metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino­thia­zole-4-acetato)aquazinc(II)

aDepartment of Chemistry, Shangrao Normal University, Shangrao 334001, People's Republic of China, bKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), School of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and cDepartment of Chemistry and Biology, Yulin Teachers' College, Yulin 537000, People's Republic of China
*Correspondence e-mail: ljzhang@sru.jx.cn, hliang@mailbox.gxnu.edu.cn

(Received 22 October 2009; accepted 29 October 2009; online 4 November 2009)

In the title compound, [Zn(C5H5N2O2S)2(H2O)], the central Zn atom (2 site symmetry) is five-coordinated by two N and three O atoms [Zn—N = 2.047 (3) Å, Zn—O = 2.099 (2) and 1.974 (4) Å] in a distorted square-pyramidal geometry. Besides one O atom from a water mol­ecule, two 2-amino­thia­zole-4-acetate ligands provide two N and two O atoms as coordinated atoms. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds connect the mol­ecules into an infinite three-dimensional framework.

Related literature

For the pharmacological activity of potential metal-based drugs consisting of the thia­zole ligands and some physiologically active metal ions, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Bolos et al. (1999[Bolos, C. A., Fanourgakis, P. V., Christidis, P. C. & Nikolov, G. S. (1999). Polyhedron, 18, 1661-1668.]); Chang et al. (1982[Chang, C. K., Myoung, S. K. & Ward, B. (1982). Chem. Commun. pp. 716-719.]); Dea et al. (2008[Dea, S., Adhikari, S., Tilak-Jain, J., Menon, V. P. & Devasagayam, T. P. A. (2008). Chem. Biol. Interact. 173, 215-223.]). For related structures, see: Zhang et al. (2008a[Zhang, L.-J., Shen, X.-C. & Liang, H. (2008a). Acta Cryst. E64, m1248.],b[Zhang, L.-J., Shen, X.-C. & Liang, H. (2008b). Acta Cryst. E64, m1413-m1414.]); Sen et al. (1997[Sen, S., Mitra, S., Kundu, P., Saha, M. K., Krüger, C. & Bruckmann, J. (1997). Polyhedron, 16, 2475-2481.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C5H5N2O2S)2(H2O)]

  • Mr = 397.77

  • Monoclinic, C 2/c

  • a = 11.715 (2) Å

  • b = 9.822 (2) Å

  • c = 12.580 (3) Å

  • β = 91.24 (3)°

  • V = 1447.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 295 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.794, Tmax = 0.856

  • 4633 measured reflections

  • 1742 independent reflections

  • 1214 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 1.02

  • 1742 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.85 1.82 2.664 (3) 170
N2—H1A⋯O1ii 0.86 2.08 2.822 (4) 145
N2—H1B⋯O2iii 0.86 2.00 2.844 (4) 169
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some potential metal-based drugs consisting of the thiazole ligands and some physiologically active metal ions are attracting more and more attention due to their potentially higher pharmacological activity than pure thiazole ligands (Addison et al., 1984; Bolos et al., 1999; Chang et al., 1982; Dea et al., 2008). Recently, we also made our efforts to synthesize such a class of complexes and have obtained two single crystals containing 1,3-thiazole ring (Zhang et al. 2008a,b). The evident coordination activity of ethyl 2-aminothiazole-4-acetate (EATA) has been shown using AgNO3 as metal salt because colourless crystals were obtained in high yield overnight even at room temperature. Herein, a new five-coordinated title complex Zn(C5H5N2O2S)2(H2O), I, was synthesized using EATA and ZnSO4 as starting materials under the aid of ultrasonic irradiation. The 2-amino-4-thiazole acetate (ATA) ligand in complex I possibly formed in situ by acidic hydrolysis of EATA under ultrasonic irradiation because the ethanol/water solution of EATA is normally slightly acidic due to the present of Zn2+ solution.

The resulting Zn complex is built up from distorted square-pyramidal N2O2+O units (Sen et al. 1997), the central Zn atom is five-coordinated by two N and three O atoms [Zn–N = 2.047 (3)Å; Zn–O = 2.099 (2)Å and 1.974 (4)Å]. Besides one O atom from water molecule, two ATA ligands provide two N and two O atoms as coordinated atoms (Fig. 1). In the crystal structure, the intermolecular O–H···O and N–H···O hydrogen bonds (Table 1) connect these molecules into a infinite three-dimensional framework (Fig. 2).

Related literature top

For the pharmacological activity of potential metal-based drugs consisting of the thiazole ligands and some physiologically active metal ions, see: Addison et al. (1984); Bolos et al. (1999); Chang et al. (1982); Dea et al. (2008). For related structures, see: Zhang et al. (2008a,b); Sen et al. (1997).

Experimental top

The ethyl 2-aminothiazole-4-acetate (EATA) (1 mmol, 0.186 g) was dissolved in 5 ml of ethanol under magnetic stirring, followed by addition of 5 ml of distilled water. Then, ZnSO4 (1 mmol, 0.170 g) was added and dissolved after a 10-minutes ultrasonic treatment. The resulting pale-yellow solution was filtered and stayed at room temperature for half a month. Large amounts of colourless block single crystals were obtained in about 40% yield (based on Zn).

Refinement top

All hydrogen atoms attached on C, N and O atoms have been refined in the riding mode on their carrier atom, with C–H = 0.93-0.97Å, N–H = 0.86Å, O–H = 0.85Å and Uiso(H) = 1.2Ueq(C, N) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of title molecular complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry codes: (i) -x+1, y, -z+1/2.
[Figure 2] Fig. 2. The crystal packing of I, showing formation of the three-dimensional network structure via the intermolecular O–H···O and N–H···O hydrogen bonds as denoted with dashed lines. All other hydrogen atoms were omitted for clarity.
Bis(2-aminothiazole-4-acetato)aquazinc(II) top
Crystal data top
[Zn(C5H5N2O2S)2(H2O)]F(000) = 808
Mr = 397.77Dx = 1.826 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1742 reflections
a = 11.715 (2) Åθ = 2.7–25.5°
b = 9.822 (2) ŵ = 2.01 mm1
c = 12.580 (3) ÅT = 295 K
β = 91.24 (3)°Block, colourless
V = 1447.2 (5) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1742 independent reflections
Radiation source: fine-focus sealed tube1214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 159
Tmin = 0.794, Tmax = 0.856k = 1012
4633 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.046P)2]
where P = (Fo2 + 2Fc2)/3
1742 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Zn(C5H5N2O2S)2(H2O)]V = 1447.2 (5) Å3
Mr = 397.77Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.715 (2) ŵ = 2.01 mm1
b = 9.822 (2) ÅT = 295 K
c = 12.580 (3) Å0.12 × 0.10 × 0.08 mm
β = 91.24 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1742 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1214 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.856Rint = 0.042
4633 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.02Δρmax = 0.37 e Å3
1742 reflectionsΔρmin = 0.43 e Å3
101 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.77073 (6)0.25000.03185 (19)
S10.42899 (9)0.81081 (12)0.60112 (7)0.0498 (3)
O10.32429 (19)0.7822 (3)0.21472 (18)0.0392 (6)
O20.16766 (19)0.9045 (3)0.19131 (17)0.0411 (6)
O30.50000.5698 (4)0.25000.0499 (10)
H30.55510.52410.22530.075*
N10.4607 (2)0.8338 (3)0.3999 (2)0.0329 (7)
N20.6077 (3)0.7192 (4)0.4935 (2)0.0536 (9)
H1A0.64590.70730.43660.064*
H1B0.63400.68930.55340.064*
C50.2579 (3)0.8773 (4)0.2413 (2)0.0302 (8)
C10.5089 (3)0.7835 (4)0.4888 (3)0.0382 (8)
C30.3572 (3)0.8988 (4)0.4224 (3)0.0349 (8)
C20.3275 (3)0.8960 (4)0.5241 (3)0.0432 (9)
H20.26120.93460.55020.052*
C40.2909 (3)0.9663 (4)0.3346 (3)0.0417 (9)
H4A0.33551.04200.30870.050*
H4B0.22171.00370.36400.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0295 (3)0.0373 (4)0.0286 (3)0.0000.0023 (2)0.000
S10.0541 (7)0.0690 (8)0.0262 (5)0.0060 (5)0.0011 (4)0.0010 (4)
O10.0309 (13)0.0479 (16)0.0384 (14)0.0085 (11)0.0078 (11)0.0132 (12)
O20.0339 (14)0.0525 (17)0.0365 (14)0.0091 (11)0.0070 (11)0.0076 (12)
O30.031 (2)0.034 (2)0.085 (3)0.0000.0120 (18)0.000
N10.0329 (16)0.0388 (18)0.0266 (14)0.0008 (13)0.0058 (12)0.0007 (12)
N20.049 (2)0.075 (3)0.0363 (18)0.0228 (18)0.0075 (15)0.0126 (17)
C50.0248 (17)0.039 (2)0.0272 (17)0.0004 (14)0.0009 (13)0.0011 (14)
C10.044 (2)0.043 (2)0.0274 (18)0.0075 (17)0.0048 (15)0.0016 (15)
C30.0353 (19)0.036 (2)0.0331 (19)0.0005 (15)0.0062 (14)0.0086 (15)
C20.039 (2)0.054 (3)0.037 (2)0.0001 (18)0.0008 (16)0.0158 (17)
C40.041 (2)0.042 (2)0.042 (2)0.0084 (16)0.0086 (16)0.0108 (17)
Geometric parameters (Å, º) top
Zn1—O31.974 (4)N1—C31.404 (4)
Zn1—N12.047 (3)N2—C11.319 (5)
Zn1—N1i2.047 (3)N2—H1A0.8600
Zn1—O1i2.099 (2)N2—H1B0.8600
Zn1—O12.099 (2)C5—C41.507 (5)
S1—C11.733 (4)C3—C21.335 (4)
S1—C21.733 (4)C3—C41.492 (5)
O1—C51.266 (4)C2—H20.9300
O2—C51.247 (3)C4—H4A0.9700
O3—H30.8500C4—H4B0.9700
N1—C11.336 (4)
O3—Zn1—N1107.61 (8)H1A—N2—H1B120.0
O3—Zn1—N1i107.61 (8)O2—C5—O1122.9 (3)
N1—Zn1—N1i144.78 (17)O2—C5—C4118.0 (3)
O3—Zn1—O1i93.07 (7)O1—C5—C4119.0 (3)
N1—Zn1—O1i91.60 (10)N2—C1—N1124.7 (3)
N1i—Zn1—O1i86.54 (10)N2—C1—S1121.8 (3)
O3—Zn1—O193.07 (7)N1—C1—S1113.6 (3)
N1—Zn1—O186.54 (10)C2—C3—N1115.4 (3)
N1i—Zn1—O191.60 (10)C2—C3—C4125.2 (3)
O1i—Zn1—O1173.87 (14)N1—C3—C4119.5 (3)
C1—S1—C289.73 (17)C3—C2—S1110.8 (3)
C5—O1—Zn1126.1 (2)C3—C2—H2124.6
Zn1—O3—H3121.8S1—C2—H2124.6
H3—O3—H3i116.3C3—C4—C5116.1 (3)
C1—N1—C3110.5 (3)C3—C4—H4A108.3
C1—N1—Zn1124.0 (3)C5—C4—H4A108.3
C3—N1—Zn1122.4 (2)C3—C4—H4B108.3
C1—N2—H1A120.0C5—C4—H4B108.3
C1—N2—H1B120.0H4A—C4—H4B107.4
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2ii0.851.822.664 (3)170
N2—H1A···O1i0.862.082.822 (4)145
N2—H1B···O2iii0.862.002.844 (4)169
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C5H5N2O2S)2(H2O)]
Mr397.77
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)11.715 (2), 9.822 (2), 12.580 (3)
β (°) 91.24 (3)
V3)1447.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.794, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
4633, 1742, 1214
Rint0.042
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.02
No. of reflections1742
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.43

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.851.822.664 (3)169.7
N2—H1A···O1ii0.862.082.822 (4)144.6
N2—H1B···O2iii0.862.002.844 (4)168.5
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y, z+1/2; (iii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The National Natural Science Foundation of China (No. 20701010), the Natural Science Foundation of Guangxi Zhuangzu Autonomous Region (No. 0728094) and the Department of Education of Jiangxi Province [grant No. GanJiaoJiZi (2007)348] are acknowledged.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBolos, C. A., Fanourgakis, P. V., Christidis, P. C. & Nikolov, G. S. (1999). Polyhedron, 18, 1661–1668.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, C. K., Myoung, S. K. & Ward, B. (1982). Chem. Commun. pp. 716–719.  CrossRef Google Scholar
First citationDea, S., Adhikari, S., Tilak-Jain, J., Menon, V. P. & Devasagayam, T. P. A. (2008). Chem. Biol. Interact. 173, 215–223.  Web of Science PubMed Google Scholar
First citationSen, S., Mitra, S., Kundu, P., Saha, M. K., Krüger, C. & Bruckmann, J. (1997). Polyhedron, 16, 2475–2481.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L.-J., Shen, X.-C. & Liang, H. (2008a). Acta Cryst. E64, m1248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L.-J., Shen, X.-C. & Liang, H. (2008b). Acta Cryst. E64, m1413–m1414.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds