metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­[(dicyanamido)silver(I)](AgAg)]-μ2-4,4′-bi­pyridine-κ2N:N′]

aMolecular Materials Research Center, Scientific Research Academy, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: zjf260@ujs.edu.cn

(Received 18 November 2009; accepted 24 November 2009; online 28 November 2009)

In the title compound, [Ag2(C2N3)2(C10H8N2)]n, the Ag atoms, lying on inversion centers, are separated by 3.3226 (12) Å. Each Ag atom is connected by one bridging 4,4′-bipyridine [Ag—N = 2.177 (4)Å] and a terminal dicyanamide [Ag—N = 2.108 (4) Å]. The Ag—Ag interactions play a key role in constructing a unique neutral polymeric chain.

Related literature

For the designed syntheses of metal-organic compounds, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Zhang et al. (2008[Zhang, J. F., Song, Y. L., Yang, J. Y., Humphrey, M. G. & Zhang, C. (2008). Cryst. Growth Des. 8, 387-390.], 2009a[Zhang, J. (2009a). Acta Cryst. E65, m1044.],b[Zhang, J. (2009b). Acta Cryst. E65, m1550.]). For their applications, see: Banerjee et al. (2008[Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi O. M. (2008). Science, 319, 939-943.]); Zhang et al. (2007[Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111-141.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C2N3)2(C10H8N2)]

  • Mr = 252.01

  • Triclinic, [P \overline 1]

  • a = 6.1867 (12) Å

  • b = 7.8344 (16) Å

  • c = 7.9649 (16) Å

  • α = 88.83 (3)°

  • β = 84.09 (3)°

  • γ = 77.54 (3)°

  • V = 374.95 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.63 mm−1

  • T = 293 K

  • 0.2 × 0.16 × 0.12 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.407, Tmax = 0.664

  • 2474 measured reflections

  • 1358 independent reflections

  • 1315 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.103

  • S = 1.24

  • 1358 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The designed syntheses of metal-organic compounds have attracted great attention in recent years because of not only their intriguing structures (Eddaoudi et al., 2001; Zhang et al., 2008) but also their potential applications.(Banerjee et al., 2008; Zhang et al., 2007). The flexible and rigid bridging ligands can play different roles in constructing metal-organic frameworks. The tilte compound, (I), was constructed by employing a flexible, dicyanamide, and a rigid, 4,4'-bipyridine ligand through diffusion reactions. In this paper, the crystal structure of (I) is presented.

As illustrated in Fig. 1, 4,4'-bipyridine acts as a bridgeing ligand to connect two Ag atoms. Dicyanamide usually acts as a briding ligand to construct metal-organic compounds (Zhang et al., 2009a,b). However, in the tilte compound, it is linked to only one Ag atom. Ag—Ag bonds [3.3226 (12) Å] play a key role in constructing a unique one-dimensional neutral chain.

Related literature top

For the designed syntheses of metal-organic compounds, see: Eddaoudi et al. (2001); Zhang et al. (2008, 2009a,b). For their applications, see: Banerjee et al. (2008); Zhang et al. (2007).

Experimental top

Ag(NO3) (68.0 mg, 0.4 mmol) and NaN(CN)2 (178.2 mg, 2 mmol) were added into 3 ml dimethylformamide with thorough stirring for 5 minutes. After filtration, the colorless filtrate was carefully laid on the surface of a solution of 4,4'-bipyridine (78.0 mg, 0.5 mmol) in 8 ml i-PrOH. Colorless prismatic crystals were obtained after five days.

Refinement top

H atoms were positioned geometrically and refined with riding model, with Uiso = 1.2Ueq for pyridyl H atoms, the C—H bonds are 0.93 Å in pyridyl.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids; H atoms have been omitted for clarity. Symmetry code: i = -x+2, -y+1, -z+1.
catena-Poly[[bis[(dicyanamido)silver(I)](AgAg)]-µ2- 4,4'-bipyridine-κ2N:N'] top
Crystal data top
[Ag2(C2N3)2(C10H8N2)]Z = 2
Mr = 252.01F(000) = 242
Triclinic, P1Dx = 2.232 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1867 (12) ÅCell parameters from 1687 reflections
b = 7.8344 (16) Åθ = 2.6–28.7°
c = 7.9649 (16) ŵ = 2.63 mm1
α = 88.83 (3)°T = 293 K
β = 84.09 (3)°Prism, colorless
γ = 77.54 (3)°0.2 × 0.16 × 0.12 mm
V = 374.95 (13) Å3
Data collection top
Rigaku Saturn724+
diffractometer
1358 independent reflections
Radiation source: fine-focus sealed tube1315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
dtprofit.ref scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.407, Tmax = 0.664k = 69
2474 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.1547P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
1358 reflectionsΔρmax = 0.67 e Å3
110 parametersΔρmin = 0.70 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.055 (7)
Crystal data top
[Ag2(C2N3)2(C10H8N2)]γ = 77.54 (3)°
Mr = 252.01V = 374.95 (13) Å3
Triclinic, P1Z = 2
a = 6.1867 (12) ÅMo Kα radiation
b = 7.8344 (16) ŵ = 2.63 mm1
c = 7.9649 (16) ÅT = 293 K
α = 88.83 (3)°0.2 × 0.16 × 0.12 mm
β = 84.09 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
1358 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1315 reflections with I > 2σ(I)
Tmin = 0.407, Tmax = 0.664Rint = 0.022
2474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.24Δρmax = 0.67 e Å3
1358 reflectionsΔρmin = 0.70 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.83031 (5)0.39268 (4)0.61182 (3)0.0570 (3)
N10.6869 (7)0.6445 (6)0.3950 (4)0.0626 (10)
N20.7664 (7)0.5131 (6)0.1486 (5)0.0544 (9)
N30.6751 (7)0.7081 (5)0.0944 (5)0.0518 (9)
N40.8957 (6)0.2168 (4)0.3957 (4)0.0432 (8)
C10.6855 (6)0.6651 (5)0.2524 (5)0.0428 (8)
C20.7278 (6)0.5953 (5)0.0277 (5)0.0416 (8)
C30.9785 (6)0.0426 (5)0.0830 (5)0.0367 (8)
C40.7354 (7)0.2209 (6)0.2947 (6)0.0521 (10)
H40.59330.28420.33010.063*
C50.7682 (7)0.1371 (6)0.1417 (6)0.0511 (10)
H50.64970.14340.07720.061*
C61.0962 (7)0.1231 (5)0.3420 (5)0.0447 (9)
H61.21100.11750.41000.054*
C71.1423 (6)0.0341 (5)0.1914 (5)0.0431 (8)
H71.28440.03240.16170.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0661 (4)0.0685 (3)0.0347 (3)0.0119 (2)0.00158 (18)0.02256 (18)
N10.084 (3)0.067 (2)0.033 (2)0.008 (2)0.0024 (19)0.0116 (16)
N20.064 (2)0.064 (2)0.0322 (19)0.0080 (18)0.0025 (16)0.0155 (16)
N30.067 (2)0.0520 (19)0.0328 (19)0.0039 (16)0.0054 (16)0.0089 (14)
N40.0522 (19)0.0447 (17)0.0315 (17)0.0072 (14)0.0042 (14)0.0108 (13)
C10.046 (2)0.0467 (19)0.035 (2)0.0082 (15)0.0020 (16)0.0148 (15)
C20.0421 (19)0.051 (2)0.0298 (19)0.0065 (15)0.0029 (15)0.0036 (16)
C30.0445 (19)0.0327 (16)0.0321 (19)0.0068 (14)0.0026 (15)0.0023 (14)
C40.043 (2)0.060 (2)0.047 (2)0.0017 (17)0.0021 (18)0.0214 (19)
C50.043 (2)0.061 (2)0.045 (2)0.0015 (17)0.0080 (17)0.0224 (19)
C60.049 (2)0.049 (2)0.035 (2)0.0064 (16)0.0091 (17)0.0074 (16)
C70.0411 (19)0.046 (2)0.038 (2)0.0005 (15)0.0065 (16)0.0082 (15)
Geometric parameters (Å, º) top
Ag1—N2i2.108 (4)N4—C41.334 (6)
Ag1—N42.177 (4)C3—C71.387 (6)
Ag1—N12.661 (4)C3—C51.390 (6)
Ag1—Ag1ii3.3226 (12)C3—C3iv1.467 (8)
N1—C11.144 (5)C4—C51.372 (6)
N2—C21.145 (6)C4—H40.9300
N2—Ag1iii2.108 (4)C5—H50.9300
N3—C21.296 (6)C6—C71.373 (6)
N3—C11.301 (6)C6—H60.9300
N4—C61.331 (5)C7—H70.9300
N2i—Ag1—N4167.60 (15)C7—C3—C3iv122.8 (4)
N2i—Ag1—N1105.43 (14)C5—C3—C3iv121.4 (4)
N4—Ag1—N186.07 (12)N4—C4—C5123.8 (4)
N2i—Ag1—Ag1ii105.25 (12)N4—C4—H4118.1
N4—Ag1—Ag1ii84.71 (10)C5—C4—H4118.1
N1—Ag1—Ag1ii57.43 (10)C4—C5—C3120.0 (4)
C1—N1—Ag1139.3 (4)C4—C5—H5120.0
C2—N2—Ag1iii172.6 (4)C3—C5—H5120.0
C2—N3—C1123.1 (4)N4—C6—C7123.4 (4)
C6—N4—C4116.4 (4)N4—C6—H6118.3
C6—N4—Ag1123.9 (3)C7—C6—H6118.3
C4—N4—Ag1118.8 (3)C6—C7—C3120.5 (4)
N1—C1—N3173.2 (5)C6—C7—H7119.7
N2—C2—N3171.4 (4)C3—C7—H7119.7
C7—C3—C5115.8 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1; (iii) x, y, z1; (iv) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Ag2(C2N3)2(C10H8N2)]
Mr252.01
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.1867 (12), 7.8344 (16), 7.9649 (16)
α, β, γ (°)88.83 (3), 84.09 (3), 77.54 (3)
V3)374.95 (13)
Z2
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.2 × 0.16 × 0.12
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.407, 0.664
No. of measured, independent and
observed [I > 2σ(I)] reflections
2474, 1358, 1315
Rint0.022
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.103, 1.24
No. of reflections1358
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.70

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Foundation of Jiangsu University (08JDG036).

References

First citationBanerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi O. M. (2008). Science, 319, 939–943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J. (2009a). Acta Cryst. E65, m1044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J. (2009b). Acta Cryst. E65, m1550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111–141.  Web of Science CrossRef CAS Google Scholar
First citationZhang, J. F., Song, Y. L., Yang, J. Y., Humphrey, M. G. & Zhang, C. (2008). Cryst. Growth Des. 8, 387–390.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds