metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine)bis­­{μ3-cis-N-(2-carboxyl­atophen­yl)-N′-[3-(di­methyl­amino)prop­yl]oxamidato(3−)}­bis­(per­chlorato)­tetra­nickel(II) methanol disolvate

aDeapartment of Chemistry, Jining University, Shandong 273155, People's Republic of China
*Correspondence e-mail: zhongjungao@yahoo.cn

(Received 9 November 2009; accepted 22 November 2009; online 28 November 2009)

In the title methanol disolvate complex, [Ni4(C14H16N3O4)2(ClO4)2(C10H8N2)2]·2CH3OH, the neutral tetra­nickel(II) system lies on a centre of inversion. The polyhedron around each Ni(II) atom is a square pyramid. The separations of the Ni atoms bridged by the oxamide and carboxyl groups are 5.227 (9) and 5.268 (6) Å, respectively. In the crystal structure, a two-dimensional supramolecular network structure involving O—H⋯O and C—H⋯O hydrogen bonding is observed.

Related literature

For a related structure, see: Tao et al. (2003[Tao, R. J., Zang, S. Q., Cheng, Y. X., Wang, Q. L., Hu, N. H., Niu, J. Y. & Liao, D. Z. (2003). Polyhedron 22, 2911-2916.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni4(C14H16N3O4)2(ClO4)2(C10H8N2)2]

  • Mr = 1390.79

  • Triclinic, [P \overline 1]

  • a = 10.854 (4) Å

  • b = 11.309 (4) Å

  • c = 12.728 (5) Å

  • α = 67.724 (4)°

  • β = 73.357 (4)°

  • γ = 75.411 (4)°

  • V = 1367.0 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 298 K

  • 0.21 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.738, Tmax = 0.814

  • 7296 measured reflections

  • 4850 independent reflections

  • 3963 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 1.04

  • 4850 reflections

  • 383 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯O1i 0.82 2.73 3.190 (4) 118
O9—H9⋯O2i 0.82 2.06 2.870 (4) 170
C4—H4⋯O9ii 0.93 2.52 3.387 (5) 155
C13—H13C⋯O9iii 0.96 2.58 3.451 (5) 151
C3—H3⋯O2 0.93 2.41 2.744 (4) 101
C6—H6⋯O3 0.93 2.22 2.812 (3) 121
C10—H10B⋯O4 0.97 2.43 2.775 (4) 100
C13—H13A⋯O1 0.96 2.39 2.899 (4) 113
C13—H13B⋯O5 0.96 2.47 3.186 (4) 131
C14—H14C⋯O1 0.96 2.58 3.074 (5) 112
C24—H24⋯O4 0.93 2.59 3.065 (4) 112
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y, -z+1; (iii) -x+2, -y, -z+2.

Data collection: SMART (Bruker, 1998[Bruker, (1998). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker, (1998). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (Fig. 1), is a tetranuclear nickel(II) complex. Its asymmetric unit is composed of a cis-oxamido bridged dinuclear nickel complex and a molecule of methanol solvate. Through carboxyl bridges, two dinuclear units are assembled to form a circular tetranuclear system lying about an inversion center. The cis-oxamido group coordinates to Ni1 and Ni2 in a usual mode with the bite angles of 83.53 (6) and 85.14 (11) °, respectively. Both Ni1 and Ni2 atoms are in square-pyramidal coordination geometries. The maximum displacement from the least-square plane defined by N1, N2, N3 and O1, is 0.0400 (11) Å for N1 and the Ni1 atom lies 0.1168 (12) Å out of this plane. The apical position of Ni1 is occupied by O5 with the Ni1—O5 bond length of 2.636 (8) Å. Ni2 atom coordinates to the exo-cis oxygen atoms of oxamido ligand (O3 and O4). The two oxygen atoms and the nitrogen atoms (N4 and N5) of bipyridine ligand complete the basal plane, from which the maximum deviations is 0.1311 (6) Å. The apical site is occupied by a carboxyl oxygen atom (O2i) with Ni2—O2i length of 2.276 (2) Å. The Ni—N bond lenghts in (I) (Table 1), lie in the range 1.945 (2)-2.067 (2)Å and are close to the corresponding bond lenghts reported in a nickel complex (Tao et al., 2003).

In the crystal, neutral tetranuclear complexes and methanol molecules are connected by classcial O—H···O and non-classical C—H···O hydrogen bonds into a two-dimensional network (Table 1).

Related literature top

For a related structure, see: Tao et al. (2003).

Experimental top

A methanol solution (5 ml) of Ni(ClO4)2.6H2O (0.732 g, 2 mmol) was added slowly into a methanol solution (5 ml) containing N-benzyl-N'-(3-amino-3-dimethylpropyl)oxamide (1 mmol, 0.293 g) and sodium ethoxide (0.204 g, 3 mmol). The mixture was stirred quickly for 1 h, then an aqueous solution (5 ml) of 2,2'-bipyridine (0.156 g, 1 mmol) was added dropwise into the mixture. The reaction solution was heated at 343 K with stirring for 8h. The resulting solution was filtered and the filtrate was kept at room temperature. Green crystals suitable for X-ray analysis were obtained from the filtrate by slow evaporation for about one week.

Refinement top

H atoms were positioned geometrically [0.93 (CH), 0.97 (CH2), 0.96 (CH3) and 0.82 (OH)Å] and constrained to ride on their parent atoms with Uiso(H) =1.2(1.5 for methyl)Ueq(C/N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% displacement ellipsoids (H atoms omitted for clarity).
Bis(2,2'-bipyridine)bis{µ3-cis-N-(2-carboxylatophenyl)- N'-[3-(dimethylamino)propyl]oxamidato(3-)}bis(perchlorato)tetranickel(II) methanol disolvate top
Crystal data top
[Ni4(C14H16N3O4)2(ClO4)2(C10H8N2)2]Z = 1
Mr = 1390.79F(000) = 716
Triclinic, P1Dx = 1.689 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.854 (4) ÅCell parameters from 3928 reflections
b = 11.309 (4) Åθ = 2.2–28.1°
c = 12.728 (5) ŵ = 1.54 mm1
α = 67.724 (4)°T = 298 K
β = 73.357 (4)°Block, green
γ = 75.411 (4)°0.21 × 0.16 × 0.14 mm
V = 1367.0 (9) Å3
Data collection top
Bruker SMART CCD
diffractometer
4850 independent reflections
Radiation source: fine-focus sealed tube3963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.738, Tmax = 0.814k = 139
7296 measured reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.6427P]
where P = (Fo2 + 2Fc2)/3
4850 reflections(Δ/σ)max = 0.001
383 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Ni4(C14H16N3O4)2(ClO4)2(C10H8N2)2]γ = 75.411 (4)°
Mr = 1390.79V = 1367.0 (9) Å3
Triclinic, P1Z = 1
a = 10.854 (4) ÅMo Kα radiation
b = 11.309 (4) ŵ = 1.54 mm1
c = 12.728 (5) ÅT = 298 K
α = 67.724 (4)°0.21 × 0.16 × 0.14 mm
β = 73.357 (4)°
Data collection top
Bruker SMART CCD
diffractometer
4850 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3963 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.814Rint = 0.015
7296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
4850 reflectionsΔρmin = 0.56 e Å3
383 parameters
Special details top

Experimental. Yield, 61%, analysis, calculated for C50H56Cl2N10O18Ni4: C 43.18, H, 4.06; N 10.07%; found: C 43.22, H 4.15, N, 10.09%.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.84712 (3)0.11565 (3)0.73827 (3)0.03336 (11)
Ni20.72954 (3)0.35869 (3)0.46787 (3)0.03195 (11)
O10.9263 (2)0.2738 (2)0.70987 (18)0.0586 (6)
O21.06150 (19)0.39494 (18)0.61253 (18)0.0456 (5)
O30.7747 (2)0.18517 (17)0.45514 (16)0.0400 (5)
O40.73515 (19)0.26666 (17)0.63062 (16)0.0380 (4)
N10.8309 (2)0.0280 (2)0.57245 (18)0.0318 (5)
N20.7889 (2)0.0574 (2)0.74936 (19)0.0388 (5)
N30.8932 (2)0.2005 (2)0.9003 (2)0.0437 (6)
N40.6571 (2)0.4495 (2)0.32480 (19)0.0367 (5)
N50.6681 (2)0.5300 (2)0.4873 (2)0.0363 (5)
C10.9762 (3)0.2980 (3)0.6150 (3)0.0384 (6)
C20.9259 (3)0.2161 (3)0.5073 (2)0.0338 (6)
C30.9484 (3)0.2750 (3)0.4233 (3)0.0420 (7)
H30.99790.35730.43490.050*
C40.8995 (3)0.2150 (3)0.3240 (3)0.0480 (7)
H40.91600.25550.26890.058*
C50.8253 (3)0.0928 (3)0.3077 (3)0.0458 (7)
H50.79050.05140.24160.055*
C60.8026 (3)0.0321 (3)0.3886 (2)0.0407 (7)
H60.75220.04980.37610.049*
C70.8531 (3)0.0904 (2)0.4887 (2)0.0324 (6)
C80.7944 (2)0.0971 (2)0.5502 (2)0.0309 (6)
C90.7718 (3)0.1443 (2)0.6517 (2)0.0330 (6)
C100.7595 (4)0.0988 (3)0.8514 (3)0.0522 (8)
H10A0.66820.09710.88860.063*
H10B0.77460.18730.82630.063*
C110.8409 (4)0.0144 (3)0.9376 (3)0.0613 (10)
H11A0.81750.04621.00280.074*
H11B0.93160.02210.90160.074*
C120.8276 (4)0.1261 (3)0.9829 (3)0.0593 (9)
H12A0.73550.13211.00530.071*
H12B0.86280.16771.05250.071*
C130.8543 (4)0.3307 (3)0.9596 (3)0.0563 (9)
H13A0.90030.38590.91420.084*
H13B0.76220.32330.96780.084*
H13C0.87540.36731.03500.084*
C141.0355 (3)0.2162 (4)0.8801 (3)0.0675 (10)
H14A1.06170.25160.95330.101*
H14B1.06300.13350.83770.101*
H14C1.07500.27380.83590.101*
C150.6502 (3)0.3972 (3)0.2487 (2)0.0437 (7)
H150.68400.31010.26030.052*
C160.5948 (3)0.4677 (3)0.1537 (3)0.0520 (8)
H160.59080.42890.10230.062*
C170.5453 (3)0.5971 (3)0.1365 (3)0.0534 (8)
H170.50810.64690.07280.064*
C180.5513 (3)0.6523 (3)0.2147 (3)0.0462 (7)
H180.51870.73930.20420.055*
C190.6065 (3)0.5760 (3)0.3084 (2)0.0356 (6)
C200.6125 (3)0.6218 (3)0.4019 (2)0.0351 (6)
C210.5636 (3)0.7460 (3)0.4056 (3)0.0445 (7)
H210.52510.80830.34670.053*
C220.5732 (3)0.7761 (3)0.4990 (3)0.0488 (8)
H220.54050.85880.50330.059*
C230.6312 (3)0.6828 (3)0.5847 (3)0.0455 (7)
H230.63870.70150.64760.055*
C240.6781 (3)0.5609 (3)0.5758 (3)0.0426 (7)
H240.71820.49800.63340.051*
Cl10.49509 (8)0.11510 (8)0.81502 (7)0.0508 (2)
O50.6183 (3)0.1925 (3)0.8306 (3)0.0928 (10)
O60.4947 (4)0.0733 (3)0.6956 (3)0.1125 (13)
O70.4736 (3)0.0026 (3)0.8472 (3)0.0911 (9)
O80.3950 (3)0.1885 (3)0.8805 (4)0.1155 (13)
O90.9657 (4)0.4193 (3)0.8309 (3)0.1074 (12)
H90.99990.46460.76660.129*
C250.8308 (6)0.4297 (5)0.8360 (5)0.123 (2)
H25A0.79160.37370.90990.185*
H25B0.82090.40490.77500.185*
H25C0.78890.51760.82670.185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0426 (2)0.02493 (19)0.02760 (19)0.00177 (15)0.00980 (15)0.00623 (14)
Ni20.0383 (2)0.02207 (18)0.03246 (19)0.00241 (14)0.01060 (15)0.00812 (14)
O10.0859 (17)0.0354 (11)0.0383 (12)0.0159 (11)0.0141 (11)0.0103 (10)
O20.0396 (11)0.0332 (11)0.0550 (13)0.0053 (9)0.0080 (9)0.0134 (9)
O30.0553 (13)0.0289 (10)0.0339 (10)0.0008 (9)0.0151 (9)0.0080 (8)
O40.0462 (12)0.0275 (10)0.0374 (10)0.0018 (8)0.0103 (9)0.0114 (8)
N10.0363 (12)0.0278 (11)0.0302 (11)0.0024 (10)0.0077 (9)0.0098 (9)
N20.0522 (15)0.0323 (12)0.0298 (12)0.0015 (11)0.0115 (11)0.0094 (10)
N30.0489 (15)0.0396 (14)0.0371 (13)0.0032 (11)0.0124 (11)0.0068 (11)
N40.0383 (13)0.0326 (12)0.0367 (12)0.0034 (10)0.0083 (10)0.0101 (10)
N50.0352 (13)0.0308 (12)0.0393 (13)0.0027 (10)0.0064 (10)0.0105 (10)
C10.0363 (16)0.0316 (15)0.0440 (17)0.0056 (13)0.0044 (13)0.0120 (13)
C20.0291 (14)0.0335 (14)0.0389 (15)0.0065 (11)0.0028 (11)0.0144 (12)
C30.0401 (16)0.0387 (16)0.0489 (18)0.0033 (13)0.0038 (13)0.0225 (14)
C40.0510 (19)0.0539 (19)0.0478 (18)0.0093 (15)0.0067 (15)0.0286 (15)
C50.0536 (19)0.0483 (18)0.0398 (16)0.0132 (15)0.0133 (14)0.0136 (14)
C60.0465 (17)0.0340 (15)0.0421 (16)0.0040 (13)0.0137 (13)0.0116 (13)
C70.0313 (14)0.0316 (14)0.0332 (14)0.0073 (11)0.0028 (11)0.0111 (11)
C80.0307 (14)0.0284 (13)0.0306 (14)0.0015 (11)0.0075 (11)0.0079 (11)
C90.0320 (14)0.0290 (14)0.0363 (15)0.0030 (11)0.0072 (11)0.0103 (12)
C100.078 (2)0.0426 (17)0.0389 (17)0.0012 (16)0.0177 (16)0.0195 (14)
C110.087 (3)0.058 (2)0.0435 (19)0.0010 (19)0.0245 (18)0.0219 (16)
C120.081 (3)0.055 (2)0.0368 (17)0.0009 (18)0.0176 (17)0.0119 (15)
C130.068 (2)0.0456 (19)0.0420 (18)0.0086 (17)0.0132 (16)0.0011 (14)
C140.049 (2)0.077 (3)0.066 (2)0.0087 (19)0.0188 (18)0.008 (2)
C150.0498 (18)0.0396 (16)0.0407 (16)0.0056 (14)0.0082 (14)0.0143 (13)
C160.062 (2)0.055 (2)0.0385 (17)0.0106 (17)0.0110 (15)0.0139 (15)
C170.054 (2)0.059 (2)0.0398 (17)0.0039 (16)0.0160 (15)0.0065 (15)
C180.0439 (18)0.0388 (16)0.0423 (17)0.0022 (13)0.0104 (14)0.0034 (13)
C190.0296 (14)0.0309 (14)0.0390 (15)0.0020 (11)0.0046 (12)0.0073 (12)
C200.0302 (14)0.0286 (14)0.0414 (15)0.0033 (11)0.0060 (12)0.0079 (12)
C210.0414 (17)0.0295 (15)0.0558 (19)0.0017 (13)0.0088 (14)0.0105 (14)
C220.0462 (18)0.0321 (16)0.065 (2)0.0060 (14)0.0026 (15)0.0196 (15)
C230.0443 (17)0.0427 (17)0.0530 (19)0.0094 (14)0.0046 (14)0.0223 (15)
C240.0446 (17)0.0414 (16)0.0444 (17)0.0040 (13)0.0116 (14)0.0175 (14)
Cl10.0531 (5)0.0441 (4)0.0561 (5)0.0004 (4)0.0177 (4)0.0178 (4)
O50.0651 (18)0.0728 (19)0.117 (2)0.0084 (15)0.0425 (17)0.0015 (17)
O60.156 (3)0.104 (2)0.074 (2)0.046 (2)0.059 (2)0.0422 (19)
O70.122 (3)0.0686 (18)0.098 (2)0.0174 (17)0.0168 (19)0.0475 (17)
O80.081 (2)0.076 (2)0.181 (4)0.0366 (18)0.016 (2)0.050 (2)
O90.180 (4)0.0602 (19)0.067 (2)0.002 (2)0.036 (2)0.0106 (15)
C250.185 (6)0.079 (3)0.143 (5)0.048 (4)0.117 (5)0.000 (3)
Geometric parameters (Å, º) top
Ni1—O11.899 (2)C10—H10B0.9700
Ni1—N21.945 (2)C11—C121.500 (5)
Ni1—N12.002 (2)C11—H11A0.9700
Ni1—N32.067 (2)C11—H11B0.9700
Ni2—O41.9452 (19)C12—H12A0.9700
Ni2—O31.957 (2)C12—H12B0.9700
Ni2—N51.969 (2)C13—H13A0.9600
Ni2—N41.996 (2)C13—H13B0.9600
Ni2—O2i2.276 (2)C13—H13C0.9600
O1—C11.276 (3)C14—H14A0.9600
O2—C11.248 (3)C14—H14B0.9600
O2—Ni2i2.276 (2)C14—H14C0.9600
O3—C81.276 (3)C15—C161.380 (4)
O4—C91.284 (3)C15—H150.9300
N1—C81.310 (3)C16—C171.381 (5)
N1—C71.426 (3)C16—H160.9300
N2—C91.288 (3)C17—C181.384 (4)
N2—C101.469 (4)C17—H170.9300
N3—C141.468 (4)C18—C191.376 (4)
N3—C131.484 (4)C18—H180.9300
N3—C121.504 (4)C19—C201.488 (4)
N4—C151.338 (4)C20—C211.385 (4)
N4—C191.355 (3)C21—C221.390 (4)
N5—C241.339 (4)C21—H210.9300
N5—C201.351 (3)C22—C231.373 (4)
C1—C21.498 (4)C22—H220.9300
C2—C31.400 (4)C23—C241.380 (4)
C2—C71.409 (4)C23—H230.9300
C3—C41.375 (4)C24—H240.9300
C3—H30.9300Cl1—O81.405 (3)
C4—C51.386 (4)Cl1—O61.411 (3)
C4—H40.9300Cl1—O51.422 (3)
C5—C61.376 (4)Cl1—O71.426 (3)
C5—H50.9300O9—C251.424 (6)
C6—C71.393 (4)O9—H90.8200
C6—H60.9300C25—H25A0.9600
C8—C91.513 (4)C25—H25B0.9600
C10—C111.494 (4)C25—H25C0.9600
C10—H10A0.9700
O1—Ni1—N2171.10 (10)C11—C10—H10B109.2
O1—Ni1—N191.11 (9)H10A—C10—H10B107.9
N2—Ni1—N184.53 (9)C10—C11—C12114.6 (3)
O1—Ni1—N387.70 (10)C10—C11—H11A108.6
N2—Ni1—N395.41 (10)C12—C11—H11A108.6
N1—Ni1—N3171.13 (10)C10—C11—H11B108.6
O4—Ni2—O384.13 (8)C12—C11—H11B108.6
O4—Ni2—N594.63 (9)H11A—C11—H11B107.6
O3—Ni2—N5174.87 (9)C11—C12—N3115.9 (3)
O4—Ni2—N4159.66 (9)C11—C12—H12A108.3
O3—Ni2—N497.63 (9)N3—C12—H12A108.3
N5—Ni2—N481.80 (9)C11—C12—H12B108.3
O4—Ni2—O2i102.30 (8)N3—C12—H12B108.3
O3—Ni2—O2i91.41 (8)H12A—C12—H12B107.4
N5—Ni2—O2i93.72 (8)N3—C13—H13A109.5
N4—Ni2—O2i97.92 (9)N3—C13—H13B109.5
C1—O1—Ni1131.07 (19)H13A—C13—H13B109.5
C1—O2—Ni2i116.82 (18)N3—C13—H13C109.5
C8—O3—Ni2112.51 (16)H13A—C13—H13C109.5
C9—O4—Ni2112.20 (17)H13B—C13—H13C109.5
C8—N1—C7123.5 (2)N3—C14—H14A109.5
C8—N1—Ni1110.62 (17)N3—C14—H14B109.5
C7—N1—Ni1125.87 (17)H14A—C14—H14B109.5
C9—N2—C10118.0 (2)N3—C14—H14C109.5
C9—N2—Ni1112.66 (18)H14A—C14—H14C109.5
C10—N2—Ni1129.33 (18)H14B—C14—H14C109.5
C14—N3—C13108.2 (3)N4—C15—C16122.5 (3)
C14—N3—C12111.1 (3)N4—C15—H15118.8
C13—N3—C12105.6 (3)C16—C15—H15118.8
C14—N3—Ni1106.2 (2)C17—C16—C15118.5 (3)
C13—N3—Ni1111.19 (19)C17—C16—H16120.7
C12—N3—Ni1114.47 (19)C15—C16—H16120.7
C15—N4—C19118.7 (2)C16—C17—C18119.6 (3)
C15—N4—Ni2126.8 (2)C16—C17—H17120.2
C19—N4—Ni2114.46 (19)C18—C17—H17120.2
C24—N5—C20119.1 (2)C19—C18—C17118.9 (3)
C24—N5—Ni2125.47 (19)C19—C18—H18120.6
C20—N5—Ni2115.39 (19)C17—C18—H18120.6
O2—C1—O1120.4 (3)N4—C19—C18121.8 (3)
O2—C1—C2119.2 (3)N4—C19—C20114.1 (2)
O1—C1—C2120.3 (2)C18—C19—C20124.1 (3)
C3—C2—C7119.0 (3)N5—C20—C21121.3 (3)
C3—C2—C1115.6 (2)N5—C20—C19114.3 (2)
C7—C2—C1125.3 (2)C21—C20—C19124.4 (3)
C4—C3—C2121.9 (3)C20—C21—C22118.9 (3)
C4—C3—H3119.0C20—C21—H21120.6
C2—C3—H3119.0C22—C21—H21120.6
C3—C4—C5118.7 (3)C23—C22—C21119.6 (3)
C3—C4—H4120.7C23—C22—H22120.2
C5—C4—H4120.7C21—C22—H22120.2
C6—C5—C4120.6 (3)C22—C23—C24118.7 (3)
C6—C5—H5119.7C22—C23—H23120.7
C4—C5—H5119.7C24—C23—H23120.7
C5—C6—C7121.6 (3)N5—C24—C23122.4 (3)
C5—C6—H6119.2N5—C24—H24118.8
C7—C6—H6119.2C23—C24—H24118.8
C6—C7—C2118.2 (2)O8—Cl1—O6110.1 (3)
C6—C7—N1122.0 (2)O8—Cl1—O5110.0 (2)
C2—C7—N1119.8 (2)O6—Cl1—O5107.5 (2)
O3—C8—N1129.3 (2)O8—Cl1—O7109.6 (2)
O3—C8—C9115.1 (2)O6—Cl1—O7107.6 (2)
N1—C8—C9115.5 (2)O5—Cl1—O7112.0 (2)
O4—C9—N2127.6 (2)C25—O9—H9109.5
O4—C9—C8115.8 (2)O9—C25—H25A109.5
N2—C9—C8116.6 (2)O9—C25—H25B109.5
N2—C10—C11112.3 (3)H25A—C25—H25B109.5
N2—C10—H10A109.2O9—C25—H25C109.5
C11—C10—H10A109.2H25A—C25—H25C109.5
N2—C10—H10B109.2H25B—C25—H25C109.5
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O1ii0.822.733.190 (4)118
O9—H9···O2ii0.822.062.870 (4)170
C4—H4···O9i0.932.523.387 (5)155
C13—H13C···O9iii0.962.583.451 (5)151
C3—H3···O20.932.412.744 (4)101
C6—H6···O30.932.222.812 (3)121
C10—H10B···O40.972.432.775 (4)100
C13—H13A···O10.962.392.899 (4)113
C13—H13B···O50.962.473.186 (4)131
C14—H14C···O10.962.583.074 (5)112
C24—H24···O40.932.593.065 (4)112
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1, z; (iii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[Ni4(C14H16N3O4)2(ClO4)2(C10H8N2)2]
Mr1390.79
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.854 (4), 11.309 (4), 12.728 (5)
α, β, γ (°)67.724 (4), 73.357 (4), 75.411 (4)
V3)1367.0 (9)
Z1
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.21 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.738, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
7296, 4850, 3963
Rint0.015
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.04
No. of reflections4850
No. of parameters383
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.56

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O1i0.822.733.190 (4)117.6
O9—H9···O2i0.822.062.870 (4)169.7
C4—H4···O9ii0.932.523.387 (5)155.3
C13—H13C···O9iii0.962.583.451 (5)151.1
C3—H3···O20.932.412.744 (4)101.3
C6—H6···O30.932.222.812 (3)121.1
C10—H10B···O40.972.432.775 (4)100.3
C13—H13A···O10.962.392.899 (4)112.7
C13—H13B···O50.962.473.186 (4)130.9
C14—H14C···O10.962.583.074 (5)112.1
C24—H24···O40.932.593.065 (4)112.3
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+1; (iii) x+2, y, z+2.
 

Acknowledgements

The financial support of the Science Foundation of Shandong is greatfully acknowledged.

References

First citationBruker, (1998). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, R. J., Zang, S. Q., Cheng, Y. X., Wang, Q. L., Hu, N. H., Niu, J. Y. & Liao, D. Z. (2003). Polyhedron 22, 2911–2916.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds