metal-organic compounds
Poly[μ3-acetato-di-μ3-isonicotinato-μ2-isonicotinato-samarium(III)silver(I)]
aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: licaizhu1977@yahoo.com.cn
In the title homochiral three-dimensional heterometallic complex, [AgSm(C6H4NO2)3(C2H3O2)]n, the eight-coordinate SmIII ion displays a bicapped trigonal-prismatic geometry, being coordinated by two O atoms from one acetate ligand, four O atoms from four bridging isonicotinate ligands and two O atoms from two terminal isonicotinate ligands. The four-coordinate AgI ion adopts a tetrahedral geometry, being bonded to two N atoms from two bridging isonicotinate ligands and two O atoms from two acetate ligands. These metal coordination units are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network.
Related literature
For the applications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands in ion exchange, magnetism, bimetallic catalysis and as luminescent probes, see: Cheng et al. (2006); Gu & Xue (2006); Peng et al. (2008); Zhu et al. (2009).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809048430/pv2235sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809048430/pv2235Isup2.hkl
A mixture of AgNO3(0.057 g, 0.33 mmol), Sm2O3(0.116 g, 0.33 mmol), isonicotinic acid (0.164 g, 1.33 mmol), acetic acid (0.080 g, 1.33 mmol), and H2O(7 ml) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colorless block crystals suitable for X-ray analysis were obtained.
All H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[AgSm(C6H4NO2)3(C2H3O2)] | Dx = 2.059 Mg m−3 |
Mr = 683.58 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P6122 | Cell parameters from 7353 reflections |
Hall symbol: P 61 2 (0 0 -1) | θ = 2.5–27.4° |
a = 11.8184 (5) Å | µ = 3.58 mm−1 |
c = 27.340 (2) Å | T = 296 K |
V = 3307.0 (3) Å3 | Block, colorless |
Z = 6 | 0.23 × 0.20 × 0.19 mm |
F(000) = 1974 |
Bruker APEXII area-detector diffractometer | 1992 independent reflections |
Radiation source: fine-focus sealed tube | 1928 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
ϕ and ω scan | θmax = 25.2°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −13→14 |
Tmin = 0.444, Tmax = 0.507 | k = −11→14 |
17136 measured reflections | l = −32→30 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.020 | H-atom parameters constrained |
wR(F2) = 0.049 | w = 1/[σ2(Fo2) + (0.0242P)2 + 2.1731P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
1992 reflections | Δρmax = 0.65 e Å−3 |
154 parameters | Δρmin = −0.45 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 739 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.006 (15) |
[AgSm(C6H4NO2)3(C2H3O2)] | Z = 6 |
Mr = 683.58 | Mo Kα radiation |
Hexagonal, P6122 | µ = 3.58 mm−1 |
a = 11.8184 (5) Å | T = 296 K |
c = 27.340 (2) Å | 0.23 × 0.20 × 0.19 mm |
V = 3307.0 (3) Å3 |
Bruker APEXII area-detector diffractometer | 1992 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1928 reflections with I > 2σ(I) |
Tmin = 0.444, Tmax = 0.507 | Rint = 0.046 |
17136 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | H-atom parameters constrained |
wR(F2) = 0.049 | Δρmax = 0.65 e Å−3 |
S = 1.06 | Δρmin = −0.45 e Å−3 |
1992 reflections | Absolute structure: Flack (1983), 739 Friedel pairs |
154 parameters | Absolute structure parameter: 0.006 (15) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sm1 | 0.86531 (2) | 1.0000 | 0.0000 | 0.02353 (8) | |
Ag2 | 0.51785 (4) | 0.75893 (2) | 0.0833 | 0.03675 (12) | |
O1 | 0.1435 (3) | 0.2764 (3) | −0.10025 (9) | 0.0409 (7) | |
O2 | −0.0057 (3) | 0.1970 (3) | −0.04112 (10) | 0.0401 (7) | |
O3 | 0.6346 (3) | 0.9170 (3) | 0.02435 (11) | 0.0401 (7) | |
O4 | 1.0601 (3) | 1.0664 (3) | 0.04589 (11) | 0.0495 (8) | |
C1 | 0.1062 (4) | 0.2765 (4) | −0.05754 (14) | 0.0312 (10) | |
C2 | 0.1996 (4) | 0.3805 (4) | −0.02321 (13) | 0.0328 (9) | |
C3 | 0.1670 (4) | 0.3897 (4) | 0.02451 (15) | 0.0410 (12) | |
H4 | 0.0847 | 0.3306 | 0.0366 | 0.049* | |
C4 | 0.2570 (5) | 0.4864 (5) | 0.05370 (16) | 0.0460 (11) | |
H2 | 0.2328 | 0.4914 | 0.0856 | 0.055* | |
C5 | 0.4073 (6) | 0.5645 (7) | −0.0058 (2) | 0.101 (3) | |
H3 | 0.4902 | 0.6253 | −0.0169 | 0.121* | |
C6 | 0.3228 (6) | 0.4690 (6) | −0.03802 (19) | 0.083 (3) | |
H5 | 0.3500 | 0.4655 | −0.0696 | 0.100* | |
C7 | 0.6215 (5) | 1.0000 | 0.0000 | 0.0345 (13) | |
C8 | 0.4962 (7) | 1.0000 | 0.0000 | 0.089 (3) | |
H11A | 0.5133 | 1.0884 | −0.0010 | 0.133* | 0.50 |
H11B | 0.4481 | 0.9581 | 0.0292 | 0.133* | 0.50 |
H11C | 0.4458 | 0.9535 | −0.0282 | 0.133* | 0.50 |
C9 | 1.1136 (5) | 1.0568 (3) | 0.0833 | 0.0345 (13) | |
C10 | 1.2622 (6) | 1.1311 (3) | 0.0833 | 0.0375 (13) | |
C11 | 1.3318 (5) | 1.2039 (6) | 0.04352 (19) | 0.0576 (15) | |
H13 | 1.2889 | 1.2083 | 0.0157 | 0.069* | |
C12 | 1.4659 (6) | 1.2700 (8) | 0.0456 (3) | 0.082 (2) | |
H14 | 1.5112 | 1.3200 | 0.0186 | 0.099* | |
N1 | 0.3766 (4) | 0.5734 (4) | 0.03960 (13) | 0.0508 (11) | |
N2 | 1.5358 (7) | 1.2679 (4) | 0.0833 | 0.093 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sm1 | 0.02697 (12) | 0.02447 (15) | 0.01831 (13) | 0.01224 (7) | 0.00126 (6) | 0.00253 (11) |
Ag2 | 0.0309 (2) | 0.0440 (2) | 0.0310 (2) | 0.01544 (12) | 0.000 | −0.00131 (18) |
O1 | 0.0433 (18) | 0.0454 (18) | 0.0227 (14) | 0.0137 (15) | −0.0043 (13) | −0.0073 (12) |
O2 | 0.0395 (17) | 0.0320 (16) | 0.0298 (15) | 0.0036 (14) | −0.0050 (13) | 0.0045 (12) |
O3 | 0.0345 (16) | 0.0457 (18) | 0.0413 (17) | 0.0210 (14) | 0.0125 (13) | 0.0158 (14) |
O4 | 0.0354 (17) | 0.070 (2) | 0.0403 (17) | 0.0244 (15) | −0.0079 (14) | 0.0031 (15) |
C1 | 0.038 (2) | 0.024 (2) | 0.024 (2) | 0.0092 (18) | −0.0050 (17) | 0.0024 (16) |
C2 | 0.038 (2) | 0.028 (2) | 0.023 (2) | 0.009 (2) | −0.0038 (18) | 0.0002 (17) |
C3 | 0.040 (3) | 0.033 (2) | 0.031 (2) | 0.004 (2) | 0.0042 (18) | −0.0024 (19) |
C4 | 0.048 (3) | 0.042 (3) | 0.028 (2) | 0.008 (2) | 0.002 (2) | −0.008 (2) |
C5 | 0.061 (4) | 0.095 (5) | 0.045 (3) | −0.037 (3) | 0.022 (3) | −0.033 (3) |
C6 | 0.066 (4) | 0.075 (4) | 0.031 (3) | −0.023 (3) | 0.017 (3) | −0.020 (3) |
C7 | 0.031 (2) | 0.046 (3) | 0.031 (3) | 0.0231 (17) | −0.0010 (15) | −0.002 (3) |
C8 | 0.062 (3) | 0.129 (9) | 0.098 (7) | 0.064 (4) | 0.021 (3) | 0.042 (7) |
C9 | 0.031 (3) | 0.034 (2) | 0.037 (3) | 0.0156 (16) | 0.000 | 0.000 (2) |
C10 | 0.035 (3) | 0.042 (3) | 0.034 (3) | 0.0174 (16) | 0.000 | 0.004 (3) |
C11 | 0.041 (3) | 0.080 (4) | 0.051 (3) | 0.029 (3) | 0.011 (2) | 0.025 (3) |
C12 | 0.055 (4) | 0.102 (6) | 0.075 (4) | 0.028 (4) | 0.026 (3) | 0.027 (4) |
N1 | 0.042 (2) | 0.046 (2) | 0.033 (2) | −0.0024 (19) | −0.0019 (18) | −0.0115 (17) |
N2 | 0.049 (4) | 0.120 (6) | 0.086 (6) | 0.025 (2) | 0.000 | 0.009 (5) |
Sm1—O2i | 2.336 (3) | C3—H4 | 0.9300 |
Sm1—O2ii | 2.336 (3) | C4—N1 | 1.323 (6) |
Sm1—O4 | 2.384 (3) | C4—H2 | 0.9300 |
Sm1—O4iii | 2.384 (3) | C5—N1 | 1.311 (6) |
Sm1—O1iv | 2.478 (3) | C5—C6 | 1.386 (7) |
Sm1—O1v | 2.478 (3) | C5—H3 | 0.9300 |
Sm1—O3 | 2.483 (3) | C6—H5 | 0.9300 |
Sm1—O3iii | 2.483 (3) | C7—O3iii | 1.257 (4) |
Ag2—N1 | 2.316 (4) | C7—C8 | 1.482 (9) |
Ag2—N1vi | 2.316 (4) | C8—H11A | 0.9600 |
Ag2—O3 | 2.328 (3) | C8—H11B | 0.9600 |
Ag2—O3vi | 2.328 (3) | C8—H11C | 0.9600 |
O1—C1 | 1.248 (5) | C9—O4vi | 1.238 (4) |
O1—Sm1vii | 2.478 (3) | C9—C10 | 1.521 (8) |
O2—C1 | 1.261 (5) | C10—C11 | 1.376 (6) |
O2—Sm1viii | 2.336 (3) | C10—C11vi | 1.376 (6) |
O3—C7 | 1.257 (4) | C11—C12 | 1.374 (8) |
O4—C9 | 1.238 (4) | C11—H13 | 0.9300 |
C1—C2 | 1.501 (5) | C12—N2 | 1.329 (8) |
C2—C6 | 1.362 (7) | C12—H14 | 0.9300 |
C2—C3 | 1.380 (6) | N2—C12vi | 1.329 (8) |
C3—C4 | 1.363 (6) | ||
O2i—Sm1—O2ii | 162.24 (16) | C9—O4—Sm1 | 149.2 (3) |
O2i—Sm1—O4 | 83.32 (11) | O1—C1—O2 | 124.9 (4) |
O2ii—Sm1—O4 | 82.47 (11) | O1—C1—C2 | 118.0 (4) |
O2i—Sm1—O4iii | 82.47 (11) | O2—C1—C2 | 117.1 (3) |
O2ii—Sm1—O4iii | 83.32 (11) | C6—C2—C3 | 117.0 (4) |
O4—Sm1—O4iii | 73.52 (16) | C6—C2—C1 | 120.6 (4) |
O2i—Sm1—O1iv | 102.15 (10) | C3—C2—C1 | 122.4 (4) |
O2ii—Sm1—O1iv | 83.83 (10) | C4—C3—C2 | 119.2 (4) |
O4—Sm1—O1iv | 145.28 (11) | C4—C3—H4 | 120.4 |
O4iii—Sm1—O1iv | 73.30 (11) | C2—C3—H4 | 120.4 |
O2i—Sm1—O1v | 83.83 (10) | N1—C4—C3 | 124.3 (4) |
O2ii—Sm1—O1v | 102.15 (10) | N1—C4—H2 | 117.9 |
O4—Sm1—O1v | 73.30 (11) | C3—C4—H2 | 117.9 |
O4iii—Sm1—O1v | 145.28 (11) | N1—C5—C6 | 123.5 (5) |
O1iv—Sm1—O1v | 141.02 (16) | N1—C5—H3 | 118.3 |
O2i—Sm1—O3 | 124.27 (10) | C6—C5—H3 | 118.3 |
O2ii—Sm1—O3 | 73.44 (10) | C2—C6—C5 | 119.6 (5) |
O4—Sm1—O3 | 132.68 (10) | C2—C6—H5 | 120.2 |
O4iii—Sm1—O3 | 139.93 (12) | C5—C6—H5 | 120.2 |
O1iv—Sm1—O3 | 72.14 (10) | O3iii—C7—O3 | 118.3 (5) |
O1v—Sm1—O3 | 72.89 (11) | O3iii—C7—C8 | 120.9 (3) |
O2i—Sm1—O3iii | 73.44 (10) | O3—C7—C8 | 120.9 (3) |
O2ii—Sm1—O3iii | 124.27 (10) | O3iii—C7—Sm1 | 59.1 (3) |
O4—Sm1—O3iii | 139.93 (12) | O3—C7—Sm1 | 59.1 (3) |
O4iii—Sm1—O3iii | 132.68 (10) | C8—C7—Sm1 | 180.000 (1) |
O1iv—Sm1—O3iii | 72.89 (11) | C7—C8—H11A | 109.5 |
O1v—Sm1—O3iii | 72.14 (10) | C7—C8—H11B | 109.5 |
O3—Sm1—O3iii | 51.51 (13) | H11A—C8—H11B | 109.5 |
O2i—Sm1—C7 | 98.88 (8) | C7—C8—H11C | 109.5 |
O2ii—Sm1—C7 | 98.88 (8) | H11A—C8—H11C | 109.5 |
O4—Sm1—C7 | 143.24 (8) | H11B—C8—H11C | 109.5 |
O4iii—Sm1—C7 | 143.24 (8) | O4—C9—O4vi | 127.5 (6) |
O1iv—Sm1—C7 | 70.51 (8) | O4—C9—C10 | 116.3 (3) |
O1v—Sm1—C7 | 70.51 (8) | O4vi—C9—C10 | 116.3 (3) |
O3—Sm1—C7 | 25.76 (7) | C11—C10—C11vi | 117.6 (6) |
O3iii—Sm1—C7 | 25.76 (7) | C11—C10—C9 | 121.2 (3) |
N1—Ag2—N1vi | 102.7 (2) | C11vi—C10—C9 | 121.2 (3) |
N1—Ag2—O3 | 105.05 (13) | C10—C11—C12 | 118.8 (5) |
N1vi—Ag2—O3 | 112.42 (14) | C10—C11—H13 | 120.6 |
N1—Ag2—O3vi | 112.42 (14) | C12—C11—H13 | 120.6 |
N1vi—Ag2—O3vi | 105.05 (13) | N2—C12—C11 | 125.0 (6) |
O3—Ag2—O3vi | 118.21 (15) | N2—C12—H14 | 117.5 |
C1—O1—Sm1vii | 124.3 (3) | C11—C12—H14 | 117.5 |
C1—O2—Sm1viii | 146.4 (3) | C5—N1—C4 | 116.4 (4) |
C7—O3—Ag2 | 137.6 (3) | C5—N1—Ag2 | 117.8 (3) |
C7—O3—Sm1 | 95.1 (3) | C4—N1—Ag2 | 124.7 (3) |
Ag2—O3—Sm1 | 126.58 (12) | C12—N2—C12vi | 114.9 (7) |
Symmetry codes: (i) x+1, y+1, z; (ii) x−y+1, −y+1, −z; (iii) x−y+1, −y+2, −z; (iv) −y+1, −x+1, −z−1/6; (v) x−y+1, x+1, z+1/6; (vi) x, x−y+1, −z+1/6; (vii) y−1, −x+y, z−1/6; (viii) x−1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [AgSm(C6H4NO2)3(C2H3O2)] |
Mr | 683.58 |
Crystal system, space group | Hexagonal, P6122 |
Temperature (K) | 296 |
a, c (Å) | 11.8184 (5), 27.340 (2) |
V (Å3) | 3307.0 (3) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 3.58 |
Crystal size (mm) | 0.23 × 0.20 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.444, 0.507 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17136, 1992, 1928 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.049, 1.06 |
No. of reflections | 1992 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.45 |
Absolute structure | Flack (1983), 739 Friedel pairs |
Absolute structure parameter | 0.006 (15) |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).
Acknowledgements
The author acknowledges South China Normal University for supporting this work.
References
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77. Web of Science CSD CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gu, X. & Xue, D. (2006). Inorg. Chem. 45, 9257–9261. Web of Science CSD CrossRef PubMed CAS Google Scholar
Peng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409–1411. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2009). Acta Cryst. E65, m1105. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Peng et al., 2008; Zhu et al., 2009). However, because of complicated interactions among the organic moiety and two types of metal centers, the construction of a homochiral Ln—M heterometallic coordination framework is one of the most challenging issues in synthetic chemistry and materials science(Gu & Xue, 2006). As an extension of this research, the structure of the title compound, a new homochiral heterometallic coordination polymer, (I), has been determined which is presented in this article.
In the title compound (Fig. 1), there are half of SmIII ion, half of AgI ion, half of acetate ligand, and one and half crystallogaphically unique isonicotinate ligands in the asymmetrical unit. Isonicotinate ligands have two types of distinctly different coordination modes: one acts as a bridging ligand to coordinate one AgI ion and two SmIII ions, and the other acts as a terminal ligand to coordinate two SmIII ions. Acetate ligand adopts chelating [SmIII] and bridging [AgI] coordination modes. Each SmIII ion is eight-coordinated by two O atoms from one acetate ligand, four O atoms from four bridging isonicotinate ligands, and two O atom from two terminal isonicotinate ligands. The Sm center can be described as having a bicapped trigonal prism coordination geometry. The four-coordinated AgI ion is bonded to two N atoms from two bridging isonicotinate ligand and two O atoms from two acetate ligands to furnish a tetrahedral geometry, (Table 1). These metal coordination units are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network (Fig. 2).