organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,9-Di­methyl-2,3-di­hydro­phenanthro[1,2-b]furan-4,5-dione

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and bLuoyang Zisheng Science & Technology Co Ltd, Luoyang 471000, People's Republic of China
*Correspondence e-mail: yjc@lynu.edu.cn

(Received 18 August 2009; accepted 11 November 2009; online 18 November 2009)

The title compound, C18H14O3, consists of a four-ring system which contains three six-membered rings forming a phenanthrene­dione system and a five-membered 1,2-dihydro­methyl­furan ring. A three-dimensional supra­molecular framework is formed via non-classical inter­molecular C—H⋯O hydrogen bonds.

Related literature

For tanshinone compounds, see: Chang et al. (1991[Chang, H.-M., Chui, K.-Y., Tan, F. W. L., Yang, Y., Zhong, Z.-P., Lee, C.-M., Sham, H.-L. & Wong, H. N. C. (1991). J. Med. Chem. 34, 1675-1692.]); Ryu et al. (1997[Ryu, S. Y., Lee, C. O. & Choi, S. U. (1997). Planta Med. 63, 339-342.]); Xue et al. (1999[Xue, M., Cui, Y., Wang, H.-Q., Hu, H.-Y. & Zhang, B.-J. (1999). Pharm. Biomed. Anal. 21, 207-213.]); Yagi et al. (1989[Yagi, A., Fujimoto, K., Tanonaka, K., Hirai, K. & Takeo, S. (1989). Planta Med. B55, 51-54.]); Zhang et al. (2005[Zhang, L., Wang, J.-K., Qu, Y. & Nie, Q. (2005). Acta Cryst. E61, o3582-o3583.]); Zhu & Luo (2004[Zhu, J.-R. & Luo, H.-W. (2004). J. Chin. Pharm. Univ. 35, 368-370.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14O3

  • Mr = 278.29

  • Orthorhombic, P 21 21 21

  • a = 4.6415 (10) Å

  • b = 14.692 (3) Å

  • c = 19.633 (4) Å

  • V = 1338.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.25 × 0.10 × 0.05 mm

Data collection
  • Bruker or SMART APEXdiffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.995

  • 6925 measured reflections

  • 2502 independent reflections

  • 1140 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.077

  • S = 1.03

  • 2502 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18B⋯O1i 0.96 2.53 3.379 (4) 147
C16—H16A⋯O2i 0.97 2.48 3.384 (5) 155
C17—H17A⋯O2ii 0.96 2.56 3.484 (4) 162
C17—H17C⋯O2iii 0.96 2.66 3.377 (4) 132
C7—H7⋯O3iv 0.93 2.67 3.481 (4) 146
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{5\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Chinese herbal medicine, Danshen, is the dried rhizome of Salviae Miltiorrhiza Bunge and Salvia Przewalskii Maxim (Labiatae). It contains two parts of efective components (liposoluble tanshinones and aqueous-soluble salvianolic acids). Up to date, 41 tanshinones and 18 salvianolic acids have been extracted and reported. Tanshinones have been widely used in China to treat coronary heart diseases (Chang et al., 1991), antibacterial (Zhu et al., 2004), antitumour (Ryu et al., 1997), angina pectoris and myocardial infarction (Xue et al., 1999), cerebrovascular and neurasthenic insomnia problems (Yagi et al., 1989).

The title compound, C18H14O3, (I) consists of a four-ring system in which contains three six-membered rings forming a phenanthrene-dione system, and a five-membered 1,2-dihydro-methylfuran ring (Fig. 1). The whole molecule is essentially planar, with a torsion angle C15—C13—C14—O3 = 0.40 (4)° in the furan ring, the torsion angles C1—C2—C3—C4 = 0.01 (6)° and C4—C5—C6—C1 = -1.80 (5)° from the terminal six-membered ring. In the structure, is similar to reported (Zhang et al., 2005) for 1,6-dimethylphenanthro[1,2-b]furan-10,11-dione, the C11—C12 bond distance agree with the corresponding distance of 1.566 (2)Å. Intermolecular C—H···O non-classical hydrogen bonds are observed in the crystal structure (Table 1), which form a three-dimensional supramolecular framework (Fig. 2).

Related literature top

For tanshinone compounds, see: Chang et al. (1991); Ryu et al. (1997); Xue et al. (1999); Yagi et al. (1989); Zhang et al. (2005); Zhu et al. (2004). [SCHEME: revise to show two methyl groups]

Experimental top

All reagents were of AR grade and were used without further purification. Dried powder of Salvia miltiorrhiza Bunge was exacted with EtOH and the extract was concentrated in vacuo. The residue was subjected to silica gel coloumn chromatography. Elution with petroleum ether–ethyl acetate (9:1 v/v) yielded the title compound. Elemental analysis - found: C, 77.68 %; H, 5.07 %; calc. for C18H14O3: C, 77.14 %; H, 5.05 %.

Refinement top

All H atoms attached to C atoms were treated as riding, with C—H = 0.9300Å for aromatic H, C—H = 0.9700Å for methylene group, C—H = 0.9800Å for methyne group and C—H = 0.9600Å for methyl group with Uiso(H) = 1.2Ueq(C) of the carrier atoms to which they are attached and Uiso(H) = 1.5Ueq(C) for the methyl groups. 1004 Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I, showing the atom-numbering scheme. The displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Intermolecular C—H···O non-classical hydrogen bonds and three-dimensional supramolecular framework in the crystal structure.
3,9-Dimethyl-2,3-dihydrophenanthro[1,2-b]furan-4,5-dione top
Crystal data top
C18H14O3F(000) = 584
Mr = 278.29Dx = 1.381 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 634 reflections
a = 4.6415 (10) Åθ = 2.5–18.2°
b = 14.692 (3) ŵ = 0.09 mm1
c = 19.633 (4) ÅT = 295 K
V = 1338.8 (5) Å3Block, yellow
Z = 40.25 × 0.10 × 0.05 mm
Data collection top
Bruker SMART APEX
diffractometer
2502 independent reflections
Radiation source: fine-focus sealed tube1140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ϕ and ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 55
Tmin = 0.977, Tmax = 0.995k = 1617
6925 measured reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0115P)2]
where P = (Fo2 + 2Fc2)/3
2502 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H14O3V = 1338.8 (5) Å3
Mr = 278.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.6415 (10) ŵ = 0.09 mm1
b = 14.692 (3) ÅT = 295 K
c = 19.633 (4) Å0.25 × 0.10 × 0.05 mm
Data collection top
Bruker SMART APEX
diffractometer
2502 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1140 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.995Rint = 0.079
6925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
2502 reflectionsΔρmin = 0.26 e Å3
192 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9141 (6)0.38978 (16)0.80968 (12)0.0805 (9)
O20.5033 (6)0.47076 (16)0.73687 (12)0.0795 (9)
O30.5747 (6)0.72625 (16)0.87005 (12)0.0692 (8)
C11.4263 (9)0.4722 (3)1.04455 (18)0.0556 (10)
C21.5314 (9)0.3891 (3)1.03047 (19)0.0667 (12)
H21.66050.36211.06050.080*
C31.4497 (9)0.3423 (2)0.9711 (2)0.0657 (12)
H31.52610.28490.96280.079*
C41.2618 (8)0.3789 (2)0.92557 (19)0.0569 (11)
H41.21100.34640.88670.068*
C51.1438 (8)0.4660 (2)0.93705 (17)0.0448 (10)
C61.2314 (8)0.5139 (3)0.99724 (17)0.0467 (10)
C71.1235 (9)0.6017 (3)1.00860 (17)0.0574 (11)
H71.18010.63311.04750.069*
C80.9366 (9)0.6424 (2)0.96396 (18)0.0597 (12)
H80.86900.70090.97240.072*
C90.8490 (8)0.5959 (2)0.90615 (18)0.0485 (10)
C100.9455 (8)0.5084 (2)0.89194 (16)0.0441 (9)
C110.8348 (8)0.4632 (3)0.82957 (18)0.0508 (10)
C120.6103 (9)0.5125 (2)0.78450 (18)0.0547 (11)
C130.5429 (8)0.6037 (2)0.80144 (18)0.0482 (10)
C140.6529 (8)0.6393 (2)0.8583 (2)0.0514 (11)
C150.3586 (8)0.6724 (2)0.76485 (18)0.0610 (11)
H150.15900.65070.76340.073*
C160.3806 (9)0.7536 (3)0.81363 (19)0.0889 (14)
H16A0.45810.80620.79010.107*
H16B0.19170.76920.83130.107*
C171.5136 (8)0.5226 (3)1.10832 (15)0.0772 (13)
H17A1.34720.53221.13650.116*
H17B1.59590.58031.09620.116*
H17C1.65320.48731.13290.116*
C180.4609 (9)0.6927 (2)0.69344 (17)0.0875 (15)
H18A0.65690.71350.69490.131*
H18B0.34140.73910.67370.131*
H18C0.44940.63850.66630.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.106 (2)0.0545 (17)0.0810 (19)0.0212 (18)0.0224 (18)0.0241 (15)
O20.096 (2)0.0665 (18)0.0754 (19)0.0015 (18)0.0249 (18)0.0080 (16)
O30.089 (2)0.0457 (16)0.0727 (18)0.0135 (17)0.0073 (16)0.0040 (14)
C10.053 (3)0.065 (3)0.049 (3)0.011 (3)0.000 (2)0.001 (2)
C20.064 (3)0.074 (3)0.062 (3)0.004 (3)0.005 (2)0.007 (3)
C30.070 (3)0.053 (3)0.073 (3)0.010 (3)0.002 (3)0.002 (2)
C40.063 (3)0.047 (3)0.061 (3)0.005 (2)0.001 (2)0.003 (2)
C50.044 (2)0.044 (2)0.047 (2)0.008 (2)0.009 (2)0.001 (2)
C60.047 (2)0.047 (3)0.045 (2)0.008 (2)0.009 (2)0.001 (2)
C70.068 (3)0.053 (3)0.052 (3)0.009 (3)0.004 (2)0.015 (2)
C80.075 (3)0.045 (2)0.059 (3)0.000 (2)0.000 (3)0.012 (2)
C90.054 (3)0.040 (2)0.052 (3)0.003 (2)0.006 (2)0.001 (2)
C100.049 (2)0.042 (2)0.041 (2)0.005 (2)0.009 (2)0.004 (2)
C110.052 (3)0.044 (2)0.056 (3)0.002 (2)0.004 (2)0.000 (2)
C120.060 (3)0.050 (3)0.054 (3)0.009 (2)0.000 (2)0.000 (2)
C130.055 (3)0.041 (2)0.049 (2)0.005 (2)0.007 (2)0.005 (2)
C140.060 (3)0.032 (2)0.063 (3)0.002 (2)0.016 (2)0.000 (2)
C150.058 (3)0.058 (3)0.067 (3)0.003 (2)0.001 (2)0.007 (2)
C160.111 (4)0.065 (3)0.091 (3)0.029 (3)0.024 (3)0.004 (3)
C170.078 (3)0.099 (3)0.055 (2)0.002 (3)0.010 (2)0.008 (2)
C180.113 (4)0.078 (3)0.071 (3)0.024 (3)0.020 (3)0.023 (2)
Geometric parameters (Å, º) top
O1—C111.205 (4)C8—H80.9300
O2—C121.223 (3)C9—C101.390 (4)
O3—C141.347 (3)C9—C141.455 (5)
O3—C161.483 (4)C10—C111.485 (4)
C1—C21.344 (4)C11—C121.547 (5)
C1—C61.434 (4)C12—C131.416 (4)
C1—C171.510 (4)C13—C141.335 (4)
C2—C31.405 (4)C13—C151.505 (4)
C2—H20.9300C15—C181.510 (4)
C3—C41.360 (4)C15—C161.533 (4)
C3—H30.9300C15—H150.9800
C4—C51.410 (4)C16—H16A0.9700
C4—H40.9300C16—H16B0.9700
C5—C101.421 (4)C17—H17A0.9600
C5—C61.435 (4)C17—H17B0.9600
C6—C71.401 (4)C17—H17C0.9600
C7—C81.371 (4)C18—H18A0.9600
C7—H70.9300C18—H18B0.9600
C8—C91.386 (4)C18—H18C0.9600
C14—O3—C16107.0 (3)O2—C12—C13124.4 (4)
C2—C1—C6118.9 (4)O2—C12—C11118.4 (3)
C2—C1—C17121.2 (4)C13—C12—C11117.2 (4)
C6—C1—C17119.8 (3)C14—C13—C12118.9 (4)
C1—C2—C3121.2 (4)C14—C13—C15110.7 (3)
C1—C2—H2119.4C12—C13—C15130.4 (4)
C3—C2—H2119.4C13—C14—O3114.3 (4)
C4—C3—C2121.7 (4)C13—C14—C9127.4 (4)
C4—C3—H3119.2O3—C14—C9118.3 (4)
C2—C3—H3119.2C13—C15—C18113.4 (3)
C3—C4—C5120.2 (4)C13—C15—C16100.7 (3)
C3—C4—H4119.9C18—C15—C16113.9 (3)
C5—C4—H4119.9C13—C15—H15109.5
C4—C5—C10123.4 (4)C18—C15—H15109.5
C4—C5—C6117.9 (3)C16—C15—H15109.5
C10—C5—C6118.8 (3)O3—C16—C15107.2 (3)
C7—C6—C1121.0 (4)O3—C16—H16A110.3
C7—C6—C5118.8 (3)C15—C16—H16A110.3
C1—C6—C5120.2 (3)O3—C16—H16B110.3
C8—C7—C6121.8 (4)C15—C16—H16B110.3
C8—C7—H7119.1H16A—C16—H16B108.5
C6—C7—H7119.1C1—C17—H17A109.5
C7—C8—C9119.6 (4)C1—C17—H17B109.5
C7—C8—H8120.2H17A—C17—H17B109.5
C9—C8—H8120.2C1—C17—H17C109.5
C8—C9—C10121.7 (4)H17A—C17—H17C109.5
C8—C9—C14119.7 (4)H17B—C17—H17C109.5
C10—C9—C14118.5 (4)C15—C18—H18A109.5
C9—C10—C5119.3 (3)C15—C18—H18B109.5
C9—C10—C11117.9 (4)H18A—C18—H18B109.5
C5—C10—C11122.8 (3)C15—C18—H18C109.5
O1—C11—C10124.2 (4)H18A—C18—H18C109.5
O1—C11—C12116.1 (3)H18B—C18—H18C109.5
C10—C11—C12119.7 (3)
C6—C1—C2—C31.1 (6)C5—C10—C11—O14.4 (6)
C17—C1—C2—C3179.9 (3)C9—C10—C11—C122.3 (5)
C1—C2—C3—C40.0 (6)C5—C10—C11—C12177.7 (3)
C2—C3—C4—C50.2 (6)O1—C11—C12—O28.4 (5)
C3—C4—C5—C10179.7 (3)C10—C11—C12—O2173.6 (3)
C3—C4—C5—C60.7 (5)O1—C11—C12—C13171.5 (4)
C2—C1—C6—C7177.9 (4)C10—C11—C12—C136.5 (5)
C17—C1—C6—C71.1 (5)O2—C12—C13—C14173.8 (4)
C2—C1—C6—C52.0 (5)C11—C12—C13—C146.4 (5)
C17—C1—C6—C5179.0 (3)O2—C12—C13—C156.3 (6)
C4—C5—C6—C7178.1 (3)C11—C12—C13—C15173.6 (3)
C10—C5—C6—C71.5 (4)C12—C13—C14—O3179.6 (3)
C4—C5—C6—C11.8 (5)C15—C13—C14—O30.4 (4)
C10—C5—C6—C1178.6 (3)C12—C13—C14—C92.3 (6)
C1—C6—C7—C8179.9 (3)C15—C13—C14—C9177.7 (3)
C5—C6—C7—C80.2 (5)C16—O3—C14—C130.8 (4)
C6—C7—C8—C90.5 (6)C16—O3—C14—C9179.1 (3)
C7—C8—C9—C100.1 (5)C8—C9—C14—C13178.3 (4)
C7—C8—C9—C14179.4 (3)C10—C9—C14—C132.2 (6)
C8—C9—C10—C51.3 (5)C8—C9—C14—O33.7 (5)
C14—C9—C10—C5178.1 (3)C10—C9—C14—O3175.8 (3)
C8—C9—C10—C11178.7 (3)C14—C13—C15—C18120.7 (3)
C14—C9—C10—C111.9 (5)C12—C13—C15—C1859.3 (5)
C4—C5—C10—C9177.5 (3)C14—C13—C15—C161.4 (4)
C6—C5—C10—C92.0 (4)C12—C13—C15—C16178.7 (4)
C4—C5—C10—C112.5 (5)C14—O3—C16—C151.7 (4)
C6—C5—C10—C11178.0 (3)C13—C15—C16—O31.8 (4)
C9—C10—C11—O1175.6 (4)C18—C15—C16—O3120.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O1i0.962.533.379 (4)147
C16—H16A···O2i0.972.483.384 (5)155
C17—H17A···O2ii0.962.563.484 (4)162
C17—H17C···O2iii0.962.663.377 (4)132
C7—H7···O3iv0.932.673.481 (4)146
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+3/2, y+1, z+1/2; (iii) x+5/2, y+1, z+1/2; (iv) x+1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC18H14O3
Mr278.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)4.6415 (10), 14.692 (3), 19.633 (4)
V3)1338.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.977, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
6925, 2502, 1140
Rint0.079
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.077, 1.03
No. of reflections2502
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.26

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O1i0.962.533.379 (4)147.1
C16—H16A···O2i0.972.483.384 (5)154.8
C17—H17A···O2ii0.962.563.484 (4)162.4
C17—H17C···O2iii0.962.663.377 (4)131.6
C7—H7···O3iv0.932.673.481 (4)146.1
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+3/2, y+1, z+1/2; (iii) x+5/2, y+1, z+1/2; (iv) x+1/2, y+3/2, z+2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Province (No. 092102310075) and the Education Chamber of Henan Province (No. 2008B150013 ), which are gratefully acknowledged.

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, H.-M., Chui, K.-Y., Tan, F. W. L., Yang, Y., Zhong, Z.-P., Lee, C.-M., Sham, H.-L. & Wong, H. N. C. (1991). J. Med. Chem. 34, 1675–1692.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRyu, S. Y., Lee, C. O. & Choi, S. U. (1997). Planta Med. 63, 339–342.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, M., Cui, Y., Wang, H.-Q., Hu, H.-Y. & Zhang, B.-J. (1999). Pharm. Biomed. Anal. 21, 207–213.  Web of Science CrossRef Google Scholar
First citationYagi, A., Fujimoto, K., Tanonaka, K., Hirai, K. & Takeo, S. (1989). Planta Med. B55, 51–54.  CrossRef Google Scholar
First citationZhang, L., Wang, J.-K., Qu, Y. & Nie, Q. (2005). Acta Cryst. E61, o3582–o3583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, J.-R. & Luo, H.-W. (2004). J. Chin. Pharm. Univ. 35, 368–370.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds