organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Fluoro-6-nitro­quinazolin-4(3H)-one

aSchool of Pharmaceutical Sciences, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China, and bDepartment of Medicinal Chemistry, Jiangsu Provincial Institute of Materia Medica, Nanjing University of Technology, No. 26 Majia Street, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fafazhang928@yahoo.com.cn

(Received 30 October 2009; accepted 6 November 2009; online 14 November 2009)

The quinazolinone unit of the title compound, C8H4FN3O3, is essentially planar, with a maximum deviation of 0.0538 (14) Å for the O atom. The nitro group is twisted by 12.0 (3)° from the mean plane of the quinazolinone ring system. The crystal structure is stabilized by inter­molecular N—H⋯O, C—H⋯N and C—H⋯O hydrogen bonds.

Related literature

The title compound is used as an inter­mediate for the production of several multi-targeted Raf kinase inhibitors, such as 4(3H)-quinazolinone and its derivatives, see: Bridges et al. (1996[Bridges, A. J., Zhou, H., Cody, D. R., Rewcastle, G. W., McMichael, A., Showalter, H. D. H., Fry, D. W., Kraker, A. J. & Denny, W. A. (1996). J. Med. Chem. 39, 267-276.]); Kim et al. (2008[Kim, Y. H., Choi, H., Lee, J., Hwang, I.-C., Moon, S. K., Kim, S. J., Lee, H. W., Im, D. S., Lee, S. S., Ahn, S. K., Kim, S. W., Han, Cheol K., Yoon, J. H., Lee, K. J. & Choi, N. S. (2008). Bioorg. Med. Chem. Lett. 18, 6279-6282.]). For the anti­tumor activities of quinolines, see: Labuda et al. (2009[Labuda, J., Ovadekova, R. & Galandova, J. (2009). Mikrochim. Acta, 164, 371-377.]). For synthetic aspects, see: Rewcastle et al. (1996[Rewcastle, G. W., Palmer, B. D., Bridges, A. J., Showalter, H. D. H., Sun, L., Nelson, J., McMichael, A., Kraker, A. J., Fry, D. W. & Denny, W. A. (1996). J. Med. Chem. 39, 918-928.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H4FN3O3

  • Mr = 209.14

  • Triclinic, [P \overline 1]

  • a = 5.6360 (11) Å

  • b = 8.409 (2) Å

  • c = 8.674 (2) Å

  • α = 79.38 (3)°

  • β = 89.23 (3)°

  • γ = 83.83 (3)°

  • V = 401.70 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.956, Tmax = 0.971

  • 1623 measured reflections

  • 1461 independent reflections

  • 1131 reflections with I > 2σ(I)

  • Rint = 0.018

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.160

  • S = 1.00

  • 1461 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 1.98 2.815 (2) 165
C1—H1B⋯O2ii 0.93 2.47 3.396 (3) 179
C7—H7A⋯N2iii 0.93 2.50 3.422 (3) 171
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z+1; (iii) -x+1, -y+1, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4(3H)-Quinazolinone and its derivatives have been investigated extensively, owning to their important role in the synthesis of several multi-kinase inhibitors and to their potentially beneficial antitumor activities in many types of malignancies (Labuda et al., 2009).

As part of our studies on the synthesis of 4(3H)-quinazolinone and its derivatives, the title compound, (I), which is used as the key intermediate (Rewcastle et al., 1996), has been synthesized in our laboratory. We report herein the crystal structure of the title compound.

The molecule of the title compound is planar (Fig. 1). The quinazolinone moiety is essentially planar with maximum deviation for for any atoms being 0.0538 (14) for O1. The nitro group is twisted from the mean-plane of the quinazolinone ring by 12.0 (3)°. The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987). The crtstal structure of (I) is stabilized by classical and non-classical intermolecular hydrogen bonds of the types N—H···O, C—H···N and C—H···O; details have been provided in Table 1 and presented as a packing diagram in Fig. 2.

Related literature top

The title compound is used as an intermediate for the production of several multi-targeted Raf kinase inhibitors, such as 4(3H)-quinazolinone and its derivatives, see: Bridges et al. (1996); Kim et al. (2008). For the antitumor activities of quinolines, see: Labuda et al. (2009). For synthetic aspects, see: Rewcastle et al. (1996). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, was prepared by following a reported procedure (Rewcastle et al., 1996). 7-Fluoroquinazolin-4(3H)-one (47.4 g, 0.29 mmol) was added to a mixture of concentrated H2SO4 (100 ml) and fuming HNO3 (100 ml), and heated at 373 K for 1 h. The crude product, 7-fluoro-6-nitroquinazolin-4(3H)-one, was obtained by pouring the reacting mixture onto ice-water (1500 ml). The crystals of (I) suitable for X-ray diffraction studies were obtained by recrystallization from acetic acid.

Refinement top

H atoms were positioned geometrically at distances N—H = 0.86 Å and C—H = 0.93 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2 times Ueq(parent atoms).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL(Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the titlecompound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability levels.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydron bonds are shown as dashed lines.
7-Fluoro-6-nitroquinazolin-4(3H)-one top
Crystal data top
C8H4FN3O3Z = 2
Mr = 209.14F(000) = 212
Triclinic, P1Dx = 1.729 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6360 (11) ÅCell parameters from 25 reflections
b = 8.409 (2) Åθ = 9–13°
c = 8.674 (2) ŵ = 0.15 mm1
α = 79.38 (3)°T = 293 K
β = 89.23 (3)°Block, colorless
γ = 83.83 (3)°0.30 × 0.20 × 0.20 mm
V = 401.70 (16) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1131 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 06
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.956, Tmax = 0.971l = 1010
1623 measured reflections3 standard reflections every 200 reflections
1461 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.1P)2 + 0.12P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1461 reflectionsΔρmax = 0.23 e Å3
137 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.062 (16)
Crystal data top
C8H4FN3O3γ = 83.83 (3)°
Mr = 209.14V = 401.70 (16) Å3
Triclinic, P1Z = 2
a = 5.6360 (11) ÅMo Kα radiation
b = 8.409 (2) ŵ = 0.15 mm1
c = 8.674 (2) ÅT = 293 K
α = 79.38 (3)°0.30 × 0.20 × 0.20 mm
β = 89.23 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1131 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.956, Tmax = 0.9713 standard reflections every 200 reflections
1623 measured reflections intensity decay: 1%
1461 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
1461 reflectionsΔρmin = 0.25 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F0.1138 (3)0.4301 (2)0.33786 (16)0.0639 (5)
N10.1677 (3)0.1637 (2)0.3773 (2)0.0413 (5)
H1A0.16290.12090.47520.050*
O10.1399 (3)0.0293 (2)0.32253 (18)0.0527 (6)
C10.3360 (4)0.2651 (3)0.3291 (3)0.0419 (6)
H1B0.44020.28280.40490.050*
N20.3644 (3)0.3390 (2)0.1878 (2)0.0406 (5)
C20.0044 (4)0.1261 (3)0.2775 (2)0.0380 (6)
O20.2795 (5)0.3272 (3)0.3951 (2)0.0932 (9)
C30.0261 (4)0.2086 (2)0.1159 (2)0.0331 (5)
N30.2740 (4)0.2376 (3)0.2685 (2)0.0486 (6)
O30.4036 (3)0.1313 (2)0.2327 (2)0.0630 (6)
C40.1305 (4)0.1862 (3)0.0011 (3)0.0376 (6)
H4A0.25230.12000.02760.045*
C50.1046 (4)0.2618 (3)0.1509 (3)0.0380 (5)
C60.0818 (4)0.3590 (3)0.1903 (2)0.0396 (6)
C70.2349 (4)0.3832 (3)0.0789 (3)0.0387 (6)
H7A0.35670.44910.10680.046*
C80.2091 (4)0.3091 (2)0.0771 (2)0.0334 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F0.0696 (10)0.0883 (11)0.0293 (8)0.0238 (8)0.0026 (6)0.0104 (7)
N10.0493 (11)0.0479 (11)0.0260 (9)0.0160 (9)0.0022 (8)0.0010 (8)
O10.0562 (11)0.0618 (11)0.0393 (9)0.0333 (8)0.0015 (7)0.0086 (8)
C10.0434 (13)0.0495 (13)0.0342 (12)0.0154 (10)0.0056 (9)0.0051 (10)
N20.0413 (10)0.0474 (11)0.0338 (10)0.0172 (8)0.0030 (8)0.0019 (8)
C20.0401 (12)0.0390 (12)0.0338 (12)0.0107 (9)0.0005 (9)0.0001 (9)
O20.1106 (19)0.123 (2)0.0446 (12)0.0476 (15)0.0370 (12)0.0113 (12)
C30.0356 (11)0.0321 (11)0.0306 (11)0.0060 (9)0.0001 (8)0.0019 (8)
N30.0487 (12)0.0573 (13)0.0421 (12)0.0065 (10)0.0087 (9)0.0138 (10)
O30.0533 (11)0.0733 (13)0.0676 (13)0.0208 (10)0.0126 (9)0.0172 (10)
C40.0372 (12)0.0385 (12)0.0385 (12)0.0115 (9)0.0015 (9)0.0063 (9)
C50.0404 (12)0.0403 (12)0.0333 (11)0.0028 (10)0.0060 (9)0.0069 (9)
C60.0450 (13)0.0434 (12)0.0273 (11)0.0041 (10)0.0026 (9)0.0009 (9)
C70.0374 (12)0.0412 (12)0.0360 (12)0.0111 (9)0.0028 (9)0.0003 (9)
C80.0316 (11)0.0358 (11)0.0322 (11)0.0067 (8)0.0004 (8)0.0032 (8)
Geometric parameters (Å, º) top
F—C61.328 (2)C3—C41.391 (3)
N1—C11.354 (3)C3—C81.401 (3)
N1—C21.371 (3)N3—O31.208 (3)
N1—H1A0.8600N3—C51.462 (3)
O1—C21.222 (3)C4—C51.367 (3)
C1—N21.284 (3)C4—H4A0.9300
C1—H1B0.9300C5—C61.401 (3)
N2—C81.381 (3)C6—C71.361 (3)
C2—C31.455 (3)C7—C81.394 (3)
O2—N31.211 (3)C7—H7A0.9300
C1—N1—C2123.10 (18)C5—C4—C3119.7 (2)
C1—N1—H1A118.4C5—C4—H4A120.1
C2—N1—H1A118.4C3—C4—H4A120.1
N2—C1—N1125.7 (2)C4—C5—C6119.8 (2)
N2—C1—H1B117.2C4—C5—N3118.4 (2)
N1—C1—H1B117.2C6—C5—N3121.8 (2)
C1—N2—C8115.98 (18)F—C6—C7118.2 (2)
O1—C2—N1121.96 (19)F—C6—C5120.7 (2)
O1—C2—C3124.5 (2)C7—C6—C5121.1 (2)
N1—C2—C3113.51 (19)C6—C7—C8120.0 (2)
C4—C3—C8120.5 (2)C6—C7—H7A120.0
C4—C3—C2120.43 (19)C8—C7—H7A120.0
C8—C3—C2119.07 (19)N2—C8—C7118.51 (19)
O3—N3—O2123.8 (2)N2—C8—C3122.58 (19)
O3—N3—C5118.1 (2)C7—C8—C3118.91 (19)
O2—N3—C5118.1 (2)
C2—N1—C1—N20.6 (4)O2—N3—C5—C614.0 (4)
N1—C1—N2—C80.8 (4)C4—C5—C6—F178.24 (19)
C1—N1—C2—O1177.0 (2)N3—C5—C6—F1.5 (4)
C1—N1—C2—C31.4 (3)C4—C5—C6—C71.7 (4)
O1—C2—C3—C43.2 (4)N3—C5—C6—C7178.6 (2)
N1—C2—C3—C4178.5 (2)F—C6—C7—C8179.23 (19)
O1—C2—C3—C8175.9 (2)C5—C6—C7—C80.7 (4)
N1—C2—C3—C82.5 (3)C1—N2—C8—C7178.6 (2)
C8—C3—C4—C50.5 (3)C1—N2—C8—C32.0 (3)
C2—C3—C4—C5178.60 (19)C6—C7—C8—N2178.6 (2)
C3—C4—C5—C61.1 (3)C6—C7—C8—C30.8 (3)
C3—C4—C5—N3179.19 (19)C4—C3—C8—N2178.01 (19)
O3—N3—C5—C412.3 (3)C2—C3—C8—N22.9 (3)
O2—N3—C5—C4166.3 (2)C4—C3—C8—C71.4 (3)
O3—N3—C5—C6167.4 (2)C2—C3—C8—C7177.65 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.982.815 (2)165
C1—H1B···O2ii0.932.473.396 (3)179
C7—H7A···N2iii0.932.503.422 (3)171
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H4FN3O3
Mr209.14
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.6360 (11), 8.409 (2), 8.674 (2)
α, β, γ (°)79.38 (3), 89.23 (3), 83.83 (3)
V3)401.70 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.956, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
1623, 1461, 1131
Rint0.018
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.160, 1.00
No. of reflections1461
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL(Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.982.815 (2)165
C1—H1B···O2ii0.932.473.396 (3)179
C7—H7A···N2iii0.932.503.422 (3)171
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z.
 

Acknowledgements

This research work was supported financially by the Research Funds of Jiangsu Provincial Institute of Materia Medica (No. SX200801).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBridges, A. J., Zhou, H., Cody, D. R., Rewcastle, G. W., McMichael, A., Showalter, H. D. H., Fry, D. W., Kraker, A. J. & Denny, W. A. (1996). J. Med. Chem. 39, 267–276.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKim, Y. H., Choi, H., Lee, J., Hwang, I.-C., Moon, S. K., Kim, S. J., Lee, H. W., Im, D. S., Lee, S. S., Ahn, S. K., Kim, S. W., Han, Cheol K., Yoon, J. H., Lee, K. J. & Choi, N. S. (2008). Bioorg. Med. Chem. Lett. 18, 6279–6282.  Google Scholar
First citationLabuda, J., Ovadekova, R. & Galandova, J. (2009). Mikrochim. Acta, 164, 371–377.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRewcastle, G. W., Palmer, B. D., Bridges, A. J., Showalter, H. D. H., Sun, L., Nelson, J., McMichael, A., Kraker, A. J., Fry, D. W. & Denny, W. A. (1996). J. Med. Chem. 39, 918–928.  CrossRef PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds