organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3243-o3244

Di­methyl 11,13-di­methyl-16-[1,2-bis­­(meth­oxy­carbon­yl)ethen­yl]-12-oxo-16,17-dioxa-18-aza­hexa­cyclo­[7.5.1.11,4.16,9.110,14.05,15]octa­deca-2,7-diene-2,3-di­carboxyl­ate

aDepartment of Chemistry, Baku State University, Z. Khalilov St. 23, Baku AZ-1148, Azerbaijan, bOrganic Chemistry Department, Russian Peoples Friendship University, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation, and cX-Ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B–334, Moscow 119991, Russian Federation
*Correspondence e-mail: vkh@xray.ineos.ac.ru

(Received 22 November 2009; accepted 24 November 2009; online 28 November 2009)

The title compound, C27H29NO11, is a product of the tandem `domino' Diels–Alder reaction. The mol­ecule comprises a fused hexa­cyclic system containing four five-membered rings (two dihydro­furan and two tetra­hydro­furan) in the usual envelope conformations and two six-membered rings (tetra­hydro­pyridinone and piperidine) adopting slightly flattened boat and chair conformations, respectively. The dispositions of the carboxyl­ate substituents relative to each other are determined by both steric reasons and inter­molecular C—H⋯O hydrogen bonding and attractive anti­parallel C=O⋯C=O inter­actions [C⋯O = 2.995 (2) Å].

Related literature

For the tandem `domino' Diels–Alder reaction, see: Wasserman & Kitzing (1969[Wasserman, H. H. & Kitzing, R. (1969). Tetrahedron Lett. pp. 3343-3346.]); Winkler (1996[Winkler, J. D. (1996). Chem. Rev. 96, 167-176.]); Padwa & Bur (2007[Padwa, A. & Bur, S. K. (2007). Tetrahedron, 63, 5341-5378.]). For related compounds, see: Lautens & Fillion (1996[Lautens, M. & Fillion, E. (1996). J. Org. Chem. 61, 7994-7995.], 1997[Lautens, M. & Fillion, E. (1997). J. Org. Chem. 62, 4418-4427.]); Domingo et al., (2000[Domingo, L. R., Picher, M. T. & Andres, J. (2000). J. Org. Chem. 65, 3473-3477.]).

[Scheme 1]

Experimental

Crystal data
  • C27H29NO11

  • Mr = 543.51

  • Monoclinic, P 21 /n

  • a = 16.1430 (7) Å

  • b = 9.1365 (4) Å

  • c = 16.9658 (7) Å

  • β = 95.019 (1)°

  • V = 2492.70 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.975

  • 27638 measured reflections

  • 7186 independent reflections

  • 5342 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.151

  • S = 1.00

  • 7186 reflections

  • 358 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19C⋯O8i 0.98 2.70 3.011 (2) 99
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tandem "domino" Diels–Alder reaction consists of two consecutive Diels–Alder cycloadditions between two dienes and an acetylenic dienophile acting as a bisdienophile. To the best of our knowledge, only a few papers on tandem "domino" Diels–Alder reaction for furan species (when furan derivatives are used as the diene components) have been published (Lautens & Fillion, 1996, 1997; Domingo et al., 2000). Meanwhile, the tandem "domino" Diels–Alder reaction gives rise to the rapid construction of bridged polyoxacyclic systems (Wasserman & Kitzing, 1969; Winkler, 1996; Padwa & Bur, 2007). This work demonstrates the stereoselectivity (exoexo–adduct) of the reaction of 2,6–difurylpiperidinone with dimethyl acetylene dicarboxylate (DMAD). The reaction passes through initial Michael addition of DMAD molecule to the nitrogen atom of piperidone with subsequent (4 + 2) cycloaddition of another DMAD molecule by the furan ring. The intramolecular "domino" Diels–Alder reaction within the generated adduct completes the process on the last stage (Fig. 1).

The molecule of title compound, I, comprises a fused hexacyclic system containing four five–membered rings (two dihydrofuran and two tetrahydrofuran) and two six–membered rings (tetrahydropyridinone and piperidine) (Fig. 2). All four five–membered rings of the tetracyclic fragment have usual envelope conformations, and the six–membered rings adopt the slightly flattened boat and chair conformations, respectively. The nitrogen N1 atom has a trigonal–planar geometry (sum of the bond angles is 359.68 (12)°). The dihedral angle between the planes of the tetrahydropyridinone and piperidine rings is 66.48 (8)°. The carboxylate ligand at the C3 carbon atom lies practically in the plane of the O1C1C2C3C4 dihydrofuran ring (the C2—C3—C18—O7 torsion angle is -8.1 (2)°), while that at the C2 carbon atom is turned out of this plane (the C3—C2—C16O4 torsion angle is -52.2 (3)°). Such disposion of the carboxylate substituents is determined by both steric reasons and intermolecular C19—H19C···O8i hydrogen bond [C19···O8i = 3.011 (2)Å, H19C···O8i = 2.70Å, C19—H19C···O8i = 99°] and attractive antiparallel C16O4···C16iiO4ii interactions [C16···O4ii = 2.995 (2)Å]. The methyl substituents at the C11 and C13 carbon atoms occupy the sterically unfavourable axial positions, which can be explained by the direction of the intramolecular "domino" Diels–Alder reaction. Symmetry codes: (i) -1/2+x, 2.5-y, 1/2+z; (ii) 1-x, 2-y, -z.

The molecules I are diastereomers and possess ten asymmetric centers at the C1, C4, C5, C6, C9, C10, C11, C13, C14 and C15 carbon atoms. The crystal of I is racemate and consists of enantiomeric pairs with the relative configuration of the centers rac–1R*,4S*,5R*,6S*,9R*,10R*,11S*,13R*,14S*,15S*.

Related literature top

For general background to the tandem `domino' Diels–Alder reaction, see: Wasserman & Kitzing (1969); Winkler (1996); Padwa & Bur (2007). For related compounds, see: Lautens & Fillion (1996, 1997); Domingo et al., (2000).

Experimental top

The solution of (2R*,3S*,5R*,6S*)-2,6-di(2-furyl)-3,5-dimethylpiperidin-4-one (1.0 g, 3.86 mmol) and DMAD (1.0 ml, 7.92 mmol) in 10 ml toluene was refluxed for 12 h. Then toluene solvent was evaporated to volume ~ 3 ml, and 6 ml of diethyl ether was added to the solution. The next day 0.8 g of the precipitate formed was filtered off and washed with diethyl ether (2×10 ml). The target compound I (0.45 g, 0.83 mmol) was obtained by re–crystallization from ethyl acetate–DMF mixture as white solid. Yield 21%. M.p. = 498–500 K. IR, ν/cm-1: 1573 (CC), 1624 (CO), 1713 (brd.) and 1735 (brd.) (CO2Me). Mass spectrum, m/z (Ir(%)): 544 (21), 543 [M+] (77), 528 (24), 515 (15), 514 (28), 512 (46), 500 (20), 485 (28), 484 (100), 482 (23), 206 (16), 192 (14), 191 (23), 135 (36), 108 (47), 107 (25), 79 (24), 77 (16), 69 (22), 59 (15). 1H NMR (CDCl3, 296 K): δ = 6.36 (dd, 1H, H7, 3J = 5.5, 1.7), 6.28 (d, 1H, H8, 3J = 5.5), 4.98 (s, 1H, H2'), 4.95 (s, 1H, H4), 4.82 (d, 1H, H6, 3J = 1.7), 4.65 (brs, 1H, H14), 4.13 (brs, 1H, H10), 3.88 (s, 3H, CO2Me), 3.74 (s, 3H, CO2Me), 3.66 (s, 3H, CO2Me), 3.55 (s, 3H, CO2Me), 2.83 (m, 2H, H11, H13), 2.13 (d, 1H, H5, 3J = 6.1), 2.06(d, 1H, H15, 3J = 6.1), 1.24 (d, 3H, Me11, 3J = 7.8), 1.20 (d, 3H, Me13, 3J = 7.8). 13C NMR (CDCl3, 296 K): δ = 210.7 (s, C12), 167.7 (s, CO2Me), 165.4 (s, CO2Me), 163.0 (s, CO2Me), 162.2 (s, CO2Me), 154.9 (s, C1'), 148.3 (brs, C2)a), 144.5 (brs, C3)a), 140.6 (d, C8, J = 177.5), 138.6 (d, C7, J = 177.5), 90.2 (s, C1)b), 87.4 (s, C9)b), 86.7 (d, C4, J = 161.5), 81.0 (d, C2', J = 169.5), 80.2 (d, C6, J = 165.5), 59.8 (brd, C4, J >> 140)c), 55.6 (brd, C10, J >> 140)c), 52.8 (q, CO2Me, J = 148.7), 52.5 (q, CO2Me, J = 148.7), 52.0 (q, CO2Me, J = 147.7), 50.8 (q, CO2Me, J = 146.5), 49.5 (d, C5, J = 146.0)d), 49.0 (d, C15, J = 150.0)d), 43.9 (d, C11, J = 137.5)e), 43.5 (d, C13, J = 137.5)e), 19.3 (q, Me11, J = 129.5)f), 19.9 (q, Me13, J = 129.5)f). The alternative correlation of signals marked by the identical letters is possible.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for CH3–groups and Uiso(H) = 1.2Ueq(C) for the other groups.

23 reflections, with experimentally observed F2 deviating significantly from the theoretically calculated F2, were omitted from the refinement. Moreover, 80 reflections were not measured because the angle limits.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Construction of bridged polyheterocyclic system using the tandem "domino" Diels–Alder reaction.
[Figure 2] Fig. 2. Molecular structure of I with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Dimethyl 11,13-dimethyl-16-[1,2-bis(methoxycarbonyl)ethenyl]-12-oxo-16,17-dioxa-18- azahexacyclo[7.5.1.11,4.16,9.110,14.05,15]octadeca- 2,7-diene-2,3-dicarboxylate top
Crystal data top
C27H29NO11F(000) = 1144
Mr = 543.51Dx = 1.448 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5735 reflections
a = 16.1430 (7) Åθ = 2.4–29.2°
b = 9.1365 (4) ŵ = 0.11 mm1
c = 16.9658 (7) ÅT = 120 K
β = 95.019 (1)°Prism, colourless
V = 2492.70 (18) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
7186 independent reflections
Radiation source: fine–focus sealed tube5342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω–scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 2222
Tmin = 0.966, Tmax = 0.975k = 1212
27638 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.080P)2 + 1.3P]
where P = (Fo2 + 2Fc2)/3
7186 reflections(Δ/σ)max < 0.001
358 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C27H29NO11V = 2492.70 (18) Å3
Mr = 543.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.1430 (7) ŵ = 0.11 mm1
b = 9.1365 (4) ÅT = 120 K
c = 16.9658 (7) Å0.30 × 0.25 × 0.20 mm
β = 95.019 (1)°
Data collection top
Bruker SMART 1K CCD
diffractometer
7186 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
5342 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.975Rint = 0.041
27638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.00Δρmax = 0.48 e Å3
7186 reflectionsΔρmin = 0.27 e Å3
358 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66037 (7)0.73825 (11)0.16225 (6)0.0195 (2)
O20.82627 (7)0.72867 (12)0.19163 (6)0.0202 (2)
O30.74127 (8)0.44442 (13)0.07291 (7)0.0293 (3)
O40.48781 (7)1.10219 (14)0.06739 (7)0.0268 (3)
O50.62045 (7)1.14017 (12)0.04217 (7)0.0240 (2)
O60.52775 (8)0.94821 (14)0.32897 (7)0.0287 (3)
O70.49113 (7)1.11141 (13)0.23301 (7)0.0241 (2)
O80.77295 (8)1.22882 (15)0.15191 (8)0.0336 (3)
O90.64719 (8)1.16118 (14)0.20844 (7)0.0307 (3)
O100.90731 (7)1.01714 (13)0.09026 (7)0.0266 (3)
O110.85640 (7)1.14089 (12)0.01008 (7)0.0243 (2)
N10.76190 (8)0.86475 (14)0.00228 (7)0.0180 (2)
C10.67163 (9)0.86143 (16)0.11122 (8)0.0175 (3)
C20.59850 (9)0.95863 (16)0.13139 (9)0.0188 (3)
C30.58971 (9)0.93231 (17)0.20836 (9)0.0198 (3)
C40.65717 (9)0.82082 (17)0.23434 (9)0.0199 (3)
H4A0.64660.76170.28200.024*
C50.74072 (9)0.90776 (17)0.24083 (9)0.0191 (3)
H5A0.73860.99930.27290.023*
C60.82038 (10)0.81583 (17)0.26217 (9)0.0214 (3)
H6A0.82080.75890.31250.026*
C70.89349 (10)0.91955 (18)0.25724 (10)0.0243 (3)
H7A0.92700.96160.30020.029*
C80.90099 (9)0.93947 (17)0.18049 (9)0.0220 (3)
H8A0.94160.99650.15710.026*
C90.83021 (9)0.85078 (16)0.13799 (9)0.0181 (3)
C100.83343 (9)0.80270 (17)0.05110 (8)0.0186 (3)
H10A0.88560.84230.03150.022*
C110.83281 (10)0.63446 (17)0.03981 (9)0.0222 (3)
H11A0.87220.59070.08210.027*
C120.74763 (10)0.56647 (17)0.04577 (9)0.0228 (3)
C130.67115 (10)0.65018 (16)0.01109 (9)0.0204 (3)
H13A0.62180.61540.03760.024*
C140.68070 (9)0.81581 (16)0.02491 (8)0.0175 (3)
H14A0.63650.86680.00980.021*
C150.75006 (9)0.93764 (16)0.15166 (8)0.0172 (3)
H15A0.75361.04400.13860.021*
C160.56052 (9)1.07353 (17)0.07847 (9)0.0196 (3)
C170.59264 (12)1.25239 (19)0.01392 (11)0.0313 (4)
H17A0.64091.29690.03580.047*
H17B0.56211.32760.01280.047*
H17C0.55611.20880.05680.047*
C180.53357 (9)0.99724 (17)0.26329 (9)0.0211 (3)
C190.43121 (11)1.1740 (2)0.28212 (10)0.0302 (4)
H19A0.40121.25360.25340.045*
H19B0.46031.21250.33090.045*
H19C0.39171.09830.29530.045*
C200.86328 (11)0.5938 (2)0.04121 (10)0.0277 (3)
H20A0.85000.49110.05320.042*
H20B0.92360.60810.03940.042*
H20C0.83560.65640.08240.042*
C210.65541 (11)0.62021 (18)0.07856 (9)0.0259 (3)
H21A0.66020.51500.08840.039*
H21B0.69660.67310.10680.039*
H21C0.59940.65350.09740.039*
C220.76839 (9)0.96972 (16)0.05400 (8)0.0184 (3)
C230.70725 (10)1.01164 (18)0.10936 (9)0.0225 (3)
H23A0.65810.95440.11720.027*
C240.71528 (10)1.14222 (18)0.15703 (9)0.0233 (3)
C250.64617 (13)1.2919 (2)0.25582 (11)0.0353 (4)
H25A0.59691.29130.29400.053*
H25B0.69641.29540.28430.053*
H25C0.64451.37790.22150.053*
C260.85240 (9)1.04562 (17)0.04942 (9)0.0202 (3)
C270.93291 (11)1.22305 (19)0.02193 (11)0.0289 (4)
H27A0.92781.29710.06300.043*
H27B0.94411.27120.02760.043*
H27C0.97881.15650.03850.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0250 (5)0.0177 (5)0.0160 (5)0.0013 (4)0.0033 (4)0.0015 (4)
O20.0250 (5)0.0192 (5)0.0161 (5)0.0026 (4)0.0007 (4)0.0018 (4)
O30.0440 (7)0.0190 (5)0.0246 (6)0.0015 (5)0.0014 (5)0.0023 (4)
O40.0211 (5)0.0352 (6)0.0237 (6)0.0041 (5)0.0015 (4)0.0004 (5)
O50.0240 (5)0.0224 (5)0.0254 (6)0.0025 (4)0.0001 (4)0.0054 (4)
O60.0299 (6)0.0364 (7)0.0205 (5)0.0039 (5)0.0063 (4)0.0049 (5)
O70.0258 (6)0.0265 (6)0.0209 (5)0.0056 (4)0.0066 (4)0.0001 (4)
O80.0315 (7)0.0329 (7)0.0358 (7)0.0082 (5)0.0001 (5)0.0111 (5)
O90.0343 (7)0.0316 (6)0.0248 (6)0.0023 (5)0.0053 (5)0.0111 (5)
O100.0233 (5)0.0306 (6)0.0267 (6)0.0011 (5)0.0066 (4)0.0008 (5)
O110.0248 (6)0.0238 (6)0.0243 (6)0.0033 (4)0.0025 (4)0.0043 (4)
N10.0177 (6)0.0195 (6)0.0167 (6)0.0010 (4)0.0016 (4)0.0028 (5)
C10.0195 (7)0.0171 (6)0.0159 (6)0.0003 (5)0.0013 (5)0.0024 (5)
C20.0171 (6)0.0195 (7)0.0199 (7)0.0014 (5)0.0019 (5)0.0002 (5)
C30.0193 (7)0.0207 (7)0.0192 (7)0.0021 (5)0.0014 (5)0.0005 (5)
C40.0240 (7)0.0201 (7)0.0158 (6)0.0004 (5)0.0032 (5)0.0012 (5)
C50.0210 (7)0.0200 (7)0.0160 (6)0.0025 (5)0.0001 (5)0.0002 (5)
C60.0243 (7)0.0222 (7)0.0172 (7)0.0037 (6)0.0011 (5)0.0002 (6)
C70.0228 (7)0.0266 (8)0.0226 (7)0.0035 (6)0.0039 (6)0.0035 (6)
C80.0186 (7)0.0219 (7)0.0249 (7)0.0001 (5)0.0016 (5)0.0019 (6)
C90.0191 (6)0.0177 (6)0.0173 (6)0.0016 (5)0.0001 (5)0.0004 (5)
C100.0184 (6)0.0200 (7)0.0174 (7)0.0021 (5)0.0012 (5)0.0000 (5)
C110.0281 (8)0.0190 (7)0.0191 (7)0.0040 (6)0.0008 (6)0.0010 (5)
C120.0330 (8)0.0207 (7)0.0147 (6)0.0011 (6)0.0026 (6)0.0031 (5)
C130.0247 (7)0.0191 (7)0.0173 (7)0.0035 (5)0.0021 (5)0.0007 (5)
C140.0181 (6)0.0183 (6)0.0161 (6)0.0005 (5)0.0019 (5)0.0010 (5)
C150.0187 (6)0.0166 (6)0.0165 (6)0.0009 (5)0.0019 (5)0.0008 (5)
C160.0225 (7)0.0195 (7)0.0168 (6)0.0002 (5)0.0009 (5)0.0023 (5)
C170.0414 (10)0.0237 (8)0.0278 (8)0.0015 (7)0.0029 (7)0.0080 (7)
C180.0184 (7)0.0243 (7)0.0206 (7)0.0021 (5)0.0020 (5)0.0013 (6)
C190.0304 (8)0.0358 (9)0.0256 (8)0.0077 (7)0.0098 (7)0.0033 (7)
C200.0303 (8)0.0291 (8)0.0240 (8)0.0062 (7)0.0042 (6)0.0037 (6)
C210.0344 (9)0.0232 (8)0.0196 (7)0.0029 (6)0.0011 (6)0.0027 (6)
C220.0208 (7)0.0180 (7)0.0166 (6)0.0000 (5)0.0035 (5)0.0001 (5)
C230.0248 (7)0.0232 (7)0.0191 (7)0.0036 (6)0.0002 (6)0.0037 (6)
C240.0268 (8)0.0244 (8)0.0186 (7)0.0007 (6)0.0023 (6)0.0033 (6)
C250.0502 (11)0.0295 (9)0.0253 (8)0.0029 (8)0.0018 (8)0.0103 (7)
C260.0214 (7)0.0194 (7)0.0196 (7)0.0004 (5)0.0012 (5)0.0030 (5)
C270.0289 (8)0.0254 (8)0.0312 (9)0.0075 (6)0.0030 (7)0.0015 (7)
Geometric parameters (Å, º) top
O1—C11.4410 (17)C8—H8A0.9500
O1—C41.4418 (18)C9—C101.543 (2)
O2—C91.4447 (18)C9—C151.552 (2)
O2—C61.4475 (18)C10—C111.549 (2)
O3—C121.214 (2)C10—H10A1.0000
O4—C161.2013 (19)C11—C121.520 (2)
O5—C161.3379 (19)C11—C201.545 (2)
O5—C171.4435 (19)C11—H11A1.0000
O6—C181.2123 (19)C12—C131.526 (2)
O7—C181.3265 (19)C13—C141.537 (2)
O7—C191.4485 (19)C13—C211.544 (2)
O8—C241.219 (2)C13—H13A1.0000
O9—C241.353 (2)C14—H14A1.0000
O9—C251.439 (2)C15—H15A1.0000
O10—C261.2005 (19)C17—H17A0.9800
O11—C261.3302 (19)C17—H17B0.9800
O11—C271.4442 (19)C17—H17C0.9800
N1—C221.3638 (19)C19—H19A0.9800
N1—C141.4676 (18)C19—H19B0.9800
N1—C101.4743 (18)C19—H19C0.9800
C1—C21.540 (2)C20—H20A0.9800
C1—C141.542 (2)C20—H20B0.9800
C1—C151.551 (2)C20—H20C0.9800
C2—C31.347 (2)C21—H21A0.9800
C2—C161.479 (2)C21—H21B0.9800
C3—C181.480 (2)C21—H21C0.9800
C3—C41.528 (2)C22—C231.357 (2)
C4—C51.561 (2)C22—C261.519 (2)
C4—H4A1.0000C23—C241.454 (2)
C5—C61.552 (2)C23—H23A0.9500
C5—C151.558 (2)C25—H25A0.9800
C5—H5A1.0000C25—H25B0.9800
C6—C71.522 (2)C25—H25C0.9800
C6—H6A1.0000C27—H27A0.9800
C7—C81.331 (2)C27—H27B0.9800
C7—H7A0.9500C27—H27C0.9800
C8—C91.529 (2)
C1—O1—C496.70 (10)C12—C13—H13A108.5
C9—O2—C696.06 (11)C14—C13—H13A108.5
C16—O5—C17115.52 (13)C21—C13—H13A108.5
C18—O7—C19115.85 (13)N1—C14—C13109.88 (12)
C24—O9—C25115.81 (14)N1—C14—C1109.11 (11)
C26—O11—C27115.46 (13)C13—C14—C1113.24 (12)
C22—N1—C14121.50 (12)N1—C14—H14A108.2
C22—N1—C10124.01 (12)C13—C14—H14A108.2
C14—N1—C10114.17 (11)C1—C14—H14A108.2
O1—C1—C2100.22 (11)C1—C15—C9111.29 (12)
O1—C1—C14112.76 (12)C1—C15—C5101.90 (11)
C2—C1—C14120.36 (12)C9—C15—C5102.02 (11)
O1—C1—C15103.05 (11)C1—C15—H15A113.5
C2—C1—C15104.77 (11)C9—C15—H15A113.5
C14—C1—C15113.57 (12)C5—C15—H15A113.5
C3—C2—C16129.93 (14)O4—C16—O5124.39 (15)
C3—C2—C1105.09 (13)O4—C16—C2126.66 (14)
C16—C2—C1124.03 (12)O5—C16—C2108.93 (12)
C2—C3—C18131.38 (14)O5—C17—H17A109.5
C2—C3—C4105.41 (13)O5—C17—H17B109.5
C18—C3—C4123.09 (13)H17A—C17—H17B109.5
O1—C4—C3100.46 (11)O5—C17—H17C109.5
O1—C4—C5103.37 (11)H17A—C17—H17C109.5
C3—C4—C5105.71 (12)H17B—C17—H17C109.5
O1—C4—H4A115.2O6—C18—O7124.59 (15)
C3—C4—H4A115.2O6—C18—C3122.12 (15)
C5—C4—H4A115.2O7—C18—C3113.29 (13)
C6—C5—C1599.94 (11)O7—C19—H19A109.5
C6—C5—C4115.74 (13)O7—C19—H19B109.5
C15—C5—C4100.20 (11)H19A—C19—H19B109.5
C6—C5—H5A113.1O7—C19—H19C109.5
C15—C5—H5A113.1H19A—C19—H19C109.5
C4—C5—H5A113.1H19B—C19—H19C109.5
O2—C6—C7100.94 (12)C11—C20—H20A109.5
O2—C6—C5102.59 (11)C11—C20—H20B109.5
C7—C6—C5106.32 (13)H20A—C20—H20B109.5
O2—C6—H6A115.1C11—C20—H20C109.5
C7—C6—H6A115.1H20A—C20—H20C109.5
C5—C6—H6A115.1H20B—C20—H20C109.5
C8—C7—C6106.04 (14)C13—C21—H21A109.5
C8—C7—H7A127.0C13—C21—H21B109.5
C6—C7—H7A127.0H21A—C21—H21B109.5
C7—C8—C9105.12 (14)C13—C21—H21C109.5
C7—C8—H8A127.4H21A—C21—H21C109.5
C9—C8—H8A127.4H21B—C21—H21C109.5
O2—C9—C8100.63 (11)C23—C22—N1125.97 (14)
O2—C9—C10112.88 (12)C23—C22—C26119.91 (13)
C8—C9—C10121.00 (13)N1—C22—C26114.09 (12)
O2—C9—C15102.57 (11)C22—C23—C24121.47 (14)
C8—C9—C15104.88 (12)C22—C23—H23A119.3
C10—C9—C15112.73 (11)C24—C23—H23A119.3
N1—C10—C9109.69 (12)O8—C24—O9122.35 (15)
N1—C10—C11108.41 (12)O8—C24—C23126.71 (15)
C9—C10—C11113.59 (12)O9—C24—C23110.90 (14)
N1—C10—H10A108.3O9—C25—H25A109.5
C9—C10—H10A108.3O9—C25—H25B109.5
C11—C10—H10A108.3H25A—C25—H25B109.5
C12—C11—C20108.73 (13)O9—C25—H25C109.5
C12—C11—C10113.16 (13)H25A—C25—H25C109.5
C20—C11—C10110.46 (13)H25B—C25—H25C109.5
C12—C11—H11A108.1O10—C26—O11126.20 (14)
C20—C11—H11A108.1O10—C26—C22124.93 (14)
C10—C11—H11A108.1O11—C26—C22108.74 (12)
O3—C12—C11120.50 (15)O11—C27—H27A109.5
O3—C12—C13120.94 (15)O11—C27—H27B109.5
C11—C12—C13118.40 (13)H27A—C27—H27B109.5
C12—C13—C14111.57 (12)O11—C27—H27C109.5
C12—C13—C21110.41 (13)H27A—C27—H27C109.5
C14—C13—C21109.30 (12)H27B—C27—H27C109.5
C4—O1—C1—C252.41 (12)C11—C12—C13—C2183.94 (16)
C4—O1—C1—C14178.34 (12)C22—N1—C14—C13121.65 (14)
C4—O1—C1—C1555.50 (12)C10—N1—C14—C1364.54 (15)
O1—C1—C2—C332.96 (14)C22—N1—C14—C1113.65 (14)
C14—C1—C2—C3157.09 (13)C10—N1—C14—C160.16 (15)
C15—C1—C2—C373.59 (14)C12—C13—C14—N148.24 (16)
O1—C1—C2—C16157.27 (13)C21—C13—C14—N174.16 (15)
C14—C1—C2—C1633.1 (2)C12—C13—C14—C174.04 (16)
C15—C1—C2—C1696.17 (15)C21—C13—C14—C1163.56 (13)
C16—C2—C3—C187.4 (3)O1—C1—C14—N1119.65 (13)
C1—C2—C3—C18176.34 (15)C2—C1—C14—N1122.40 (13)
C16—C2—C3—C4168.69 (15)C15—C1—C14—N12.90 (16)
C1—C2—C3—C40.24 (15)O1—C1—C14—C133.06 (17)
C1—O1—C4—C352.76 (12)C2—C1—C14—C13114.90 (14)
C1—O1—C4—C556.33 (12)C15—C1—C14—C13119.81 (13)
C2—C3—C4—O133.38 (15)O1—C1—C15—C974.61 (13)
C18—C3—C4—O1150.11 (13)C2—C1—C15—C9179.06 (11)
C2—C3—C4—C573.85 (15)C14—C1—C15—C947.69 (16)
C18—C3—C4—C5102.66 (15)O1—C1—C15—C533.49 (13)
O1—C4—C5—C671.63 (15)C2—C1—C15—C570.96 (13)
C3—C4—C5—C6176.75 (12)C14—C1—C15—C5155.79 (12)
O1—C4—C5—C1534.72 (13)O2—C9—C15—C175.60 (13)
C3—C4—C5—C1570.39 (13)C8—C9—C15—C1179.64 (12)
C9—O2—C6—C751.13 (12)C10—C9—C15—C146.09 (16)
C9—O2—C6—C558.53 (12)O2—C9—C15—C532.42 (13)
C15—C5—C6—O237.45 (14)C8—C9—C15—C572.34 (14)
C4—C5—C6—O269.06 (15)C10—C9—C15—C5154.11 (12)
C15—C5—C6—C768.10 (14)C6—C5—C15—C1117.98 (12)
C4—C5—C6—C7174.61 (12)C4—C5—C15—C10.67 (13)
O2—C6—C7—C831.52 (16)C6—C5—C15—C92.87 (14)
C5—C6—C7—C875.21 (16)C4—C5—C15—C9115.78 (12)
C6—C7—C8—C91.65 (16)C17—O5—C16—O40.5 (2)
C6—O2—C9—C852.09 (12)C17—O5—C16—C2177.92 (13)
C6—O2—C9—C10177.52 (12)C3—C2—C16—O452.2 (3)
C6—O2—C9—C1555.94 (12)C1—C2—C16—O4140.73 (16)
C7—C8—C9—O234.40 (15)C3—C2—C16—O5129.43 (17)
C7—C8—C9—C10159.45 (14)C1—C2—C16—O537.64 (19)
C7—C8—C9—C1571.79 (15)C19—O7—C18—O63.3 (2)
C22—N1—C10—C9111.90 (15)C19—O7—C18—C3176.24 (13)
C14—N1—C10—C961.74 (16)C2—C3—C18—O6171.50 (16)
C22—N1—C10—C11123.55 (15)C4—C3—C18—O613.0 (2)
C14—N1—C10—C1162.81 (15)C2—C3—C18—O78.1 (2)
O2—C9—C10—N1120.82 (13)C4—C3—C18—O7167.45 (13)
C8—C9—C10—N1120.03 (14)C14—N1—C22—C2319.1 (2)
C15—C9—C10—N15.17 (17)C10—N1—C22—C23167.72 (15)
O2—C9—C10—C110.66 (17)C14—N1—C22—C26158.92 (13)
C8—C9—C10—C11118.48 (15)C10—N1—C22—C2614.3 (2)
C15—C9—C10—C11116.31 (14)N1—C22—C23—C24168.41 (14)
N1—C10—C11—C1246.70 (16)C26—C22—C23—C249.5 (2)
C9—C10—C11—C1275.50 (16)C25—O9—C24—O81.2 (2)
N1—C10—C11—C2075.47 (15)C25—O9—C24—C23176.67 (15)
C9—C10—C11—C20162.33 (13)C22—C23—C24—O82.7 (3)
C20—C11—C12—O389.83 (17)C22—C23—C24—O9179.48 (15)
C10—C11—C12—O3147.04 (14)C27—O11—C26—O104.3 (2)
C20—C11—C12—C1385.50 (16)C27—O11—C26—C22179.67 (13)
C10—C11—C12—C1337.63 (18)C23—C22—C26—O1082.3 (2)
O3—C12—C13—C14146.87 (14)N1—C22—C26—O1099.52 (18)
C11—C12—C13—C1437.82 (18)C23—C22—C26—O11101.56 (16)
O3—C12—C13—C2191.37 (17)N1—C22—C26—O1176.58 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19C···O8i0.982.703.011 (2)99
Symmetry code: (i) x1/2, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H29NO11
Mr543.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)16.1430 (7), 9.1365 (4), 16.9658 (7)
β (°) 95.019 (1)
V3)2492.70 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.966, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
27638, 7186, 5342
Rint0.041
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.151, 1.00
No. of reflections7186
No. of parameters358
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.27

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19C···O8i0.982.703.011 (2)99
Symmetry code: (i) x1/2, y+5/2, z+1/2.
 

Acknowledgements

We thank Professor Abel M. Maharramov for fruitful discussions and help in this work.

References

First citationBruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDomingo, L. R., Picher, M. T. & Andres, J. (2000). J. Org. Chem. 65, 3473–3477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLautens, M. & Fillion, E. (1996). J. Org. Chem. 61, 7994–7995.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLautens, M. & Fillion, E. (1997). J. Org. Chem. 62, 4418–4427.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationPadwa, A. & Bur, S. K. (2007). Tetrahedron, 63, 5341–5378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWasserman, H. H. & Kitzing, R. (1969). Tetrahedron Lett. pp. 3343–3346.  CrossRef Google Scholar
First citationWinkler, J. D. (1996). Chem. Rev. 96, 167–176.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3243-o3244
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds