organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4,5-diacet­­oxy-1-oxo-2-phenyl­perhydro-4,6-ep­oxy­cyclo­penta­[c]pyridine-7-carboxyl­ate ethanol solvate

aBaku State University, Z. Khalilov St 23, Baku, AZ-1148, Azerbaijan, bOrganic Chemistry Department, Russian Peoples Friendship University, Miklukho-Maklaya St 6, Moscow 117198, Russian Federation, and cX-Ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: vkh@xray.ineos.ac.ru

(Received 21 October 2009; accepted 29 October 2009; online 4 November 2009)

The title compound, the product of an acid-catalysed Wagner–Meerwein skeletal rearrangement, crystallizes as an ethanol monosolvate, C20H21NO8·C2H6O. The title mol­ecule comprises a fused tricyclic system containing two five-membered rings (cyclo­pentane and tetra­hydro­furan) in the usual envelope conformations and one six-membered ring (piperidinone) adopting a flattened twist–boat conformation.

Related literature

For general background, see: Popp & McEwen (1958[Popp, F. D. & McEwen, W. E. (1958). Chem. Rev. 58, 321-401.]); Hogeveen & Van Krutchten (1979[Hogeveen, H. & Van Krutchten, E. M. G. A. (1979). Top. Curr. Chem. 80, 89-124.]); Hanson (1991[Hanson, J. R. (1991). Comp. Org. Synth. 3, 705-719.]). For related structures, see: Lindberg (1980[Lindberg, T. (1980). Strategies and Tactics in Organic Synthesis, Vol. 2, pp. 221-262. New York: Academic Press.]); Jung & Street (1985[Jung, M. E. & Street, L. J. (1985). Tetrahedron Lett. 26, 3639-3642.]); Keay et al. (1989[Keay, B. A., Rogers, C. & Bontront, J.-L. J. (1989). J. Chem. Soc. Chem. Commun. pp. 1782-1784.]); Zubkov et al. (2004[Zubkov, F. I., Nikitina, E. V., Turchin, K. F., Aleksandrov, G. G., Safronova, A. A., Borisov, R. S. & Varlamov, A. V. (2004). J. Org. Chem. 69, 432-43.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21NO8·C2H6O

  • Mr = 449.45

  • Monoclinic, C 2/c

  • a = 23.2211 (13) Å

  • b = 14.9519 (8) Å

  • c = 12.9201 (7) Å

  • β = 107.735 (1)°

  • V = 4272.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.25 × 0.18 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.989

  • 26806 measured reflections

  • 6173 independent reflections

  • 5073 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.00

  • 6173 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9O⋯O1i 0.91 1.87 2.7628 (12) 168
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Wagner–Meerwein rearrangement and its analogues are largely used in current organic chemistry for the synthesis of wide range of natural derivatives, particular, terpenes and steroids. However, only a few examples of this skeletal rearrangement for nitrogen-containing compounds have been studied (Lindberg, 1980; Jung & Street, 1985; Keay et al., 1989; Zubkov et al., 2004). This work reports the structural characterization of a product of the acid–catalyzed Wagner–Meerwein skeletal rearrangement - methyl 1–oxo–2–phenyloctahydro–1H–4,6–epoxycyclopenta[c] pyridine–7–carboxylate (I).

Compound I crystallizes as an ethanol solvate in 1:1 ratio, i.e., C20H21NO8.C2H5OH. The molecule I comprises a fused tricyclic system containing two five–membered rings (cyclopentane and tetrahydrofuran) and one six–memberedring (tetrahydropyridinone) (Fig. 1). Both five–membered rings of the bicyclic fragment have usual envelope–conformations, and the central six–membered ring adopts the flattened twist–boat–conformation. The nitrogen N2 atom has a trigonal–planar geometry (sum of the bond angles is 357.5°), which is slightly pyramidalized due to the steric reasons. The dihedral angle between the planes of the tetrahydropyridinone and phenyl rings is 57.73 (4)°. The two carboxylate substituents at the C4 and C5 carbon atoms are in the sterically unfavorable syn–periplanar configuration relative to the tetrahydrofuran ring. Such a disposition is explained by the direction of the Wagner–Meerwein rearrangement.

The molecules I are diastereomers and possess six asymmetric centers at the C4, C4A, C5, C6, C7 and C7A carbon atoms. The crystal of (I) is racemate and consists of enantiomeric pairs with the relative configuration of the centers rac-4R*,4aR*,5R*, 6S*,7S*,7aR*.

The ethanol solvate molecule is bound to the molecule I by the strong hydrogen bond O9—H9O···O1i [O9···O1i = 2.763 (1)Å, H9O···O1i = 1.87Å, O9—H9O···O1i = 168°]. Symmetry code: (i) -x+1/2, -y+3/2, -z+1.

Related literature top

For general background, see: Popp & McEwen (1958); Hogeveen & Van Krutchten (1979); Hanson (1991). For related structures, see: Lindberg (1980); Jung & Street (1985); Keay et al. (1989); Zubkov et al. (2004).

Experimental top

An etherate of boron trifluoride (0.4 ml, 3.2 mmol) was added to a solution of methyl ether of (1aR*,2R*,3R*,3aS*, 6aR*,6bR*)–4–oxo–5–phenylocta–hydro–2, 6a–epoxyoxireno[e]isoindol–3–carboxylic acid (1.6 mmol) in 15 ml acetic anhydride. The mixture was stirred for 2 h at 293 K, diluted with 100 ml water, treated with a saturated solution of sodium carbonate and extracted by chloroform (3× 50 ml). The extract was dried by magnesium sulfate, separated and then evaporated to give white crystals of (I) (Fig. 2). Yield is 75%. M.p. = 463–464 K. IR, ν/cm-1: 1665, 1738 (NCO, CO2Me, COMe). Mass spectrum, m/z (Ir(%)): 403 [M+] (1), 343 (5), 256 (4), 230 (5), 188 (16), 168 (6), 124 (20), 104 (17), 77 (22), 43 (100). 1H NMR (CDCl3, 293 K): δ = 7.39 (m, 4H, H9, H10, H12, H13), 7.28 (m, 1H, H11), 4.90 (d, 1H, H5, J5,4A = 1.3), 4.84 (s, 1H, H6), 4.47 (d, 1H, H3A, J3A,3B = 13.4), 4.01 (d, 1H, H3B, J3A,3B = 13.4), 3.73 (s, 3H, CO2Me), 3.65 (m, 1H, H4A), 3.29 (d, 1H, H7A, J7,7A = 11.4), 3.28 (d, 1H, H7, J7,7A = 11.4), 2.11 (s, 3H, COMe), 2.04 (s, 3H, COMe). 13C NMR (CDCl3, 293 K): δ = 170.1 (C1), 168.8 (CO2Me), 168.3, 166.9 (OCOMe), 141.5 (C8), 129.4 (C10(C12)), 127.5 (C11), 126.7 (C9(C13)), 104.5 (C4), 82.2 (C6), 76.6 (C5), 57.6 (C3), 52.5 (CO2Me), 46.2 (C7), 44.8 (C4A), 39.0 (C7A), 21.7, 20.8 (OCOMe).

Refinement top

The hydroxy–H atom of the ethanol solvate molecule was localized in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(O)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3–groups and Uiso(H) = 1.2Ueq(C) for the other groups].

62 reflections, with experimentally observed F2 deviating significantly from the theoretically calculated F2, were omitted from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of I with the atom–numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Dashed line indicates the intermolecular hydrogen bond.
[Figure 2] Fig. 2. Wagner–Meerwein skeletal rearrangement of 3a,6;4,5–diepoxyisoindol–1–one.
Methyl 4,5-diacetoxy-1-oxo-2-phenylperhydro-4,6- epoxycyclopenta[c]pyridine-7-carboxylate ethanol solvate top
Crystal data top
C20H21NO8·C2H6OF(000) = 1904
Mr = 449.45Dx = 1.397 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7315 reflections
a = 23.2211 (13) Åθ = 2.5–32.3°
b = 14.9519 (8) ŵ = 0.11 mm1
c = 12.9201 (7) ÅT = 100 K
β = 107.735 (1)°Prism, colourless
V = 4272.7 (4) Å30.25 × 0.18 × 0.10 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
6173 independent reflections
Radiation source: Fine–focus sealed tube5073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 3232
Tmin = 0.976, Tmax = 0.989k = 2021
26806 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: Difmap
wR(F2) = 0.097H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.05P)2 + 2.250P]
where P = (Fo2 + 2Fc2)/3
6173 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H21NO8·C2H6OV = 4272.7 (4) Å3
Mr = 449.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.2211 (13) ŵ = 0.11 mm1
b = 14.9519 (8) ÅT = 100 K
c = 12.9201 (7) Å0.25 × 0.18 × 0.10 mm
β = 107.735 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6173 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5073 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.989Rint = 0.034
26806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.00Δρmax = 0.39 e Å3
6173 reflectionsΔρmin = 0.26 e Å3
293 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20094 (3)0.65247 (5)0.44248 (6)0.01914 (16)
O20.36476 (3)0.48946 (5)0.28968 (6)0.01356 (14)
O30.31626 (4)0.45288 (6)0.11528 (6)0.02113 (17)
O40.44084 (3)0.64234 (5)0.34858 (6)0.01609 (15)
O50.48418 (4)0.61959 (6)0.52738 (7)0.02546 (19)
O60.18854 (4)0.70348 (6)0.19818 (7)0.02429 (18)
O70.23968 (4)0.81107 (5)0.14300 (6)0.02182 (17)
O80.32310 (3)0.62521 (5)0.20762 (5)0.01330 (14)
C10.23525 (4)0.62345 (7)0.39442 (8)0.01334 (18)
N20.22728 (4)0.54326 (6)0.34251 (7)0.01240 (16)
C30.25757 (4)0.52025 (7)0.26168 (8)0.01347 (18)
H3A0.23270.54210.18960.016*
H3B0.26020.45430.25740.016*
C40.32150 (4)0.55971 (6)0.28697 (7)0.01159 (18)
C4A0.34447 (4)0.60924 (7)0.39505 (8)0.01199 (17)
H4A0.36140.57080.46070.014*
C50.38847 (4)0.67743 (7)0.37165 (8)0.01411 (18)
H50.39910.72620.42720.017*
C60.34318 (4)0.70795 (7)0.26634 (8)0.01408 (18)
H60.35920.75330.22520.017*
C70.29088 (4)0.74178 (7)0.30629 (8)0.01415 (18)
H70.30120.80260.33900.017*
C7A0.29279 (4)0.67293 (7)0.39905 (8)0.01278 (18)
H7A0.30630.70580.46980.015*
C80.17593 (4)0.48940 (7)0.34079 (8)0.01284 (18)
C90.13311 (5)0.46690 (7)0.24318 (8)0.01558 (19)
H90.13660.48910.17640.019*
C100.08501 (5)0.41157 (7)0.24403 (9)0.0186 (2)
H100.05570.39560.17760.022*
C110.07984 (5)0.37975 (7)0.34176 (9)0.0187 (2)
H110.04670.34250.34200.022*
C120.12304 (5)0.40223 (7)0.43944 (9)0.0188 (2)
H120.11950.38020.50620.023*
C130.17128 (5)0.45692 (7)0.43901 (8)0.0163 (2)
H130.20100.47210.50540.020*
C140.35671 (5)0.43974 (7)0.19797 (8)0.01534 (19)
C150.40315 (5)0.36697 (7)0.21549 (9)0.0204 (2)
H15A0.42090.36730.15580.031*
H15B0.38390.30900.21770.031*
H15C0.43490.37710.28440.031*
C160.48659 (5)0.61592 (7)0.43569 (9)0.0175 (2)
C170.53882 (5)0.58192 (9)0.40188 (10)0.0243 (2)
H17A0.57200.56550.46650.036*
H17B0.55250.62870.36170.036*
H17C0.52610.52930.35530.036*
C180.23336 (5)0.74775 (7)0.21196 (8)0.01519 (19)
C190.18882 (6)0.82342 (9)0.04612 (9)0.0259 (2)
H19A0.19580.87610.00650.039*
H19B0.15190.83200.06660.039*
H19C0.18430.77040.00030.039*
O90.40693 (4)0.86539 (6)0.51075 (7)0.02495 (18)
H9O0.37270.86720.53100.037*
C200.45662 (5)0.86808 (8)0.60809 (9)0.0233 (2)
H20A0.45470.81640.65490.028*
H20B0.45510.92370.64880.028*
C210.51438 (5)0.86493 (9)0.57799 (11)0.0284 (3)
H21A0.54900.86490.64420.043*
H21B0.51660.91740.53390.043*
H21C0.51510.81050.53620.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0175 (4)0.0206 (4)0.0229 (4)0.0009 (3)0.0115 (3)0.0067 (3)
O20.0151 (3)0.0152 (3)0.0112 (3)0.0032 (3)0.0053 (3)0.0011 (3)
O30.0213 (4)0.0273 (4)0.0145 (4)0.0032 (3)0.0049 (3)0.0050 (3)
O40.0118 (3)0.0227 (4)0.0143 (3)0.0001 (3)0.0047 (3)0.0001 (3)
O50.0213 (4)0.0378 (5)0.0159 (4)0.0030 (3)0.0037 (3)0.0008 (3)
O60.0179 (4)0.0269 (4)0.0240 (4)0.0027 (3)0.0004 (3)0.0072 (3)
O70.0250 (4)0.0205 (4)0.0165 (4)0.0022 (3)0.0012 (3)0.0054 (3)
O80.0166 (3)0.0142 (3)0.0093 (3)0.0015 (3)0.0042 (3)0.0007 (2)
C10.0135 (4)0.0147 (4)0.0118 (4)0.0008 (3)0.0037 (3)0.0004 (3)
N20.0123 (4)0.0152 (4)0.0113 (4)0.0016 (3)0.0060 (3)0.0020 (3)
C30.0138 (4)0.0165 (4)0.0116 (4)0.0020 (3)0.0061 (3)0.0035 (3)
C40.0128 (4)0.0128 (4)0.0097 (4)0.0011 (3)0.0043 (3)0.0004 (3)
C4A0.0127 (4)0.0145 (4)0.0091 (4)0.0003 (3)0.0038 (3)0.0001 (3)
C50.0118 (4)0.0170 (4)0.0138 (4)0.0006 (3)0.0044 (3)0.0010 (4)
C60.0145 (4)0.0143 (4)0.0139 (4)0.0020 (3)0.0049 (4)0.0003 (3)
C70.0147 (4)0.0133 (4)0.0139 (4)0.0007 (3)0.0036 (4)0.0008 (3)
C7A0.0133 (4)0.0138 (4)0.0114 (4)0.0000 (3)0.0041 (3)0.0017 (3)
C80.0124 (4)0.0135 (4)0.0135 (4)0.0004 (3)0.0053 (3)0.0006 (3)
C90.0144 (4)0.0186 (5)0.0137 (4)0.0002 (4)0.0042 (4)0.0002 (4)
C100.0135 (4)0.0212 (5)0.0201 (5)0.0019 (4)0.0036 (4)0.0024 (4)
C110.0149 (5)0.0172 (5)0.0270 (5)0.0014 (4)0.0106 (4)0.0003 (4)
C120.0188 (5)0.0209 (5)0.0199 (5)0.0017 (4)0.0105 (4)0.0040 (4)
C130.0165 (5)0.0203 (5)0.0131 (4)0.0000 (4)0.0060 (4)0.0005 (4)
C140.0177 (5)0.0168 (5)0.0140 (4)0.0004 (4)0.0085 (4)0.0020 (4)
C150.0232 (5)0.0196 (5)0.0208 (5)0.0044 (4)0.0102 (4)0.0014 (4)
C160.0140 (4)0.0199 (5)0.0174 (5)0.0027 (4)0.0032 (4)0.0002 (4)
C170.0157 (5)0.0332 (6)0.0246 (6)0.0036 (4)0.0072 (4)0.0026 (5)
C180.0181 (5)0.0129 (4)0.0145 (4)0.0027 (4)0.0049 (4)0.0006 (3)
C190.0285 (6)0.0264 (6)0.0172 (5)0.0011 (5)0.0011 (4)0.0063 (4)
O90.0180 (4)0.0368 (5)0.0221 (4)0.0021 (3)0.0091 (3)0.0093 (3)
C200.0207 (5)0.0302 (6)0.0206 (5)0.0027 (4)0.0089 (4)0.0044 (4)
C210.0204 (5)0.0359 (7)0.0315 (6)0.0040 (5)0.0117 (5)0.0063 (5)
Geometric parameters (Å, º) top
O1—C11.2288 (12)C8—C91.3886 (14)
O2—C141.3625 (12)C8—C131.3933 (14)
O2—C41.4466 (11)C9—C101.3927 (14)
O3—C141.2044 (13)C9—H90.9500
O4—C161.3501 (13)C10—C111.3884 (16)
O4—C51.4366 (12)C10—H100.9500
O5—C161.2040 (13)C11—C121.3930 (16)
O6—C181.2001 (13)C11—H110.9500
O7—C181.3384 (13)C12—C131.3882 (15)
O7—C191.4475 (14)C12—H120.9500
O8—C41.4264 (11)C13—H130.9500
O8—C61.4518 (12)C14—C151.4998 (15)
C1—N21.3587 (13)C15—H15A0.9800
C1—C7A1.5125 (13)C15—H15B0.9800
N2—C81.4335 (12)C15—H15C0.9800
N2—C31.4668 (12)C16—C171.4978 (15)
C3—C41.5372 (13)C17—H17A0.9800
C3—H3A0.9900C17—H17B0.9800
C3—H3B0.9900C17—H17C0.9800
C4—C4A1.5262 (13)C19—H19A0.9800
C4A—C51.5372 (14)C19—H19B0.9800
C4A—C7A1.5451 (13)C19—H19C0.9800
C4A—H4A1.0000O9—C201.4252 (14)
C5—C61.5145 (14)O9—H9O0.9090
C5—H51.0000C20—C211.5067 (16)
C6—C71.5425 (14)C20—H20A0.9900
C6—H61.0000C20—H20B0.9900
C7—C181.5118 (14)C21—H21A0.9800
C7—C7A1.5703 (14)C21—H21B0.9800
C7—H71.0000C21—H21C0.9800
C7A—H7A1.0000
C14—O2—C4117.69 (8)C8—C9—C10119.40 (9)
C16—O4—C5115.76 (8)C8—C9—H9120.3
C18—O7—C19116.10 (9)C10—C9—H9120.3
C4—O8—C6106.50 (7)C11—C10—C9120.16 (10)
O1—C1—N2123.31 (9)C11—C10—H10119.9
O1—C1—C7A120.55 (9)C9—C10—H10119.9
N2—C1—C7A115.91 (8)C10—C11—C12120.22 (10)
C1—N2—C8119.40 (8)C10—C11—H11119.9
C1—N2—C3122.39 (8)C12—C11—H11119.9
C8—N2—C3115.74 (8)C13—C12—C11119.85 (10)
N2—C3—C4113.58 (8)C13—C12—H12120.1
N2—C3—H3A108.8C11—C12—H12120.1
C4—C3—H3A108.8C12—C13—C8119.70 (10)
N2—C3—H3B108.8C12—C13—H13120.2
C4—C3—H3B108.8C8—C13—H13120.2
H3A—C3—H3B107.7O3—C14—O2123.08 (9)
O8—C4—O2110.24 (7)O3—C14—C15125.65 (10)
O8—C4—C4A104.24 (7)O2—C14—C15111.26 (9)
O2—C4—C4A106.47 (7)C14—C15—H15A109.5
O8—C4—C3110.22 (8)C14—C15—H15B109.5
O2—C4—C3110.19 (8)H15A—C15—H15B109.5
C4A—C4—C3115.25 (8)C14—C15—H15C109.5
C4—C4A—C5102.12 (7)H15A—C15—H15C109.5
C4—C4A—C7A105.73 (8)H15B—C15—H15C109.5
C5—C4A—C7A99.63 (8)O5—C16—O4123.12 (10)
C4—C4A—H4A115.8O5—C16—C17125.93 (10)
C5—C4A—H4A115.7O4—C16—C17110.95 (9)
C7A—C4A—H4A115.8C16—C17—H17A109.5
O4—C5—C6108.88 (8)C16—C17—H17B109.5
O4—C5—C4A117.00 (8)H17A—C17—H17B109.5
C6—C5—C4A93.17 (7)C16—C17—H17C109.5
O4—C5—H5112.1H17A—C17—H17C109.5
C6—C5—H5112.1H17B—C17—H17C109.5
C4A—C5—H5112.1O6—C18—O7123.87 (10)
O8—C6—C5103.73 (8)O6—C18—C7126.90 (10)
O8—C6—C7107.10 (8)O7—C18—C7109.22 (9)
C5—C6—C7101.55 (8)O7—C19—H19A109.5
O8—C6—H6114.4O7—C19—H19B109.5
C5—C6—H6114.4H19A—C19—H19B109.5
C7—C6—H6114.4O7—C19—H19C109.5
C18—C7—C6109.99 (8)H19A—C19—H19C109.5
C18—C7—C7A117.81 (8)H19B—C19—H19C109.5
C6—C7—C7A101.44 (8)C20—O9—H9O106.7
C18—C7—H7109.1O9—C20—C21108.45 (9)
C6—C7—H7109.1O9—C20—H20A110.0
C7A—C7—H7109.1C21—C20—H20A110.0
C1—C7A—C4A112.52 (8)O9—C20—H20B110.0
C1—C7A—C7118.12 (8)C21—C20—H20B110.0
C4A—C7A—C7102.72 (7)H20A—C20—H20B108.4
C1—C7A—H7A107.7C20—C21—H21A109.5
C4A—C7A—H7A107.7C20—C21—H21B109.5
C7—C7A—H7A107.7H21A—C21—H21B109.5
C9—C8—C13120.67 (9)C20—C21—H21C109.5
C9—C8—N2120.81 (9)H21A—C21—H21C109.5
C13—C8—N2118.46 (9)H21B—C21—H21C109.5
O1—C1—N2—C81.28 (15)C5—C6—C7—C7A36.36 (9)
C7A—C1—N2—C8175.88 (8)O1—C1—C7A—C4A147.32 (9)
O1—C1—N2—C3162.71 (9)N2—C1—C7A—C4A27.44 (12)
C7A—C1—N2—C322.70 (13)O1—C1—C7A—C793.22 (12)
C1—N2—C3—C434.80 (13)N2—C1—C7A—C792.02 (11)
C8—N2—C3—C4163.14 (8)C4—C4A—C7A—C160.66 (10)
C6—O8—C4—O2116.23 (8)C5—C4A—C7A—C1166.26 (8)
C6—O8—C4—C4A2.31 (9)C4—C4A—C7A—C767.41 (9)
C6—O8—C4—C3121.92 (8)C5—C4A—C7A—C738.19 (9)
C14—O2—C4—O862.44 (10)C18—C7—C7A—C16.00 (13)
C14—O2—C4—C4A174.93 (8)C6—C7—C7A—C1126.08 (9)
C14—O2—C4—C359.44 (10)C18—C7—C7A—C4A118.46 (9)
N2—C3—C4—O8112.96 (9)C6—C7—C7A—C4A1.62 (9)
N2—C3—C4—O2125.15 (8)C1—N2—C8—C9119.00 (11)
N2—C3—C4—C4A4.66 (12)C3—N2—C8—C943.63 (13)
O8—C4—C4A—C530.95 (9)C1—N2—C8—C1363.70 (13)
O2—C4—C4A—C585.63 (8)C3—N2—C8—C13133.67 (10)
C3—C4—C4A—C5151.87 (8)C13—C8—C9—C100.25 (15)
O8—C4—C4A—C7A72.84 (9)N2—C8—C9—C10177.49 (9)
O2—C4—C4A—C7A170.59 (7)C8—C9—C10—C110.39 (16)
C3—C4—C4A—C7A48.09 (10)C9—C10—C11—C120.65 (16)
C16—O4—C5—C6177.19 (8)C10—C11—C12—C130.26 (16)
C16—O4—C5—C4A78.93 (11)C11—C12—C13—C80.38 (16)
C4—C4A—C5—O464.12 (10)C9—C8—C13—C120.64 (15)
C7A—C4A—C5—O4172.64 (8)N2—C8—C13—C12177.94 (9)
C4—C4A—C5—C648.96 (8)C4—O2—C14—O31.47 (14)
C7A—C4A—C5—C659.56 (8)C4—O2—C14—C15177.06 (8)
C4—O8—C6—C535.64 (9)C5—O4—C16—O51.18 (15)
C4—O8—C6—C771.26 (9)C5—O4—C16—C17179.20 (9)
O4—C5—C6—O868.37 (9)C19—O7—C18—O61.27 (15)
C4A—C5—C6—O851.60 (8)C19—O7—C18—C7178.29 (9)
O4—C5—C6—C7179.39 (8)C6—C7—C18—O6113.51 (12)
C4A—C5—C6—C759.43 (8)C7A—C7—C18—O61.98 (15)
O8—C6—C7—C1853.38 (10)C6—C7—C18—O766.03 (10)
C5—C6—C7—C18161.82 (8)C7A—C7—C18—O7178.47 (8)
O8—C6—C7—C7A72.08 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9O···O1i0.911.872.7628 (12)168
Symmetry code: (i) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H21NO8·C2H6O
Mr449.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)23.2211 (13), 14.9519 (8), 12.9201 (7)
β (°) 107.735 (1)
V3)4272.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.18 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.976, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
26806, 6173, 5073
Rint0.034
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.00
No. of reflections6173
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9O···O1i0.911.872.7628 (12)168
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

We thank Professor Abel M. Maharramov for fruitful discussions and help with this work.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHanson, J. R. (1991). Comp. Org. Synth. 3, 705–719.  CrossRef Google Scholar
First citationHogeveen, H. & Van Krutchten, E. M. G. A. (1979). Top. Curr. Chem. 80, 89–124.  CrossRef CAS Google Scholar
First citationJung, M. E. & Street, L. J. (1985). Tetrahedron Lett. 26, 3639–3642.  CrossRef CAS Web of Science Google Scholar
First citationKeay, B. A., Rogers, C. & Bontront, J.-L. J. (1989). J. Chem. Soc. Chem. Commun. pp. 1782–1784.  CrossRef Web of Science Google Scholar
First citationLindberg, T. (1980). Strategies and Tactics in Organic Synthesis, Vol. 2, pp. 221–262. New York: Academic Press.  Google Scholar
First citationPopp, F. D. & McEwen, W. E. (1958). Chem. Rev. 58, 321–401.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZubkov, F. I., Nikitina, E. V., Turchin, K. F., Aleksandrov, G. G., Safronova, A. A., Borisov, R. S. & Varlamov, A. V. (2004). J. Org. Chem. 69, 432–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds