organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-2-((E)-{3-[1-(hy­droxy­imino)eth­yl]phen­yl}imino­meth­yl)phenol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: xuli@mail.lzjtu.cn

(Received 15 October 2009; accepted 2 November 2009; online 7 November 2009)

The title compound, C15H13ClN2O2, adopts an E conformation with respect to the azomethine C=N bond. The aniline and phenol rings are almost coplanar, making a dihedral angle of 3.33 (2)°. In the crystal, the mol­ecules lie about inversion centers, forming dimers that are connected by inter­molecular O—H⋯N hydrogen bonds, resulting in six-membered rings with graph-set motif R22(6). In addition, there is a strong inter­molecular O—H⋯N hydrogen-bonding inter­action, resulting in an S(6) ring motif. Weak ππ inter­actions between the benzene rings [centroid–centroid distance = 3.809 (1) Å] further stabilize the crystal structure.

Related literature

For background to Schiff bases, see: Dong et al. (2007[Dong, W.-K., Duan, J.-G. & Liu, G.-L. (2007). Transition Met. Chem. 32, 702-705.], 2008[Dong, W.-K. & Duan, J.-G. (2008). J. Coord. Chem. 61, 781-788.], 2009[Dong, W.-K., He, X.-N., Yan, H.-B., Lv, Z.-W., Chen, X., Zhao, C.-Y. & Tang, X.-L. (2009). Polyhedron, 28, 1419-1428.]); Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m570-m571.]). For related crystal strcutures, see: Butcher et al. (2005[Butcher, R. J., Bendre, R. S. & Kuwar, A. S. (2005). Acta Cryst. E61, o3511-o3513.]); Golovnia et al. (2009[Golovnia, E., Prisyazhnaya, E. V., Iskenderov, T. S., Haukka, M. & Fritsky, I. O. (2009). Acta Cryst. E65, o2018-o2019.]); Xu et al. (2008[Xu, S.-Q. & Li, J.-M. (2008). Acta Cryst. E64, o1469.]); Rafiq et al. (2008[Rafiq, M., Hanif, M., Qadeer, G., Vuoti, S. & Autio, J. (2008). Acta Cryst. E64, o2173.]); Zhao et al. (2009[Zhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2O2

  • Mr = 288.72

  • Monoclinic, P 21 /c

  • a = 16.7139 (16) Å

  • b = 5.9983 (6) Å

  • c = 13.3902 (11) Å

  • β = 96.328 (2)°

  • V = 1334.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.40 × 0.12 × 0.07 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.893, Tmax = 0.980

  • 6410 measured reflections

  • 2349 independent reflections

  • 1398 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.092

  • S = 1.04

  • 2349 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.82 1.87 2.601 (3) 147
O1—H1⋯N1i 0.82 2.06 2.789 (3) 149
Symmetry code: (i) -x, -y+3, -z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base ligands have numerous applications in chemistry, biology, physics and advanced materials and catalysis (Dong et al., 2007; Dong et al., 2008; Eltayeb et al., 2008). The pressence of Schiff base functional group together with oxime (–CN—OH) may result in significant increase of chelating efficiency and ability to form polynuclear complexes (Golovnia et al., 2009; Dong et al., 2009; Xu et al., 2008). Owing to the importance of oxime-type compounds, we report in this article the synthesis and crystal structure of the title compound, (I), which contains both the functional groups.

In the structure of the title compound (Fig. 1), the bond lengths and bond angles are in normal ranges and agree well with the coresponding bond lengths and angles reported for the crystal structures related to the title compound, e.g., (Butcher et al., 2005; Golovnia et al., 2009; Xu et al., 2008; Rafiq et al., 2008; Zhao et al., 2009). The molecule of (I) adopts an E conformation with respect to the azomethine CN bond. The aniline (C3—C8) and phenol rings (C10—C15) are almost coplanar with each other, making a dihedral angle of 3.33 (2)°; the torsion angles O1—N1—C2—C3 and C5—N2—C9—C10 are 178.4 (2) and -178.9 (2)°, respectively. The molecules of (I) lie about inversion centers forming dimers that are connected by intermolecular hydrogen bonds of the type O—H···N resulting in six-membered rings which can be described in graph-set notation as R22(6) motif. In addition, there is a strong intermolecular hydrogen bonding interaction of the type O—H···N resulting in an S(6) ring motif (Table 1). Moreover, weak ππ interactions between the benzene rings (centroid-centroid distance = 3.809 (1) Å) further stabilize the crystal structure (Fig. 2).

Related literature top

For background to Schiff bases, see: Dong et al. (2007, 2008, 2009); Eltayeb et al. (2008). For related crystal strcutures, see: Butcher et al. (2005); Golovnia et al. (2009); Xu et al. (2008); Rafiq et al. (2008); Zhao et al. (2009).

Experimental top

To an ethanol solution (5 ml) of 3-aminophenylethanone oxime (150.2 mg, 1.00 mmol) was added dropwise an ethanol solution (5 ml) of 5-chlorinebenzaldehyde (156.8 mg, 1.00 mmol). Immediately, a yellow precipitate was obtained. The mixture solution was stirred at 328–333 K for 5 h. After cooling to room temperature, the precipitate was filtered off, dried in vacuo and purified by recrystallization from ethanol to a solid material. Yellow needle-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of dichloromethane at room temperature in about two weeks.

Refinement top

H atoms were treated in a riding mode with distances C—H = 0.96 Å (CH3), 0.93 Å (CH) and O—H= 0.82 Å. The isotropic displacement parameters for all H atoms were set equal to 1.2 or 1.5 Ueq of the carrier atom.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound with atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the supramolecular structure of the title compound, showing a dimer formed by intermolecular O—H···O and O—H···N hydrogen bonds as well as ππ stacking interactions. H atoms not involved in hydrogen bonding have been omitted for clarity.
4-Chloro-2-((E)-{3-[1-(hydroxyimino)ethyl]phenyl}iminomethyl)phenol top
Crystal data top
C15H13ClN2O2F(000) = 600
Mr = 288.72Dx = 1.437 Mg m3
Monoclinic, P21/cMelting point = 454–456 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.7139 (16) ÅCell parameters from 1148 reflections
b = 5.9983 (6) Åθ = 3.1–25.3°
c = 13.3902 (11) ŵ = 0.29 mm1
β = 96.328 (2)°T = 298 K
V = 1334.3 (2) Å3Needle, yellow
Z = 40.40 × 0.12 × 0.07 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2349 independent reflections
Radiation source: fine-focus sealed tube1398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1819
Tmin = 0.893, Tmax = 0.980k = 77
6410 measured reflectionsl = 1511
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0246P)2]
where P = (Fo2 + 2Fc2)/3
2349 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H13ClN2O2V = 1334.3 (2) Å3
Mr = 288.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.7139 (16) ŵ = 0.29 mm1
b = 5.9983 (6) ÅT = 298 K
c = 13.3902 (11) Å0.40 × 0.12 × 0.07 mm
β = 96.328 (2)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2349 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1398 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.980Rint = 0.053
6410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
2349 reflectionsΔρmin = 0.18 e Å3
182 parameters
Special details top

Experimental. m. p. 454–456 K. Anal. Calc.: C, 62.40; H, 4.54; N, 9.70. Found: C, 62.10; H, 4.59; N, 9.89.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47005 (4)0.34472 (13)0.16802 (5)0.0679 (3)
N10.04965 (12)1.3024 (4)0.03178 (14)0.0492 (6)
N20.25468 (11)0.4873 (4)0.02923 (14)0.0459 (5)
O10.01107 (10)1.4271 (3)0.11173 (11)0.0660 (6)
H10.01051.53640.08950.099*
O20.29783 (10)0.2627 (3)0.12216 (12)0.0714 (6)
H20.27600.36280.09340.107*
C10.08207 (16)1.0646 (5)0.16879 (17)0.0649 (9)
H1A0.04361.15570.20870.097*
H1B0.06700.91070.17680.097*
H1C0.13441.08620.19030.097*
C20.08394 (13)1.1288 (4)0.06072 (16)0.0397 (6)
C30.12822 (12)0.9899 (4)0.01858 (16)0.0368 (6)
C40.16997 (12)0.8025 (4)0.00603 (17)0.0414 (6)
H40.16930.76360.07340.050*
C50.21285 (13)0.6705 (4)0.06599 (18)0.0403 (6)
C60.21285 (14)0.7264 (5)0.16624 (18)0.0512 (7)
H60.24060.63890.21590.061*
C70.17157 (15)0.9121 (5)0.19178 (18)0.0552 (8)
H70.17190.94990.25920.066*
C80.12969 (14)1.0435 (4)0.11943 (17)0.0465 (7)
H80.10231.16880.13840.056*
C90.29415 (13)0.3476 (4)0.08762 (19)0.0462 (7)
H90.29480.36510.15670.055*
C100.33755 (13)0.1644 (4)0.04994 (18)0.0410 (6)
C110.33784 (14)0.1268 (5)0.05337 (19)0.0491 (7)
C120.37878 (14)0.0525 (5)0.08613 (19)0.0572 (8)
H120.37890.07670.15470.069*
C130.41961 (14)0.1967 (5)0.0189 (2)0.0547 (7)
H130.44730.31760.04170.066*
C140.41926 (13)0.1606 (4)0.08297 (19)0.0459 (7)
C150.37940 (13)0.0169 (4)0.11697 (18)0.0462 (7)
H150.38010.03990.18570.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0726 (5)0.0574 (5)0.0723 (5)0.0192 (4)0.0021 (4)0.0118 (4)
N10.0631 (13)0.0413 (15)0.0398 (12)0.0115 (12)0.0090 (11)0.0044 (11)
N20.0427 (12)0.0397 (15)0.0543 (13)0.0036 (11)0.0008 (10)0.0030 (11)
O10.0957 (14)0.0518 (14)0.0464 (11)0.0267 (11)0.0102 (10)0.0062 (9)
O20.0864 (13)0.0763 (16)0.0495 (11)0.0282 (12)0.0015 (10)0.0080 (10)
C10.086 (2)0.070 (2)0.0373 (15)0.0267 (17)0.0000 (15)0.0016 (14)
C20.0442 (14)0.0391 (17)0.0347 (14)0.0009 (13)0.0003 (12)0.0000 (12)
C30.0392 (13)0.0343 (17)0.0363 (14)0.0022 (12)0.0019 (11)0.0010 (12)
C40.0453 (14)0.0431 (18)0.0346 (13)0.0041 (13)0.0005 (12)0.0007 (12)
C50.0395 (14)0.0344 (16)0.0465 (16)0.0016 (12)0.0023 (12)0.0040 (13)
C60.0591 (16)0.050 (2)0.0437 (16)0.0102 (14)0.0013 (13)0.0107 (13)
C70.0703 (18)0.060 (2)0.0348 (15)0.0112 (16)0.0026 (14)0.0027 (14)
C80.0553 (15)0.0440 (18)0.0404 (15)0.0106 (13)0.0060 (13)0.0005 (13)
C90.0453 (15)0.0417 (18)0.0503 (15)0.0006 (14)0.0000 (13)0.0003 (13)
C100.0378 (13)0.0352 (16)0.0495 (16)0.0004 (12)0.0019 (12)0.0013 (13)
C110.0448 (15)0.054 (2)0.0474 (17)0.0058 (14)0.0004 (13)0.0054 (14)
C120.0594 (17)0.068 (2)0.0447 (16)0.0077 (16)0.0070 (14)0.0040 (15)
C130.0473 (15)0.053 (2)0.0645 (19)0.0076 (14)0.0098 (15)0.0063 (15)
C140.0397 (14)0.0403 (18)0.0567 (17)0.0044 (13)0.0009 (13)0.0048 (14)
C150.0425 (14)0.0480 (19)0.0465 (15)0.0007 (13)0.0016 (12)0.0002 (13)
Geometric parameters (Å, º) top
Cl1—C141.739 (2)C5—C61.384 (3)
N1—C21.269 (3)C6—C71.373 (3)
N1—O11.403 (2)C6—H60.9300
N2—C91.279 (3)C7—C81.379 (3)
N2—C51.419 (3)C7—H70.9300
O1—H10.8200C8—H80.9300
O2—C111.351 (3)C9—C101.439 (3)
O2—H20.8200C9—H90.9300
C1—C21.495 (3)C10—C151.393 (3)
C1—H1A0.9600C10—C111.402 (3)
C1—H1B0.9600C11—C121.372 (3)
C1—H1C0.9600C12—C131.375 (3)
C2—C31.482 (3)C12—H120.9300
C3—C41.382 (3)C13—C141.381 (3)
C3—C81.386 (3)C13—H130.9300
C4—C51.385 (3)C14—C151.361 (3)
C4—H40.9300C15—H150.9300
C2—N1—O1112.91 (19)C6—C7—H7119.4
C9—N2—C5122.4 (2)C8—C7—H7119.4
N1—O1—H1109.5C7—C8—C3120.3 (2)
C11—O2—H2109.5C7—C8—H8119.8
C2—C1—H1A109.5C3—C8—H8119.8
C2—C1—H1B109.5N2—C9—C10122.2 (2)
H1A—C1—H1B109.5N2—C9—H9118.9
C2—C1—H1C109.5C10—C9—H9118.9
H1A—C1—H1C109.5C15—C10—C11118.5 (2)
H1B—C1—H1C109.5C15—C10—C9119.8 (2)
N1—C2—C3116.7 (2)C11—C10—C9121.7 (2)
N1—C2—C1123.0 (2)O2—C11—C12118.8 (2)
C3—C2—C1120.3 (2)O2—C11—C10121.4 (2)
C4—C3—C8117.8 (2)C12—C11—C10119.8 (2)
C4—C3—C2120.8 (2)C11—C12—C13120.8 (2)
C8—C3—C2121.4 (2)C11—C12—H12119.6
C3—C4—C5122.4 (2)C13—C12—H12119.6
C3—C4—H4118.8C12—C13—C14119.5 (3)
C5—C4—H4118.8C12—C13—H13120.3
C6—C5—C4118.8 (2)C14—C13—H13120.3
C6—C5—N2125.2 (2)C15—C14—C13120.6 (2)
C4—C5—N2116.0 (2)C15—C14—Cl1120.0 (2)
C7—C6—C5119.5 (2)C13—C14—Cl1119.5 (2)
C7—C6—H6120.3C14—C15—C10120.7 (2)
C5—C6—H6120.3C14—C15—H15119.6
C6—C7—C8121.3 (2)C10—C15—H15119.6
O1—N1—C2—C3178.37 (18)C2—C3—C8—C7179.7 (2)
O1—N1—C2—C10.7 (3)C5—N2—C9—C10178.9 (2)
N1—C2—C3—C4177.5 (2)N2—C9—C10—C15179.8 (2)
C1—C2—C3—C41.6 (3)N2—C9—C10—C111.0 (4)
N1—C2—C3—C82.1 (3)C15—C10—C11—O2179.4 (2)
C1—C2—C3—C8178.8 (2)C9—C10—C11—O20.6 (4)
C8—C3—C4—C50.5 (3)C15—C10—C11—C120.1 (4)
C2—C3—C4—C5179.1 (2)C9—C10—C11—C12178.8 (2)
C3—C4—C5—C61.0 (3)O2—C11—C12—C13179.3 (2)
C3—C4—C5—N2178.2 (2)C10—C11—C12—C130.1 (4)
C9—N2—C5—C63.5 (4)C11—C12—C13—C140.1 (4)
C9—N2—C5—C4177.4 (2)C12—C13—C14—C150.5 (4)
C4—C5—C6—C70.9 (4)C12—C13—C14—Cl1179.35 (19)
N2—C5—C6—C7178.2 (2)C13—C14—C15—C100.6 (4)
C5—C6—C7—C80.3 (4)Cl1—C14—C15—C10179.18 (17)
C6—C7—C8—C30.2 (4)C11—C10—C15—C140.4 (4)
C4—C3—C8—C70.1 (3)C9—C10—C15—C14178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.872.601 (3)147
O1—H1···N1i0.822.062.789 (3)149
Symmetry code: (i) x, y+3, z.

Experimental details

Crystal data
Chemical formulaC15H13ClN2O2
Mr288.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.7139 (16), 5.9983 (6), 13.3902 (11)
β (°) 96.328 (2)
V3)1334.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.40 × 0.12 × 0.07
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.893, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
6410, 2349, 1398
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.092, 1.04
No. of reflections2349
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.872.601 (3)147
O1—H1···N1i0.822.062.789 (3)149
Symmetry code: (i) x, y+3, z.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0904–11) and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationButcher, R. J., Bendre, R. S. & Kuwar, A. S. (2005). Acta Cryst. E61, o3511–o3513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K. & Duan, J.-G. (2008). J. Coord. Chem. 61, 781–788.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Duan, J.-G. & Liu, G.-L. (2007). Transition Met. Chem. 32, 702–705.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., He, X.-N., Yan, H.-B., Lv, Z.-W., Chen, X., Zhao, C.-Y. & Tang, X.-L. (2009). Polyhedron, 28, 1419–1428.  Web of Science CSD CrossRef CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m570–m571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGolovnia, E., Prisyazhnaya, E. V., Iskenderov, T. S., Haukka, M. & Fritsky, I. O. (2009). Acta Cryst. E65, o2018–o2019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRafiq, M., Hanif, M., Qadeer, G., Vuoti, S. & Autio, J. (2008). Acta Cryst. E64, o2173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXu, S.-Q. & Li, J.-M. (2008). Acta Cryst. E64, o1469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds