metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­(pyridine-κN)cobalt(II) bis­­[4-amino-N-(6-chloro­pyridazin-3-yl)benzene­sulfonamidate]

aKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry Education of China), School of Chemistry & Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: chenzfgxnu@yahoo.com

(Received 16 November 2009; accepted 19 November 2009; online 25 November 2009)

The structure of the title compound, [Co(C5H5N)2(H2O)4](C10H8ClN4O2S)2, consists of a discrete tetra­aqua­bis(pyridine-κN)cobalt(II) cation and two 4-amino-N-(6-chloro­pyridazin-3-yl)benzene­sulfonamidate anions. In the cation, the CoII ion sits on an inversion centre and is octa­hedrally coordinated by two pyridine N atoms and four O atoms. A two-dimensional network parallel to (010) is formed via inter­molecular O—H⋯O, O—H⋯N, N—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For the structure of sulfachloro­pyridazine, see: Tan et al. (2005[Tan, Y.-S., Chen, Z.-F., Liang, H. & Zhang, Y. (2005). Acta Cryst. E61, o1842-o1844.]). For a sulfachloro­pyridazine–metal complex, see: Fogg et al. (1995[Fogg, A. G., Yusoff, A. R. H. M. & Ahmad, R. (1995). Anal. Proc. 32, 337-340.]). For an aqua­pyridine–cobalt(II) complex, see: Clegg et al. (2006[Clegg, J. K., Hayter, M. J., Jolliffe, K. A. & Lindoy, L. F. (2006). Acta Cryst. E62, m873-m874.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C5H5N)2(H2O)4](C10H8ClN4O2S)2

  • Mr = 856.62

  • Monoclinic, P 21 /c

  • a = 8.5897 (12) Å

  • b = 25.807 (3) Å

  • c = 8.5338 (12) Å

  • β = 101.694 (3)°

  • V = 1852.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 193 K

  • 0.21 × 0.15 × 0.12 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.853, Tmax = 0.912

  • 20359 measured reflections

  • 4226 independent reflections

  • 3331 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.108

  • S = 1.14

  • 4226 reflections

  • 258 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N5i 0.88 2.52 3.135 (4) 127
N3—H3B⋯O3ii 0.88 2.23 3.001 (3) 147
O1—H1A⋯O3 0.81 (4) 2.07 (4) 2.874 (3) 174 (4)
O1—H1B⋯N4iii 0.83 (4) 2.01 (4) 2.838 (3) 178 (3)
O2—H2A⋯O4 0.82 (3) 1.93 (4) 2.726 (3) 165 (4)
O2—H2B⋯N2iv 0.82 (4) 1.96 (4) 2.768 (3) 170 (4)
O2—H2B⋯O4iv 0.82 (4) 2.62 (4) 3.142 (3) 123 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2000[Rigaku/MSC and Rigaku (2000). CrystalStrucutre. Rigaku/MSC, The Woodands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Sulfachloropyridazine [4-amino-N-(6-chloro-3-pyridazinyl)-benzensulfonamide], is a synthetic sulfanilamide antibacterial drug whose crystal structure is known (Tan et al. 2005). However, as far as we are aware, no crystal structure of a metal complex containing sulfachloropyridazine has been published, although the electrochemistry of its copper(I) complex has been described by Fogg et al. (1995). The compound consists of a [Co(H2O)4(py)2]2+ cation and two sulfacholoropyridazine anions. Similar to tetraaquabis(pyridine-κN)cobalt(II) diacetate (Clegg et al., 2006), the coordination geometry for the CoII cation (Fig. 1) is close to an ideal octahedron (N1—Co1—N1#1 180.000 (1)°, O1—Co1—O2 92.37 (9)°, O1—Co1—O2#1 87.63 (9)°, #1: -x + 2,-y + 1,-z + 1), with the O atoms of the coordinated water molecules occupying the equatorial positions and with the axial sites occupied by coordinated pyridine ligands. The sulfachloropyridazine is depronated at sulfamide N2 to generate anions, whose geometric parameters are comparable to sulfachloropyridazine (Tan et al., 2005). A two-dimensional network is formed via intermolecular hydrogen bonds of type O—H···O, O—H···N and N—H···O (Table 1).

Related literature top

For the structure of sulfachloropyridazine, see: Tan et al. (2005). For a sulfachloropyridazine–metal complex, see: Fogg et al. (1995). For an aquapyridin–cobalt(II) complex, see: Clegg et al. (2006).

Experimental top

Samples of sulfachloropyridazine (0.2 mmol) and Co(Ac)2.4H2O (0.1 mmol) were placed in a thick-walled Pyrex tube (ca 20 cm long). After addition of ethanol (2.2 ml), H2O (0.2 ml) and pyridine (0.1 ml), the tube was frozen with liquid nitrogen, evacuated under vacuum and sealed with a torch. The tube was heated at 80°C for 3 days and then was slowly cooled down to room temperature, and orange-yellow block-shaped crystals were obtained. Yield: 80%.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C) (C—H = 0.95 Å). The H atoms attached to amino N were placed in the calculated positions, with N—H distance of 0.88 Å. The Uiso(H) values were constrained to be 1.2Ueq of the carrier atom for amino H atom. H atom attached to O was located in an electron-density difference map and refined isotropically.

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of title compound, viewing down the [100] direction. Hydrogen bonds are shown as dashed lines.
Tetraaquabis(pyridine-κN)cobalt(II) bis[4-amino-N-(6-chloropyridazin-3-yl)benzenesulfonamidate] top
Crystal data top
[Co(C5H5N)2(H2O)4](C10H8ClN4O2S)2F(000) = 882
Mr = 856.62Dx = 1.536 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 6394 reflections
a = 8.5897 (12) Åθ = 3.1–27.5°
b = 25.807 (3) ŵ = 0.78 mm1
c = 8.5338 (12) ÅT = 193 K
β = 101.694 (3)°Block, orange-yellow
V = 1852.5 (4) Å30.21 × 0.15 × 0.12 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
4226 independent reflections
Radiation source: fine-focus sealed tube3331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 7.31 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 119
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 3233
Tmin = 0.853, Tmax = 0.912l = 1011
20359 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0291P)2 + 1.7941P]
where P = (Fo2 + 2Fc2)/3
4226 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.66 e Å3
1 restraintΔρmin = 0.45 e Å3
Crystal data top
[Co(C5H5N)2(H2O)4](C10H8ClN4O2S)2V = 1852.5 (4) Å3
Mr = 856.62Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.5897 (12) ŵ = 0.78 mm1
b = 25.807 (3) ÅT = 193 K
c = 8.5338 (12) Å0.21 × 0.15 × 0.12 mm
β = 101.694 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
4226 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3331 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.912Rint = 0.050
20359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.66 e Å3
4226 reflectionsΔρmin = 0.45 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.50000.50000.02572 (15)
Cl10.07781 (10)0.20506 (3)0.22874 (12)0.0489 (2)
S10.54834 (8)0.39936 (3)0.61366 (9)0.02737 (18)
O10.9392 (3)0.42160 (8)0.4313 (3)0.0348 (5)
O20.7795 (2)0.51495 (9)0.5400 (3)0.0337 (5)
O30.6620 (2)0.37878 (8)0.5233 (2)0.0330 (5)
O40.5622 (2)0.45443 (7)0.6462 (2)0.0331 (5)
N10.9177 (3)0.52499 (9)0.2536 (3)0.0315 (6)
N20.3692 (3)0.39029 (9)0.5297 (3)0.0299 (6)
N30.7205 (3)0.30830 (10)1.2615 (3)0.0394 (6)
H3A0.79670.28501.28270.047*
H3B0.67290.31901.33770.047*
N40.1620 (3)0.34401 (9)0.3915 (3)0.0309 (6)
N50.0921 (3)0.30070 (9)0.3205 (3)0.0323 (6)
C10.9858 (4)0.56332 (13)0.1875 (4)0.0405 (8)
H1C1.07050.58170.25300.049*
C20.9403 (4)0.57775 (15)0.0292 (4)0.0479 (9)
H2C0.99280.60540.01250.057*
C30.8187 (4)0.55177 (14)0.0666 (4)0.0457 (9)
H30.78510.56090.17600.055*
C40.7458 (4)0.51210 (14)0.0018 (4)0.0469 (9)
H40.66090.49330.06570.056*
C50.7977 (4)0.49995 (12)0.1575 (4)0.0378 (7)
H50.74630.47260.20150.045*
C60.5891 (3)0.36813 (10)0.8007 (3)0.0262 (6)
C70.7082 (4)0.33130 (12)0.8356 (4)0.0339 (7)
H70.76130.31990.75450.041*
C80.7499 (4)0.31125 (12)0.9877 (4)0.0355 (7)
H80.83070.28561.01010.043*
C90.6757 (3)0.32790 (11)1.1094 (3)0.0299 (6)
C100.5524 (4)0.36397 (12)1.0716 (4)0.0349 (7)
H100.49760.37501.15190.042*
C110.5097 (3)0.38357 (11)0.9191 (4)0.0334 (7)
H110.42520.40790.89460.040*
C120.3157 (3)0.34323 (11)0.4672 (3)0.0275 (6)
C130.1763 (3)0.25836 (11)0.3265 (4)0.0315 (7)
C140.3340 (4)0.25379 (11)0.4036 (4)0.0351 (7)
H140.38980.22190.40540.042*
C150.4049 (3)0.29672 (11)0.4761 (4)0.0328 (7)
H150.51240.29570.53210.039*
H1A0.859 (5)0.4089 (15)0.451 (5)0.060 (13)*
H1B1.005 (4)0.3990 (13)0.422 (4)0.038 (10)*
H2A0.717 (4)0.4932 (12)0.559 (5)0.070 (14)*
H2B0.734 (4)0.5420 (15)0.508 (5)0.058 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0215 (3)0.0216 (3)0.0339 (3)0.0004 (2)0.0054 (2)0.0016 (2)
Cl10.0384 (5)0.0396 (5)0.0696 (6)0.0099 (3)0.0126 (4)0.0209 (4)
S10.0224 (4)0.0263 (4)0.0332 (4)0.0016 (3)0.0051 (3)0.0001 (3)
O10.0275 (12)0.0230 (11)0.0555 (15)0.0012 (10)0.0120 (11)0.0052 (10)
O20.0246 (11)0.0258 (12)0.0520 (14)0.0042 (9)0.0105 (10)0.0054 (10)
O30.0261 (11)0.0372 (11)0.0375 (12)0.0036 (9)0.0105 (9)0.0032 (9)
O40.0326 (11)0.0247 (10)0.0413 (12)0.0052 (8)0.0061 (10)0.0010 (9)
N10.0284 (13)0.0287 (13)0.0373 (14)0.0042 (10)0.0063 (11)0.0024 (11)
N20.0241 (13)0.0237 (12)0.0401 (14)0.0002 (9)0.0026 (11)0.0004 (11)
N30.0413 (16)0.0428 (15)0.0343 (14)0.0065 (12)0.0082 (12)0.0040 (12)
N40.0235 (12)0.0295 (13)0.0377 (14)0.0019 (10)0.0017 (11)0.0023 (11)
N50.0261 (13)0.0296 (13)0.0399 (15)0.0022 (10)0.0034 (11)0.0043 (11)
C10.0365 (18)0.0438 (19)0.0411 (19)0.0041 (14)0.0075 (15)0.0011 (15)
C20.049 (2)0.055 (2)0.041 (2)0.0012 (17)0.0155 (17)0.0091 (17)
C30.050 (2)0.056 (2)0.0301 (17)0.0174 (18)0.0056 (16)0.0023 (16)
C40.046 (2)0.047 (2)0.042 (2)0.0085 (16)0.0042 (17)0.0120 (16)
C50.0353 (17)0.0331 (16)0.0422 (18)0.0005 (13)0.0014 (15)0.0027 (14)
C60.0198 (14)0.0253 (14)0.0334 (16)0.0004 (11)0.0049 (12)0.0000 (12)
C70.0295 (16)0.0374 (17)0.0360 (17)0.0054 (13)0.0093 (14)0.0033 (14)
C80.0316 (17)0.0368 (17)0.0379 (18)0.0097 (13)0.0063 (14)0.0014 (14)
C90.0294 (16)0.0269 (15)0.0325 (16)0.0039 (12)0.0046 (13)0.0014 (13)
C100.0341 (17)0.0353 (17)0.0390 (17)0.0016 (13)0.0159 (14)0.0013 (14)
C110.0284 (16)0.0299 (16)0.0442 (18)0.0059 (12)0.0132 (14)0.0003 (14)
C120.0245 (14)0.0260 (14)0.0318 (16)0.0021 (11)0.0053 (12)0.0017 (12)
C130.0270 (15)0.0292 (16)0.0394 (17)0.0045 (12)0.0095 (13)0.0053 (13)
C140.0293 (16)0.0250 (15)0.0505 (19)0.0052 (12)0.0070 (14)0.0020 (14)
C150.0211 (15)0.0292 (15)0.0463 (18)0.0015 (11)0.0025 (13)0.0002 (14)
Geometric parameters (Å, º) top
Co1—O2i2.028 (2)C1—C21.379 (5)
Co1—O22.028 (2)C1—H1C0.9500
Co1—O12.142 (2)C2—C31.365 (5)
Co1—O1i2.142 (2)C2—H2C0.9500
Co1—N1i2.176 (2)C3—C41.374 (5)
Co1—N12.176 (2)C3—H30.9500
Cl1—C131.737 (3)C4—C51.378 (5)
S1—O41.448 (2)C4—H40.9500
S1—O31.461 (2)C5—H50.9500
S1—N21.577 (2)C6—C71.384 (4)
S1—C61.759 (3)C6—C111.387 (4)
O1—H1A0.81 (4)C7—C81.376 (4)
O1—H1B0.83 (4)C7—H70.9500
O2—H2A0.82 (3)C8—C91.392 (4)
O2—H2B0.82 (4)C8—H80.9500
N1—C11.331 (4)C9—C101.398 (4)
N1—C51.346 (4)C10—C111.375 (4)
N2—C121.368 (3)C10—H100.9500
N3—C91.374 (4)C11—H110.9500
N3—H3A0.8800C12—C151.418 (4)
N3—H3B0.8800C13—C141.386 (4)
N4—C121.347 (4)C14—C151.352 (4)
N4—N51.352 (3)C14—H140.9500
N5—C131.306 (4)C15—H150.9500
O2i—Co1—O2180.0C1—C2—H2C120.5
O2i—Co1—O187.63 (9)C2—C3—C4118.8 (3)
O2—Co1—O192.37 (9)C2—C3—H3120.6
O2i—Co1—O1i92.37 (9)C4—C3—H3120.6
O2—Co1—O1i87.63 (9)C3—C4—C5119.0 (3)
O1—Co1—O1i180.00 (4)C3—C4—H4120.5
O2i—Co1—N1i88.56 (9)C5—C4—H4120.5
O2—Co1—N1i91.44 (9)N1—C5—C4123.1 (3)
O1—Co1—N1i89.87 (9)N1—C5—H5118.4
O1i—Co1—N1i90.13 (9)C4—C5—H5118.4
O2i—Co1—N191.44 (9)C7—C6—C11119.4 (3)
O2—Co1—N188.56 (9)C7—C6—S1120.8 (2)
O1—Co1—N190.13 (9)C11—C6—S1119.5 (2)
O1i—Co1—N189.87 (9)C8—C7—C6120.1 (3)
N1i—Co1—N1180.000 (1)C8—C7—H7120.0
O4—S1—O3114.83 (12)C6—C7—H7120.0
O4—S1—N2105.51 (12)C7—C8—C9121.1 (3)
O3—S1—N2113.63 (13)C7—C8—H8119.5
O4—S1—C6106.39 (13)C9—C8—H8119.5
O3—S1—C6106.34 (13)N3—C9—C8120.5 (3)
N2—S1—C6109.90 (13)N3—C9—C10121.1 (3)
Co1—O1—H1A120 (3)C8—C9—C10118.3 (3)
Co1—O1—H1B124 (2)C11—C10—C9120.5 (3)
H1A—O1—H1B111 (3)C11—C10—H10119.8
Co1—O2—H2A125 (3)C9—C10—H10119.8
Co1—O2—H2B120 (3)C10—C11—C6120.5 (3)
H2A—O2—H2B111 (4)C10—C11—H11119.7
C1—N1—C5116.5 (3)C6—C11—H11119.7
C1—N1—Co1123.0 (2)N4—C12—N2113.2 (2)
C5—N1—Co1120.4 (2)N4—C12—C15120.3 (3)
C12—N2—S1121.93 (19)N2—C12—C15126.5 (3)
C9—N3—H3A120.0N5—C13—C14124.8 (3)
C9—N3—H3B120.0N5—C13—Cl1115.6 (2)
H3A—N3—H3B120.0C14—C13—Cl1119.6 (2)
C12—N4—N5120.4 (2)C15—C14—C13117.0 (3)
C13—N5—N4118.8 (2)C15—C14—H14121.5
N1—C1—C2123.7 (3)C13—C14—H14121.5
N1—C1—H1C118.2C14—C15—C12118.7 (3)
C2—C1—H1C118.2C14—C15—H15120.6
C3—C2—C1119.0 (3)C12—C15—H15120.6
C3—C2—H2C120.5
O2i—Co1—N1—C157.6 (2)O3—S1—C6—C11173.7 (2)
O2—Co1—N1—C1122.4 (2)N2—S1—C6—C1162.9 (3)
O1—Co1—N1—C1145.2 (2)C11—C6—C7—C81.6 (4)
O1i—Co1—N1—C134.8 (2)S1—C6—C7—C8173.1 (2)
O2i—Co1—N1—C5119.1 (2)C6—C7—C8—C91.0 (5)
O2—Co1—N1—C560.9 (2)C7—C8—C9—N3178.7 (3)
O1—Co1—N1—C531.5 (2)C7—C8—C9—C102.8 (5)
O1i—Co1—N1—C5148.5 (2)N3—C9—C10—C11179.5 (3)
O4—S1—N2—C12173.4 (2)C8—C9—C10—C112.1 (4)
O3—S1—N2—C1246.8 (3)C9—C10—C11—C60.5 (5)
C6—S1—N2—C1272.3 (3)C7—C6—C11—C102.3 (4)
C12—N4—N5—C130.2 (4)S1—C6—C11—C10172.5 (2)
C5—N1—C1—C20.3 (5)N5—N4—C12—N2178.8 (2)
Co1—N1—C1—C2176.4 (3)N5—N4—C12—C151.3 (4)
N1—C1—C2—C30.1 (5)S1—N2—C12—N4176.0 (2)
C1—C2—C3—C40.0 (5)S1—N2—C12—C154.2 (4)
C2—C3—C4—C50.1 (5)N4—N5—C13—C141.2 (5)
C1—N1—C5—C40.4 (5)N4—N5—C13—Cl1178.8 (2)
Co1—N1—C5—C4176.4 (2)N5—C13—C14—C150.7 (5)
C3—C4—C5—N10.3 (5)Cl1—C13—C14—C15179.3 (2)
O4—S1—C6—C7123.9 (2)C13—C14—C15—C120.9 (5)
O3—S1—C6—C71.0 (3)N4—C12—C15—C141.8 (5)
N2—S1—C6—C7122.4 (2)N2—C12—C15—C14178.3 (3)
O4—S1—C6—C1150.8 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N5ii0.882.523.135 (4)127
N3—H3B···O3iii0.882.233.001 (3)147
O1—H1A···O30.81 (4)2.07 (4)2.874 (3)174 (4)
O1—H1B···N4iv0.83 (4)2.01 (4)2.838 (3)178 (3)
O2—H2A···O40.82 (3)1.93 (4)2.726 (3)165 (4)
O2—H2B···N2v0.82 (4)1.96 (4)2.768 (3)170 (4)
O2—H2B···O4v0.82 (4)2.62 (4)3.142 (3)123 (3)
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C5H5N)2(H2O)4](C10H8ClN4O2S)2
Mr856.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)8.5897 (12), 25.807 (3), 8.5338 (12)
β (°) 101.694 (3)
V3)1852.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.21 × 0.15 × 0.12
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.853, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
20359, 4226, 3331
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.108, 1.14
No. of reflections4226
No. of parameters258
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.45

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku/MSC and Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N5i0.882.523.135 (4)127.1
N3—H3B···O3ii0.882.233.001 (3)146.8
O1—H1A···O30.81 (4)2.07 (4)2.874 (3)174 (4)
O1—H1B···N4iii0.83 (4)2.01 (4)2.838 (3)178 (3)
O2—H2A···O40.82 (3)1.93 (4)2.726 (3)165 (4)
O2—H2B···N2iv0.82 (4)1.96 (4)2.768 (3)170 (4)
O2—H2B···O4iv0.82 (4)2.62 (4)3.142 (3)123 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 20861002), the 973 Plan of China (2009CB526503) the Natural Science Foundation of Guangxi, China (Nos. 0991003, 0991012Z) and the Open Foundation of the Key Laboratory for the Chemistry and Molecular Engin­eering of Medicinal Resources (Ministry of Education of China) for financial support.

References

First citationClegg, J. K., Hayter, M. J., Jolliffe, K. A. & Lindoy, L. F. (2006). Acta Cryst. E62, m873–m874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFogg, A. G., Yusoff, A. R. H. M. & Ahmad, R. (1995). Anal. Proc. 32, 337–340.  CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC and Rigaku (2000). CrystalStrucutre. Rigaku/MSC, The Woodands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, Y.-S., Chen, Z.-F., Liang, H. & Zhang, Y. (2005). Acta Cryst. E61, o1842–o1844.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds