120 (19)0.034 (12)*
H7B0.609 (4)0.850 (2)0.064 (4)0.031 (12)*
N10.8352 (3)0.6199 (4)0.2656 (3)0.0179 (7)
C10.9028 (3)0.6672 (5)0.3822 (3)0.0247 (8)
H10.86370.69500.43940.030*
C21.0269 (3)0.6774 (6)0.4232 (4)0.0325 (9)
H21.07180.71120.50690.039*
C31.0846 (3)0.6379 (6)0.3407 (4)0.0345 (10)
H31.16990.64410.36640.041*
C41.0165 (4)0.5894 (5)0.2207 (5)0.0331 (10)
H41.05390.56120.16200.040*
C50.8929 (3)0.5822 (5)0.1867 (4)0.0255 (9)
H5C0.84640.54900.10340.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0115 (3)0.0107 (3)0.0109 (3)0.00030 (14)0.0035 (2)0.00009 (15)
S10.0122 (4)0.0103 (4)0.0114 (4)0.0005 (3)0.0050 (3)0.0009 (3)
O10.0123 (12)0.0198 (13)0.0129 (12)0.0013 (9)0.0066 (10)0.0014 (9)
O20.0222 (13)0.0097 (12)0.0127 (11)0.0012 (9)0.0064 (10)0.0036 (10)
O30.0172 (13)0.0147 (13)0.0259 (14)0.0034 (9)0.0103 (11)0.0035 (10)
O40.0226 (13)0.0160 (12)0.0113 (12)0.0048 (10)0.0071 (10)0.0043 (10)
O50.0188 (13)0.0144 (12)0.0081 (12)0.0028 (10)0.0042 (10)0.0010 (10)
O60.0158 (13)0.0135 (13)0.0198 (13)0.0005 (11)0.0058 (10)0.0022 (11)
O70.0361 (15)0.0135 (14)0.0175 (14)0.0053 (11)0.0139 (12)0.0009 (11)
N10.0154 (15)0.0150 (15)0.0223 (16)0.0002 (11)0.0053 (12)0.0016 (12)
C10.0198 (19)0.029 (2)0.0217 (19)0.0036 (16)0.0025 (15)0.0012 (17)
C20.020 (2)0.035 (2)0.033 (2)0.0033 (17)0.0025 (17)0.002 (2)
C30.0139 (19)0.028 (2)0.057 (3)0.0045 (16)0.007 (2)0.004 (2)
C40.024 (2)0.028 (2)0.056 (3)0.0004 (17)0.025 (2)0.002 (2)
C50.0198 (19)0.029 (2)0.030 (2)0.0035 (15)0.0124 (17)0.0038 (17)
Geometric parameters (Å, º) top
Ni1—O72.039 (2)O6—H6B0.82 (3)
Ni1—N12.053 (3)O7—H7A0.82 (3)
Ni1—O62.056 (2)O7—H7B0.815 (10)
Ni1—O52.062 (2)N1—C11.337 (5)
Ni1—O12.096 (2)N1—C51.342 (5)
Ni1—O2i2.110 (2)C1—C21.380 (5)
S1—O31.458 (2)C1—H10.9500
S1—O41.479 (2)C2—C31.380 (6)
S1—O21.488 (2)C2—H20.9500
S1—O11.491 (2)C3—C41.372 (6)
O2—Ni1ii2.110 (2)C3—H30.9500
O5—H5A0.82 (3)C4—C51.379 (6)
O5—H5B0.818 (10)C4—H40.9500
O6—H6A0.821 (10)C5—H5C0.9500
O7—Ni1—N191.13 (11)H5A—O5—H5B108 (4)
O7—Ni1—O6177.36 (10)Ni1—O6—H6A117 (3)
N1—Ni1—O689.97 (11)Ni1—O6—H6B118 (3)
O7—Ni1—O589.45 (9)H6A—O6—H6B94 (4)
N1—Ni1—O592.04 (11)Ni1—O7—H7A131 (3)
O6—Ni1—O592.91 (10)Ni1—O7—H7B113 (3)
O7—Ni1—O186.80 (10)H7A—O7—H7B115 (4)
N1—Ni1—O1177.81 (10)C1—N1—C5117.1 (3)
O6—Ni1—O192.13 (9)C1—N1—Ni1121.8 (2)
O5—Ni1—O187.23 (9)C5—N1—Ni1121.1 (3)
O7—Ni1—O2i92.22 (9)N1—C1—C2123.1 (4)
N1—Ni1—O2i91.89 (10)N1—C1—H1118.5
O6—Ni1—O2i85.33 (9)C2—C1—H1118.5
O5—Ni1—O2i175.69 (9)C3—C2—C1118.9 (4)
O1—Ni1—O2i88.90 (9)C3—C2—H2120.5
O3—S1—O4111.21 (14)C1—C2—H2120.5
O3—S1—O2111.13 (13)C4—C3—C2118.8 (4)
O4—S1—O2109.26 (13)C4—C3—H3120.6
O3—S1—O1108.13 (14)C2—C3—H3120.6
O4—S1—O1108.95 (13)C3—C4—C5118.9 (4)
O2—S1—O1108.08 (12)C3—C4—H4120.6
S1—O1—Ni1132.76 (14)C5—C4—H4120.6
S1—O2—Ni1ii134.32 (13)N1—C5—C4123.2 (4)
Ni1—O5—H5A116 (3)N1—C5—H5C118.4
Ni1—O5—H5B118 (3)C4—C5—H5C118.4
O3—S1—O1—Ni1150.13 (18)O2i—Ni1—N1—C137.9 (3)
O4—S1—O1—Ni129.1 (2)O7—Ni1—N1—C552.1 (3)
O2—S1—O1—Ni189.5 (2)O6—Ni1—N1—C5130.3 (3)
O7—Ni1—O1—S1167.8 (2)O5—Ni1—N1—C537.4 (3)
O6—Ni1—O1—S19.8 (2)O2i—Ni1—N1—C5144.4 (3)
O5—Ni1—O1—S1102.64 (19)C5—N1—C1—C20.3 (5)
O2i—Ni1—O1—S175.47 (19)Ni1—N1—C1—C2177.5 (3)
O3—S1—O2—Ni1ii103.2 (2)N1—C1—C2—C30.2 (6)
O4—S1—O2—Ni1ii19.9 (2)C1—C2—C3—C40.1 (6)
O1—S1—O2—Ni1ii138.29 (18)C2—C3—C4—C50.1 (6)
O7—Ni1—N1—C1130.2 (3)C1—N1—C5—C40.3 (5)
O6—Ni1—N1—C147.4 (3)Ni1—N1—C5—C4177.5 (3)
O5—Ni1—N1—C1140.3 (3)C3—C4—C5—N10.3 (6)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4ii0.82 (3)2.04 (3)2.849 (3)170 (4)
O5—H5A···S1ii0.82 (3)2.81 (2)3.571 (3)157 (3)
O5—H5B···O1iii0.82 (1)1.94 (1)2.753 (3)173 (4)
O5—H5B···S1iii0.82 (1)2.85 (2)3.584 (3)151 (4)
O6—H6A···O3ii0.82 (1)1.95 (1)2.764 (3)172 (4)
O6—H6A···S1ii0.82 (1)2.71 (2)3.458 (3)152 (4)
O6—H6B···O40.82 (3)2.15 (3)2.821 (3)139 (4)
O6—H6B···S10.82 (3)2.85 (4)3.336 (3)120 (3)
O7—H7A···O2iii0.82 (3)2.00 (3)2.817 (3)176 (4)
O7—H7A···S1iii0.82 (3)2.82 (2)3.571 (3)154 (4)
O7—H7B···O4i0.82 (1)1.94 (2)2.690 (3)153 (4)
O7—H7B···S1i0.82 (1)2.84 (4)3.372 (3)125 (4)
C4—H4···O3iv0.952.573.304 (5)135
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(SO4)(C5H5N)(H2O)3]
Mr287.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)11.868 (3), 7.5745 (14), 11.420 (3)
β (°) 110.724 (4)
V3)960.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.26
Crystal size (mm)0.30 × 0.20 × 0.14
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.465, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
8854, 1746, 1641
Rint0.040
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.110, 1.16
No. of reflections1746
No. of parameters161
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.84

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku/MSC & Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.82 (3)2.04 (3)2.849 (3)170 (4)
O5—H5A···S1i0.82 (3)2.805 (18)3.571 (3)157 (3)
O5—H5B···O1ii0.818 (10)1.939 (12)2.753 (3)173 (4)
O5—H5B···S1ii0.818 (10)2.85 (2)3.584 (3)151 (4)
O6—H6A···O3i0.821 (10)1.949 (12)2.764 (3)172 (4)
O6—H6A···S1i0.821 (10)2.71 (2)3.458 (3)152 (4)
O6—H6B···O40.82 (3)2.15 (3)2.821 (3)139 (4)
O6—H6B···S10.82 (3)2.85 (4)3.336 (3)120 (3)
O7—H7A···O2ii0.82 (3)2.00 (3)2.817 (3)176 (4)
O7—H7A···S1ii0.82 (3)2.82 (2)3.571 (3)154 (4)
O7—H7B···O4iii0.815 (10)1.94 (2)2.690 (3)153 (4)
O7—H7B···S1iii0.815 (10)2.84 (4)3.372 (3)125 (4)
C4—H4···O3iv0.952.573.304 (5)134.6
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 20861002), the 973 Plan of China (2009CB526503), the Natural Science Foundation of Guangxi, China (Nos. 0991003, 0991012Z) and the Open Foundation of the Key Laboratory for the Chemistry and Molecular Engin­eering of Medicinal Resources (Ministry of Education of China) for financial support.

References

First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC & Rigaku (2000). CrystalStructure. Rigaku/MSC, The Woodands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStein, I., Speldrich, M., Schilder, H., Lueken, H. & Ruschewitz, U. (2007). Z. Anorg. Allg. Chem. 633, 1382–1390.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y., Su, Z.-M., Hao, X.-R., Shao, K.-Z. & Zhao, Y.-H. (2006). Acta Cryst. E62, m322–m324.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds