metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Diaceto­nitrile­tetra­kis(1H-pyrazole-κN2)nickel(II) dinitrate

aSchool of Applied Chemistry, Chung Shan Medical University, Taichung City 40201, Taiwan, bDepartment of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan, and cDepartment of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
*Correspondence e-mail: ychorng@cc.ncue.edu.tw

(Received 2 November 2009; accepted 19 November 2009; online 25 November 2009)

In the title complex, [Ni(CH3CN)2(C3H4N2)4](NO3)2, the cation lies on an inversion center and adopts an octa­hedral coordination geometry about the Ni atom. The two acetonitrile ligands are in a trans conformation. N—H⋯O hydrogen bonds between cations and anions link the complex mol­ecules into one-dimensional chains running parallel to [100].

Related literature

For general background and the structures of other salts of this cation, see: Hsieh et al. (2009[Hsieh, C.-C., Lee, C.-J. & Horng, Y.-C. (2009). Organometallics, 28, 4923-4928.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H3N)2(C3H4N2)4](NO3)2

  • Mr = 537.17

  • Monoclinic, P 21 /c

  • a = 9.9815 (5) Å

  • b = 15.2831 (8) Å

  • c = 7.6845 (4) Å

  • β = 98.817 (2)°

  • V = 1158.40 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 150 K

  • 0.32 × 0.23 × 0.15 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.762, Tmax = 0.877

  • 13134 measured reflections

  • 2992 independent reflections

  • 2247 reflections with I > 2σ

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.149

  • S = 1.09

  • 2992 reflections

  • 161 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H8⋯O1i 0.88 1.94 2.797 (4) 164
N2—H4⋯O3 0.88 1.95 2.782 (3) 158
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXSL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

In the title complex (Fig. 1), the Ni atom lies on an inversion center and adopts an octahedral coordination geometry. The two acetonitrile ligands are in a trans conformation. The classocal intermolecular hydrogen bonds of the type N—H···O between cations and anions link the complex into one-dimensional chains (Table 1). For general background and the structures of other salts of this cation, see: Hsieh et al. (2009).

Related literature top

For general background and the structures of other salts of this cation, see: Hsieh et al. (2009).

Experimental top

A solution of Ni(NO3)2 . 6H2O (0.29 g, 0.97 mmol) and pyrazole (0.30 g, 4.30 mmol) in MeCN (25 ml) was stirred at room temperature for 10 min. After the resultant bluesolution was filtered and concentrated to 5 ml under vacuum, the concentrated filtrate was layered with diethyl ether (5-fold portion) and then kept at room temperature for 3 days. The air-stable blue crystals of the title compound (0.39 g, 74%) obtained were suitable for X-ray crystallographic analysis.

Refinement top

All the H atoms were positioned geometrically and refined as riding atoms, with Cmethine—H = 0.95, Cmethyl—H = 0.98 and N—H = 0.88 Å while Uiso(H) = 1.2Ueq(Cmethine and N) and Uiso(H) = 1.5Ueq(Cmethyl). In the final difference map, the highest peak was 1.13 eÅ^-3^ (located in the center of the pyrazole ring N3/N4/C4/C5/C6) and the deepest hole was -0.49 eÅ-3 (0.48 Å from N4).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 50% displacement ellipsoids; the H atoms are dipicted by circles of an arbitrary radius. Unlabeled atoms of the complex are related to labeled atoms by the symmetry operation: 1 - x, 1 - y, 2 - z.
[Figure 2] Fig. 2. A packing diagram of the title compound along the [001] direction showing the intermolecular hydrogen bonded network (dashed lines).
trans-Diacetonitriletetrakis(1H-pyrazole-κN</i<>2)nickel(II) dinitrate top
Crystal data top
[Ni(C2H3N)2(C3H4N2)4](NO3)2F(000) = 556
Mr = 537.17Dx = 1.540 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3410 reflections
a = 9.9815 (5) Åθ = 2.7–25.6°
b = 15.2831 (8) ŵ = 0.90 mm1
c = 7.6845 (4) ÅT = 150 K
β = 98.817 (2)°Block, blue
V = 1158.40 (10) Å30.32 × 0.23 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
2992 independent reflections
Radiation source: fine-focus sealed tube2247 reflections with I > 2σ
Graphite monochromatorRint = 0.038
ω scansθmax = 28.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.762, Tmax = 0.877k = 1720
13134 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0852P)2 + 0.4971P]
where P = (Fo2 + 2Fc2)/3
2992 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 1.13 e Å3
3 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ni(C2H3N)2(C3H4N2)4](NO3)2V = 1158.40 (10) Å3
Mr = 537.17Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.9815 (5) ŵ = 0.90 mm1
b = 15.2831 (8) ÅT = 150 K
c = 7.6845 (4) Å0.32 × 0.23 × 0.15 mm
β = 98.817 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
2992 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2247 reflections with I > 2σ
Tmin = 0.762, Tmax = 0.877Rint = 0.038
13134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0473 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.09Δρmax = 1.13 e Å3
2992 reflectionsΔρmin = 0.49 e Å3
161 parameters
Special details top

Experimental. IR (KBr, nmax/cm-1): 3120w (NH), 2283m (C N), 2210m (C N). Elem. Anal. Calcd (%) for C16H22N12NiO6: C 35.78; H 4.13; N 31.29. Found: C 35.32; H 4.01; N 31.03.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5375 (3)0.65817 (19)0.7527 (4)0.0381 (6)
H10.63270.65070.75950.046*
C20.4624 (3)0.7228 (2)0.6544 (4)0.0459 (7)
H20.49480.76670.58370.055*
C30.3328 (3)0.70974 (19)0.6813 (4)0.0418 (7)
H30.25590.74290.63160.050*
C40.3550 (4)0.4130 (3)0.6557 (5)0.0562 (8)
H50.41940.43550.58820.067*
C50.2476 (4)0.3580 (3)0.5885 (5)0.0596 (9)
H60.22600.33730.47100.072*
C60.1824 (3)0.3406 (2)0.7211 (5)0.0540 (8)
H70.10430.30480.71820.065*
C70.7342 (3)0.44589 (18)0.7733 (4)0.0370 (6)
C80.8414 (3)0.4248 (2)0.6709 (5)0.0521 (8)
H90.81020.43770.54640.078*
H100.86410.36260.68460.078*
H110.92190.46000.71300.078*
N10.4583 (2)0.60812 (14)0.8361 (3)0.0300 (5)
N20.3329 (2)0.64146 (14)0.7908 (3)0.0344 (5)
H40.26010.62100.82840.041*
N30.3559 (2)0.43008 (14)0.8258 (3)0.0321 (5)
N40.2488 (3)0.38387 (18)0.8626 (4)0.0492 (6)
H80.22430.38200.96780.059*
N50.6507 (2)0.46282 (15)0.8523 (3)0.0326 (5)
N60.0036 (2)0.62767 (19)0.8693 (4)0.0478 (6)
Ni10.50000.50001.00000.02738 (16)
O10.1214 (2)0.61818 (17)0.8375 (3)0.0568 (6)
O20.0532 (3)0.6921 (2)0.9519 (5)0.0830 (9)
O30.0787 (2)0.57249 (18)0.8160 (5)0.0825 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0336 (13)0.0342 (14)0.0469 (16)0.0011 (11)0.0078 (11)0.0069 (12)
C20.0505 (17)0.0364 (16)0.0508 (18)0.0010 (13)0.0080 (14)0.0127 (13)
C30.0444 (15)0.0296 (14)0.0482 (16)0.0067 (12)0.0025 (12)0.0060 (12)
C40.0565 (19)0.065 (2)0.0475 (15)0.0069 (17)0.0077 (14)0.0042 (16)
C50.063 (2)0.059 (2)0.054 (2)0.0008 (18)0.0007 (17)0.0118 (17)
C60.0427 (17)0.0406 (18)0.078 (2)0.0024 (13)0.0063 (16)0.0045 (16)
C70.0355 (13)0.0302 (14)0.0446 (15)0.0020 (11)0.0038 (11)0.0021 (11)
C80.0481 (17)0.0486 (19)0.063 (2)0.0019 (14)0.0212 (16)0.0106 (16)
N10.0263 (10)0.0244 (10)0.0388 (12)0.0008 (8)0.0031 (8)0.0021 (9)
N20.0280 (10)0.0261 (11)0.0472 (13)0.0001 (8)0.0005 (9)0.0031 (9)
N30.0334 (11)0.0241 (11)0.0384 (11)0.0016 (8)0.0040 (9)0.0006 (9)
N40.0395 (13)0.0452 (15)0.0627 (16)0.0042 (11)0.0069 (11)0.0050 (13)
N50.0299 (10)0.0270 (11)0.0414 (12)0.0005 (9)0.0072 (9)0.0003 (10)
N60.0319 (12)0.0479 (15)0.0629 (17)0.0029 (11)0.0052 (11)0.0070 (13)
Ni10.0254 (2)0.0217 (2)0.0352 (3)0.00207 (16)0.00500 (17)0.00278 (18)
O10.0320 (10)0.0643 (15)0.0750 (16)0.0002 (10)0.0110 (10)0.0051 (13)
O20.0547 (16)0.080 (2)0.104 (2)0.0142 (15)0.0210 (16)0.0326 (18)
O30.0345 (12)0.0513 (16)0.163 (3)0.0029 (11)0.0188 (16)0.0222 (17)
Geometric parameters (Å, º) top
C1—N11.333 (3)C8—H90.9800
C1—C21.391 (4)C8—H100.9800
C1—H10.9500C8—H110.9800
C2—C31.355 (4)N1—N21.346 (3)
C2—H20.9500N1—Ni12.081 (2)
C3—N21.340 (4)N2—H40.8800
C3—H30.9500N3—N41.347 (3)
C4—N31.332 (4)N3—Ni12.100 (2)
C4—C51.398 (5)N4—H80.8800
C4—H50.9500N5—Ni12.097 (2)
C5—C61.318 (5)N6—O21.234 (4)
C5—H60.9500N6—O31.238 (4)
C6—N41.355 (5)N6—O11.243 (3)
C6—H70.9500Ni1—N1i2.081 (2)
C7—N51.134 (3)Ni1—N5i2.097 (2)
C7—C81.458 (4)Ni1—N3i2.100 (2)
N1—C1—C2111.0 (2)C3—N2—N1111.6 (2)
N1—C1—H1124.5C3—N2—H4124.2
C2—C1—H1124.5N1—N2—H4124.2
C3—C2—C1105.1 (3)C4—N3—N4102.5 (3)
C3—C2—H2127.5C4—N3—Ni1128.8 (2)
C1—C2—H2127.5N4—N3—Ni1128.40 (19)
N2—C3—C2107.6 (2)N3—N4—C6113.2 (3)
N2—C3—H3126.2N3—N4—H8123.4
C2—C3—H3126.2C6—N4—H8123.4
N3—C4—C5111.7 (3)C7—N5—Ni1177.3 (2)
N3—C4—H5124.1O2—N6—O3119.9 (3)
C5—C4—H5124.1O2—N6—O1120.4 (3)
C6—C5—C4106.1 (3)O3—N6—O1119.7 (3)
C6—C5—H6126.9N1—Ni1—N1i180.000 (1)
C4—C5—H6126.9N1—Ni1—N588.92 (9)
C5—C6—N4106.4 (3)N1i—Ni1—N591.08 (9)
C5—C6—H7126.8N1—Ni1—N5i91.08 (9)
N4—C6—H7126.8N1i—Ni1—N5i88.92 (9)
N5—C7—C8179.5 (3)N5—Ni1—N5i180.00 (12)
C7—C8—H9109.5N1—Ni1—N3i92.05 (8)
C7—C8—H10109.5N1i—Ni1—N3i87.95 (8)
H9—C8—H10109.5N5—Ni1—N3i90.28 (9)
C7—C8—H11109.5N5i—Ni1—N3i89.72 (8)
H9—C8—H11109.5N1—Ni1—N387.95 (8)
H10—C8—H11109.5N1i—Ni1—N392.05 (8)
C1—N1—N2104.8 (2)N5—Ni1—N389.72 (8)
C1—N1—Ni1131.92 (18)N5i—Ni1—N390.28 (9)
N2—N1—Ni1123.30 (16)N3i—Ni1—N3180.0
N1—C1—C2—C30.2 (4)N2—N1—Ni1—N5145.4 (2)
C1—C2—C3—N20.5 (4)C1—N1—Ni1—N5i146.4 (3)
N3—C4—C5—C60.5 (5)N2—N1—Ni1—N5i34.6 (2)
C4—C5—C6—N40.0 (4)C1—N1—Ni1—N3i56.7 (3)
C2—C1—N1—N20.2 (3)N2—N1—Ni1—N3i124.3 (2)
C2—C1—N1—Ni1178.9 (2)C1—N1—Ni1—N3123.3 (3)
C2—C3—N2—N10.7 (3)N2—N1—Ni1—N355.7 (2)
C1—N1—N2—C30.5 (3)C4—N3—Ni1—N160.2 (3)
Ni1—N1—N2—C3178.69 (18)N4—N3—Ni1—N1127.2 (2)
C5—C4—N3—N40.7 (4)C4—N3—Ni1—N1i119.8 (3)
C5—C4—N3—Ni1174.8 (2)N4—N3—Ni1—N1i52.8 (2)
C4—N3—N4—C60.7 (3)C4—N3—Ni1—N528.7 (3)
Ni1—N3—N4—C6174.8 (2)N4—N3—Ni1—N5143.9 (2)
C5—C6—N4—N30.5 (4)C4—N3—Ni1—N5i151.3 (3)
C1—N1—Ni1—N533.6 (3)N4—N3—Ni1—N5i36.1 (2)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H8···O1ii0.881.942.797 (4)164
N2—H4···O30.881.952.782 (3)158
Symmetry code: (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C2H3N)2(C3H4N2)4](NO3)2
Mr537.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.9815 (5), 15.2831 (8), 7.6845 (4)
β (°) 98.817 (2)
V3)1158.40 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.32 × 0.23 × 0.15
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.762, 0.877
No. of measured, independent and
observed (I > 2σ) reflections
13134, 2992, 2247
Rint0.038
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.149, 1.09
No. of reflections2992
No. of parameters161
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 0.49

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H8···O1i0.881.942.797 (4)164.3
N2—H4···O30.881.952.782 (3)158.3
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

We are grateful to the National Science Council of Taiwan for financial support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHsieh, C.-C., Lee, C.-J. & Horng, Y.-C. (2009). Organometallics, 28, 4923–4928.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds