organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Benzene­sulfonamido­benzoic acid

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and bCollege of Chemical Engineering and Biotechnology, Hebei Polytechnic University, Tangshan 063009, People's Republic of China
*Correspondence e-mail: iukhangcu@126.com

(Received 4 November 2009; accepted 9 November 2009; online 14 November 2009)

In the mol­ecule of the title sulfonamide compound, C13H11NO4S, the dihedral angle between the planes of the benzene ring and the carboxyl substituent group is 6.7 (4)°. The two aromatic rings are inclined at 45.36 (15)° to one another. In the crystal, adjacent mol­ecules are linked via classical inter­molecular N—H⋯O and O—H⋯O, and non-classical C—H⋯O hydrogen bonds, which stabilize the crystal structure.

Related literature

For the biological activity and pharmaceutical applications of sulfonamide derivatives, see: Innocenti et al. (2004[Innocenti, A., Antel, J., Wurl, M., Scozzafava, A. & Supuran, C. T. (2004). Bioorg. Med. Chem. Lett. 14, 5703-5707.]); Parai et al. (2008[Parai, K. M., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776-781.]); Rathish et al. (2009[Rathish, I. G., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255-258.]); Selvam et al. (2001[Selvam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci. 14, 313-316.]). For related structures of sulfonamide derivatives with 4–amino­benzoic acid, see: Arshad et al. (2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230.]); Khan et al. (2009[Khan, I. U., Mustafa, G., Arshad, M. N., Shafiq, M. & Sharif, S. (2009). Acta Cryst. E65, o1073.]); Nan & Xing (2006[Nan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978-o1979.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO4S

  • Mr = 277.30

  • Monoclinic, P 21 /c

  • a = 5.2050 (3) Å

  • b = 37.726 (2) Å

  • c = 7.3781 (4) Å

  • β = 117.510 (3)°

  • V = 1284.98 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 295 K

  • 0.26 × 0.21 × 0.19 mm

Data collection
  • Bruker CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.935, Tmax = 0.958

  • 13550 measured reflections

  • 3185 independent reflections

  • 2633 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.199

  • S = 1.10

  • 3185 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O8i 0.81 2.28 3.054 (4) 162
O5—H5⋯O6ii 0.82 1.82 2.625 (3) 168
C18—H18⋯O5iii 0.93 2.58 3.413 (4) 150
C19—H19⋯O6iv 0.93 2.48 3.348 (4) 155
Symmetry codes: (i) x+1, y, z; (ii) -x-1, -y+1, -z-1; (iii) -x-1, -y+1, -z; (iv) x, y, z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzene sulfonamide derivative have shown antimalarial (Parai et al., 2008), carbonic anhydrase inhibitors (Innocenti et al., 2004), antiHIV (Selvam et al., 2001) and antiinflamatory (Rathish et al., 2009) activities. In continuation of synthesis and structural studies of different benzene sulfonamide derivative (Khan et al., 2009; Arshad et al., 2009), we report here the molecular and crystal structures of title compound. The molecular structure of the title compound, I, is illustrated in Fig. 1. In I, phenyl and p–aminobenzoic acid moieties are connected through the SO2 group. The structure of I is comparable with 4–(tosylamino)benzoic acid, (Nan & Xing, 2006). The dihedral angle between the planes of the benzene ring and the carboxyl substituent group is 6.7 (4)°. The two aromatic rings (C20–C25 and C14–C19) are inclined at 45.36 (15)° to one another. The torsion angle C14—N2—S1—C20 in the central part of the molecule is 70 (1)°.

In the crystal, adjacent molecules are linked via intermolecular classical N—H···O and O—H···O and non–classical C—H···O hydrogen bonds (Tab. 1, Fig. 2), which stabilize the crystal structure.

Related literature top

For he biological activity and pharmaceutical applications of sulfonamide derivatives, see: Innocenti et al. (2004); Parai et al. (2008); Rathish et al. (2009); Selvam et al. (2001). For related structures of sulfonamide derivatives with 4–aminobenzoic acid, see: Arshad et al. (2009); Khan et al. (2009); Nan & Xing (2006).

Experimental top

The 4–amino benzoic acid (1 g, 7.3 mmol) was dissolved in distilled water (10 ml). The pH of the solution was adjusted at 8–9 using 1M Na2CO3. Benzene sulfonylchloride (1.29 g, 7.3 mmol) was added to the above solution and stirred at room temperature until all the suspended benzene sulfonyl chloride was consumed. On completion of the reaction the pH was adjusted 1–2, using 1N HCl acid. The precipitate obtained was filtered, washed with distilled water, dried and recrystalized in methanol to yield colourless crystals.

Refinement top

All H atoms were positioned geometrically an refined using a riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic, O—H = 0.82Å and Uiso(H) = 1.5Ueq(O) for the OH group and N—H = 0.81Å and Uiso(H) = 1.2Ueq(N) for the NH group.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines and H atoms not involved in hydrogen bonding omitted for clarity.
4-Benzenesulfonamidobenzoic acid top
Crystal data top
C13H11NO4SF(000) = 576
Mr = 277.30Dx = 1.433 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5008 reflections
a = 5.2050 (3) Åθ = 3.0–25°
b = 37.726 (2) ŵ = 0.26 mm1
c = 7.3781 (4) ÅT = 295 K
β = 117.510 (3)°Block, colourless
V = 1284.98 (13) Å30.26 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker CCD
diffractometer
3185 independent reflections
Radiation source: fine–focus sealed tube2633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 28.4°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 46
Tmin = 0.935, Tmax = 0.958k = 5045
13550 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0878P)2 + 1.4857P]
where P = (Fo2 + 2Fc2)/3
3185 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C13H11NO4SV = 1284.98 (13) Å3
Mr = 277.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.2050 (3) ŵ = 0.26 mm1
b = 37.726 (2) ÅT = 295 K
c = 7.3781 (4) Å0.26 × 0.21 × 0.19 mm
β = 117.510 (3)°
Data collection top
Bruker CCD
diffractometer
3185 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2633 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.958Rint = 0.025
13550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.10Δρmax = 0.38 e Å3
3185 reflectionsΔρmin = 0.36 e Å3
172 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27263 (17)0.36345 (2)0.53929 (12)0.0443 (3)
O50.4876 (5)0.48980 (7)0.2675 (3)0.0496 (6)
H50.56990.50030.37680.074*
O60.2171 (5)0.47077 (6)0.4087 (3)0.0464 (5)
O70.4834 (6)0.35320 (8)0.7386 (4)0.0693 (8)
O80.0109 (5)0.37334 (7)0.5034 (4)0.0557 (6)
N20.4098 (5)0.39697 (7)0.4738 (4)0.0408 (6)
H20.57710.39420.50100.049*
C140.2360 (6)0.41529 (7)0.2848 (4)0.0344 (6)
C150.2845 (6)0.41056 (8)0.1173 (5)0.0411 (7)
H150.42690.39490.12420.049*
C160.1192 (6)0.42930 (8)0.0615 (5)0.0406 (6)
H160.15430.42670.17350.049*
C170.0980 (5)0.45182 (7)0.0728 (4)0.0319 (5)
C180.1453 (6)0.45608 (8)0.0961 (4)0.0375 (6)
H180.29210.47100.08840.045*
C190.0239 (6)0.43826 (8)0.2754 (4)0.0386 (6)
H190.00490.44170.38950.046*
C200.2370 (7)0.32889 (8)0.3691 (5)0.0456 (7)
C210.4682 (10)0.30652 (11)0.4110 (8)0.0731 (12)
H210.64020.30900.53140.088*
C220.4401 (13)0.28042 (13)0.2715 (11)0.0938 (18)
H220.59340.26500.29950.113*
C230.1881 (15)0.27699 (14)0.0918 (10)0.0938 (17)
H230.17030.25940.00150.113*
C240.0327 (15)0.29943 (14)0.0524 (9)0.1009 (19)
H240.20330.29720.06920.121*
C250.0115 (10)0.32565 (11)0.1883 (7)0.0724 (12)
H250.16530.34110.15740.087*
C260.2763 (6)0.47182 (7)0.2629 (4)0.0340 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0400 (4)0.0527 (5)0.0429 (4)0.0102 (3)0.0214 (3)0.0115 (3)
O50.0442 (12)0.0658 (15)0.0422 (11)0.0254 (11)0.0228 (10)0.0118 (10)
O60.0505 (12)0.0567 (13)0.0380 (11)0.0155 (10)0.0255 (10)0.0054 (9)
O70.0665 (17)0.087 (2)0.0466 (14)0.0161 (15)0.0193 (13)0.0233 (13)
O80.0467 (13)0.0653 (15)0.0681 (16)0.0086 (11)0.0376 (12)0.0058 (12)
N20.0281 (11)0.0490 (14)0.0410 (13)0.0053 (10)0.0121 (10)0.0076 (10)
C140.0279 (12)0.0365 (14)0.0357 (13)0.0003 (10)0.0122 (10)0.0004 (10)
C150.0350 (14)0.0452 (16)0.0460 (15)0.0146 (12)0.0210 (12)0.0041 (12)
C160.0410 (15)0.0483 (16)0.0395 (14)0.0095 (12)0.0247 (12)0.0008 (12)
C170.0277 (12)0.0343 (13)0.0342 (13)0.0010 (10)0.0146 (10)0.0026 (10)
C180.0361 (14)0.0393 (14)0.0421 (14)0.0095 (11)0.0223 (12)0.0009 (11)
C190.0416 (15)0.0437 (15)0.0360 (14)0.0073 (12)0.0226 (12)0.0003 (11)
C200.0475 (17)0.0407 (15)0.0560 (18)0.0068 (13)0.0303 (15)0.0121 (13)
C210.054 (2)0.058 (2)0.108 (4)0.0152 (18)0.038 (2)0.003 (2)
C220.089 (4)0.059 (3)0.156 (6)0.019 (2)0.076 (4)0.001 (3)
C230.130 (5)0.066 (3)0.101 (4)0.008 (3)0.067 (4)0.011 (3)
C240.122 (5)0.076 (3)0.074 (3)0.019 (3)0.019 (3)0.015 (3)
C250.074 (3)0.060 (2)0.066 (2)0.022 (2)0.017 (2)0.0007 (19)
C260.0307 (13)0.0361 (13)0.0346 (13)0.0023 (10)0.0146 (10)0.0031 (10)
Geometric parameters (Å, º) top
S1—O71.423 (3)C17—C261.482 (4)
S1—O81.423 (2)C18—C191.379 (4)
S1—N21.632 (3)C18—H180.9300
S1—C201.760 (4)C19—H190.9300
O5—C261.279 (3)C20—C251.368 (5)
O5—H50.8186C20—C211.383 (5)
O6—C261.249 (3)C21—C221.383 (7)
N2—C141.440 (3)C21—H210.9300
N2—H20.8048C22—C231.374 (8)
C14—C191.380 (4)C22—H220.9300
C14—C151.382 (4)C23—C241.347 (8)
C15—C161.390 (4)C23—H230.9300
C15—H150.9300C24—C251.376 (7)
C16—C171.386 (4)C24—H240.9300
C16—H160.9300C25—H250.9300
C17—C181.386 (4)
O7—S1—O8120.12 (17)C14—C19—C18119.7 (3)
O7—S1—N2106.43 (16)C14—C19—H19120.1
O8—S1—N2107.42 (14)C18—C19—H19120.1
O7—S1—C20108.24 (17)C25—C20—C21119.8 (4)
O8—S1—C20107.64 (16)C25—C20—S1120.2 (3)
N2—S1—C20106.21 (14)C21—C20—S1119.9 (3)
C26—O5—H5109.5C20—C21—C22119.1 (5)
C14—N2—S1119.58 (19)C20—C21—H21120.4
C14—N2—H2115.3C22—C21—H21120.5
S1—N2—H2113.4C23—C22—C21120.7 (5)
C19—C14—C15120.5 (3)C23—C22—H22119.6
C19—C14—N2118.7 (3)C21—C22—H22119.6
C15—C14—N2120.7 (2)C24—C23—C22119.2 (5)
C14—C15—C16119.6 (3)C24—C23—H23120.4
C14—C15—H15120.2C22—C23—H23120.4
C16—C15—H15120.2C23—C24—C25121.4 (5)
C17—C16—C15119.9 (3)C23—C24—H24119.3
C17—C16—H16120.0C25—C24—H24119.3
C15—C16—H16120.0C20—C25—C24119.7 (4)
C18—C17—C16119.7 (3)C20—C25—H25120.1
C18—C17—C26119.9 (2)C24—C25—H25120.1
C16—C17—C26120.4 (2)O6—C26—O5123.0 (3)
C19—C18—C17120.4 (3)O6—C26—C17120.2 (2)
C19—C18—H18119.8O5—C26—C17116.8 (2)
C17—C18—H18119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O8i0.812.283.054 (4)162
O5—H5···O6ii0.821.822.625 (3)168
C18—H18···O5iii0.932.583.413 (4)150
C19—H19···O6iv0.932.483.348 (4)155
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z1; (iii) x1, y+1, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H11NO4S
Mr277.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)5.2050 (3), 37.726 (2), 7.3781 (4)
β (°) 117.510 (3)
V3)1284.98 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.26 × 0.21 × 0.19
Data collection
DiffractometerBruker CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.935, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
13550, 3185, 2633
Rint0.025
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.199, 1.10
No. of reflections3185
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.36

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O8i0.812.283.054 (4)162
O5—H5···O6ii0.821.822.625 (3)168
C18—H18···O5iii0.932.583.413 (4)150
C19—H19···O6iv0.932.483.348 (4)155
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z1; (iii) x1, y+1, z; (iv) x, y, z+1.
 

Acknowledgements

The authors thank Government College University and the Scientific Research Fund of Hebei Provincial Education Department (project 2006114) for financial support.

References

First citationArshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationInnocenti, A., Antel, J., Wurl, M., Scozzafava, A. & Supuran, C. T. (2004). Bioorg. Med. Chem. Lett. 14, 5703–5707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, I. U., Mustafa, G., Arshad, M. N., Shafiq, M. & Sharif, S. (2009). Acta Cryst. E65, o1073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978–o1979.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParai, K. M., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776–781.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRathish, I. G., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255–258.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSelvam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci. 14, 313–316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds