metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(di­methyl­formamide-κO)cadmium(II)]-di-μ2-dicyanamido-κ4N1:N5]

aMolecular Materials Research Center, Scientific Research Academy, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: zjf260@ujs.edu.cn

(Received 22 October 2009; accepted 4 November 2009; online 11 November 2009)

In the title compound, [Cd(C2N3)2(C3H7NO)2], the Cd2+ ion lies on an inversion center and adopts an octa­hedral coordination geometry, in which four N atoms from four different dicyanamide ligands lie in the equatorial plane and two dimethyl­formamide O atoms occupy the axial positions. The Cd atoms are connected by two dicyanamide ligands, resulting in a neutral chain propagating parallel to [010].

Related literature

For architectures and topologies of metal-organic compounds, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Zhang et al. (2008[Zhang, J. F., Song, Y. L., Yang, J. Y., Humphrey, M. G. & Zhang, C. (2008). Cryst. Growth Des. 8, 387-390.]). For their potential applications, see: Banerjee et al. (2008[Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi O. M. (2008). Science, 319, 939-943.]); Zhang et al. (2007[Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111-141.]). For metal-organic compounds including dicyanamide ligands, see: Jensen et al. (1999[Jensen, P., Batten, S. R., Fallon, G. D., Moubaraki, B., Murray, K. S. & Price, D. J. (1999). Chem. Commun. pp. 177-178.]); Zhang (2009[Zhang, J. (2009). Acta Cryst. E65, m1044.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2N3)2(C3H7NO)2]

  • Mr = 390.70

  • Triclinic, [P \overline 1]

  • a = 6.5325 (13) Å

  • b = 7.6003 (15) Å

  • c = 8.6051 (17) Å

  • α = 104.28 (3)°

  • β = 106.90 (3)°

  • γ = 97.05 (3)°

  • V = 387.35 (17) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.239, Tmax = 0.480

  • 3505 measured reflections

  • 1410 independent reflections

  • 1408 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.058

  • S = 1.10

  • 1410 reflections

  • 97 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXT07 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The designed syntheses of metal-organic compounds have attracted great attention in recent years because of not only their intriguing variety of architectures and topologies (Eddaoudi et al., 2001; Zhang et al., 2008) but also their potential applications (Banerjee et al., 2008; Zhang et al., 2007). Dicyanamide acting as flexible bridging ligands can construct metal-organic compounds with various structures (Jensen et al., 1999; Zhang, 2009). The one-dimensional neutral compounds {Cd[N(CN)2]2(dmf)2}n are constructed by this bridging ligands through diffusion reactions. In this paper, the crystal structure of the title compound, (I), is presented.

As illustrated in Fig. 1, Cd2+ which lies on an inversion center, adopts an octahedral coordination geometry, where four N atoms from four different dicyanamide ligands lies in equatorial plane and two O atoms from dmf occupy the axial positions. Every two neighboring Cd atoms connected by two dicyanamide ligands, gives rise to a one-dimensional neutral chain.

Related literature top

For architectures and topologies of metal-organic compounds, see: Eddaoudi et al. (2001); Zhang et al. (2008). For their potential applications, see: Banerjee et al. (2008); Zhang et al. (2007). For metal-organic compounds including dicyanamide ligands, see: Jensen et al. (1999); Zhang (2009).

Experimental top

Cd(NO3)2.4 H2O (123.2 mg, 0.4 mmol) was added into 2 ml dmf with thorough stirring for 5 minutes. After filtration, the filtrate was carefully laid on the surface with the solution of NaN(CN)2 (89.1 mg, 1 mmol) in 1 ml dmf and 6 ml CH3CN. colorless block crystals were obtained after eight days. Yield: 199.3 mg in pure form, 51.0% based on Cd.

Refinement top

H atoms were positioned geometrically and refined with riding model, with Uiso = 1.5 and 1.2 Ueq for methyl and formyl H atoms, respectively. The C—H bonds are 0.96 Å in methyl and 0.93 Å in formyl.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXT07 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids, all H atoms have been omitted (i -x + 1,-y + 1,-z; ii -x + 1,-y,-z).
catena-Poly[[bis(dimethylformamide-κO)cadmium(II)]- di-µ2-dicyanamido-κ4N1:N5] top
Crystal data top
[Cd(C2N3)2(C3H7NO)2]Z = 1
Mr = 390.70F(000) = 194
Triclinic, P1Dx = 1.675 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5325 (13) ÅCell parameters from 1884 reflections
b = 7.6003 (15) Åθ = 3.3–28.4°
c = 8.6051 (17) ŵ = 1.43 mm1
α = 104.28 (3)°T = 293 K
β = 106.90 (3)°Block, colorless
γ = 97.05 (3)°0.2 × 0.16 × 0.12 mm
V = 387.35 (17) Å3
Data collection top
Rigaku Saturn724+
diffractometer
1410 independent reflections
Radiation source: fine-focus sealed tube1408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
dtprofit.ref scansθmax = 25.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.239, Tmax = 0.480k = 79
3505 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.039P)2 + 0.0503P]
where P = (Fo2 + 2Fc2)/3
1410 reflections(Δ/σ)max < 0.001
97 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cd(C2N3)2(C3H7NO)2]γ = 97.05 (3)°
Mr = 390.70V = 387.35 (17) Å3
Triclinic, P1Z = 1
a = 6.5325 (13) ÅMo Kα radiation
b = 7.6003 (15) ŵ = 1.43 mm1
c = 8.6051 (17) ÅT = 293 K
α = 104.28 (3)°0.2 × 0.16 × 0.12 mm
β = 106.90 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
1410 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1408 reflections with I > 2σ(I)
Tmin = 0.239, Tmax = 0.480Rint = 0.025
3505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.10Δρmax = 0.44 e Å3
1410 reflectionsΔρmin = 0.36 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.00000.04117 (11)
O10.7512 (3)0.6362 (3)0.2708 (2)0.0572 (5)
N10.2979 (4)0.3110 (3)0.0987 (3)0.0570 (6)
N20.2301 (6)0.0218 (4)0.1653 (4)0.0781 (9)
N41.1012 (4)0.7109 (3)0.4447 (3)0.0500 (5)
N30.6991 (4)0.2758 (3)0.0440 (3)0.0598 (6)
C10.2690 (4)0.1705 (3)0.1214 (3)0.0449 (5)
C51.3277 (5)0.6980 (6)0.4658 (4)0.0755 (9)
H5A1.33810.63270.35860.113*
H5B1.37660.63220.54700.113*
H5C1.41770.82050.50590.113*
C41.0524 (7)0.8062 (5)0.5930 (4)0.0728 (9)
H4A0.89840.80390.56240.109*
H4B1.13230.93260.63570.109*
H4C1.09430.74540.67920.109*
C20.9476 (4)0.6352 (4)0.2975 (3)0.0468 (6)
H2A0.98850.57650.20630.056*
C30.7261 (4)0.1317 (3)0.0954 (3)0.0427 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04194 (16)0.03209 (15)0.04955 (17)0.01065 (10)0.01353 (11)0.01291 (10)
O10.0480 (11)0.0673 (13)0.0488 (9)0.0118 (9)0.0137 (8)0.0076 (9)
N10.0607 (14)0.0420 (12)0.0744 (15)0.0081 (10)0.0296 (12)0.0209 (11)
N20.136 (3)0.0421 (13)0.0862 (18)0.0263 (15)0.077 (2)0.0210 (13)
N40.0533 (12)0.0530 (12)0.0389 (10)0.0105 (10)0.0105 (9)0.0115 (9)
N30.0660 (15)0.0466 (13)0.0771 (15)0.0271 (11)0.0296 (12)0.0221 (11)
C10.0469 (13)0.0378 (13)0.0505 (13)0.0082 (10)0.0217 (10)0.0080 (10)
C50.0518 (17)0.100 (3)0.0616 (18)0.0162 (17)0.0065 (14)0.0165 (17)
C40.093 (2)0.076 (2)0.0426 (14)0.0225 (18)0.0204 (15)0.0069 (14)
C20.0495 (14)0.0473 (14)0.0397 (12)0.0070 (11)0.0134 (10)0.0096 (10)
C30.0457 (13)0.0391 (13)0.0461 (12)0.0110 (10)0.0167 (10)0.0150 (10)
Geometric parameters (Å, º) top
Cd1—N3i2.291 (2)N4—C41.446 (4)
Cd1—N32.291 (2)N4—C51.456 (4)
Cd1—N12.306 (2)N3—C31.132 (3)
Cd1—N1i2.306 (2)C5—H5A0.9600
Cd1—O12.316 (2)C5—H5B0.9600
Cd1—O1i2.316 (2)C5—H5C0.9600
O1—C21.237 (3)C4—H4A0.9600
N1—C11.136 (3)C4—H4B0.9600
N2—C3ii1.281 (4)C4—H4C0.9600
N2—C11.296 (4)C2—H2A0.9300
N4—C21.305 (3)C3—N2ii1.281 (4)
N3i—Cd1—N3180.0C4—N4—C5117.7 (3)
N3i—Cd1—N191.27 (9)C3—N3—Cd1156.3 (2)
N3—Cd1—N188.73 (9)N1—C1—N2172.2 (3)
N3i—Cd1—N1i88.73 (9)N4—C5—H5A109.5
N3—Cd1—N1i91.27 (9)N4—C5—H5B109.5
N1—Cd1—N1i180.00 (11)H5A—C5—H5B109.5
N3i—Cd1—O190.45 (9)N4—C5—H5C109.5
N3—Cd1—O189.55 (9)H5A—C5—H5C109.5
N1—Cd1—O191.26 (9)H5B—C5—H5C109.5
N1i—Cd1—O188.74 (9)N4—C4—H4A109.5
N3i—Cd1—O1i89.55 (9)N4—C4—H4B109.5
N3—Cd1—O1i90.45 (9)H4A—C4—H4B109.5
N1—Cd1—O1i88.74 (9)N4—C4—H4C109.5
N1i—Cd1—O1i91.26 (9)H4A—C4—H4C109.5
O1—Cd1—O1i180.00 (11)H4B—C4—H4C109.5
C2—O1—Cd1120.12 (16)O1—C2—N4124.5 (2)
C1—N1—Cd1145.5 (2)O1—C2—H2A117.7
C3ii—N2—C1122.3 (2)N4—C2—H2A117.7
C2—N4—C4121.4 (3)N3—C3—N2ii172.2 (3)
C2—N4—C5120.8 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C2N3)2(C3H7NO)2]
Mr390.70
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.5325 (13), 7.6003 (15), 8.6051 (17)
α, β, γ (°)104.28 (3), 106.90 (3), 97.05 (3)
V3)387.35 (17)
Z1
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.2 × 0.16 × 0.12
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.239, 0.480
No. of measured, independent and
observed [I > 2σ(I)] reflections
3505, 1410, 1408
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.058, 1.10
No. of reflections1410
No. of parameters97
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.36

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXT07 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Foundation of Jiangsu University (08JDG036).

References

First citationBanerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi O. M. (2008). Science, 319, 939–943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJensen, P., Batten, S. R., Fallon, G. D., Moubaraki, B., Murray, K. S. & Price, D. J. (1999). Chem. Commun. pp. 177–178.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J. (2009). Acta Cryst. E65, m1044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111–141.  Web of Science CrossRef CAS Google Scholar
First citationZhang, J. F., Song, Y. L., Yang, J. Y., Humphrey, M. G. & Zhang, C. (2008). Cryst. Growth Des. 8, 387–390.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds