metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Diammine(glycolato-κ2O1,O2)platinum(II)

aKunming Institute of Precious Metals, Kunming 650106, People's Republic of China, bKunming IPM Pharmaceutical Co Ltd, Department of Materials, Kunming University of Science and Technology, Kunming 650106, People's Republic of China, and cEngineering School of Materials and Metallurgy, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
*Correspondence e-mail: JRSS1979@163.COM

(Received 3 March 2009; accepted 20 November 2009; online 28 November 2009)

The reaction of cis-[Pt(NO3)2(NH3)2] and sodium glycolate yielded the title compound, [Pt(C2H2O3)(NH3)2]. The PtII atom, coordinated by two N atoms of ammine and two O atoms of the carboxyl­ate and oxido groups of the glycolate ligand, is in a square-planar environment. In the crystal structure, mol­ecules are connected by inter­molecular N—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

The title compound is a second-generation platinum derivative that has an anti­tumour activity comparable to that of cisplatin, one of the most effective anti-cancer drugs for testicular, lung, bladder and other carcinomas, but which is less toxic to the kidney, see: Inuyama et al. (1992[Inuyama, Y., Miyake, H., Horiuchi, M., Hayasaki, K., Komiyama, S. & Ota, K. (1992). Gan To Kagaku Ryoho, 19, 871-877.]); Kameyama et al. (1990[Kameyama, Y., Okazaki, N., Nakagawa, M., Koshida, H., Nakamura, M. & Gemba, M. (1990). Toxicol. Lett. 52, 15-24.]); Noda et al. (1992[Noda, K., Ikeda, M., Yakushiji, M., Nishimura, H., Terashima, Y., Sasaki, H., Hata, T., Kuramoto, H., Tanaka, K., Takahashi, T., Hirabayashi, K., Yamabe, T. & Hatae, M. (1992). Gan To Kagaku Ryoho, 19, 885-892.]); Taguchi et al. (1992[Taguchi, T., Wakui, A., Nabeya, K., Kurihara, M., Isono, K., Kakegawa, T. & Oka, K. (1992). Gan To Kagaku Ryoho, 19, 483-488.]); Yamamoto et al. (2000[Yamamoto, N., Tamura, T., Kurata, T., Yamamoto, N., Sekine, I., Kunitoh, H., Kodama, T. & Saijo, N. (2000). Proc. Am. Soc. Clin. Oncol. 19, 203a (abstr 792).]). For related structures, see: Yuge & Miyamoto (1998[Yuge, H. & Miyamoto, T. K. (1998). Inorg. Chim. Acta, 297, 105-110.]); Griffith et al. (2007[Griffith, D., Bergamo, A., Pin, S., Vadori, M., Helge, M. B., Sava, G. & Marmion, C. (2007). Polyhedron, 26, 4697-4706.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C2H2O3)(NH3)2]

  • Mr = 303.19

  • Orthorhombic, P 21 21 21

  • a = 5.6293 (6) Å

  • b = 7.2853 (8) Å

  • c = 14.1107 (16) Å

  • V = 578.70 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 24.17 mm−1

  • T = 298 K

  • 0.24 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.068, Tmax = 0.196

  • 3739 measured reflections

  • 1354 independent reflections

  • 1307 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.042

  • S = 0.99

  • 1354 reflections

  • 76 parameters

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −1.10 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 489 Friedel pairs

  • Flack parameter: 0.013 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O2i 0.89 2.01 2.883 (8) 167
N1—H1B⋯O2ii 0.89 2.44 3.107 (7) 132
N1—H1B⋯O3iii 0.89 2.45 3.049 (7) 125
N1—H1A⋯O3iv 0.89 2.00 2.888 (7) 173
N2—H2C⋯O3v 0.89 2.32 3.108 (7) 147
N2—H2B⋯O2ii 0.89 2.21 3.014 (8) 150
N2—H2A⋯O3iii 0.89 2.26 3.010 (7) 142
Symmetry codes: (i) x+1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (v) [-x-{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cis-diamminedichloro-platinum(II) (cisplatin) is one of the most effective anti-cancer drugs for testicular, lung, bladder and other carcinomas. However, the clinical usefulness of this drug has frequently been limited by serious nephrotoxicity and gastrointestinal toxicity and the development of acquired resistance. In an attempt to overcome these drawbacks of cisplatin, numerous analogues have been prepared and evaluated in a search for alternative active agents. Among these compounds, the title compound, cis-diammine(glycolato-o,o')platinum(II), is a second-generation platinum derivative that has an antitumour activity comparable to cisplatin but is less toxic to the kidney (Kameyama et al.,1990), as seen in preclinical experiments. It produced promising response rates in phase II trials for treatment of squamous cell carcinoma arising from the head and neck (Inuyama et al.,1992), lung (Yamamoto et al.,2000), oesophagus (Taguchi et al.,1992), and uterine cervix (Noda et al., 1992). For related structures see: (Yuge & Miyamoto, 1998; Griffith et al., 2007) The compound forms a hydrogen-bonded structure (Fig. 2), in which one of the H atoms of ammonia serves as a donor to the O atom of the glycollate of an adjacent molecule and these hydrogen-bond interactions give rise to a three-dimensional network.

Related literature top

the title compound is a second-generation platinum derivative that has an antitumour activity comparable to that of cisplatin, one of the most effective anti-cancer drugs for testicular, lung, bladder and other carcinomas, but which is less toxic to the kidney, see: IInuyama et al. (1992); Kameyama et al. (1990); Noda et al. (1992); Taguchi et al. (1992); Yamamoto et al. (2000).For related structures, see: Yuge & Miyamoto (1998); Griffith et al. (2007).

Experimental top

Cis-[Pt(NO3)2(NH3)2] (2.0 nmol) was dissolved in 50 ml water and sodium glycolate (2.0 mmol in 50 ml water) was added thereto. The mixture was adjusted to pH=7 with NaOH solution and stirred at 323k for 3 h. The solution was condensed at 313k under reduced pressure to 5 ml, then a yellow crystalline product was precipitated. The compound was crystallized from water to obtain crystals suitable for X-ray structure analysis.

Refinement top

All H atoms were initially located in a difference Fourier map. The H atoms bonded to carbon and nitrogen were placed at calculated positions (C—H = 0.97Å and N—H = 0.89 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title complex with the atomic labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing, showing the N—H···O hydrogen-bond network. Only the H atoms involved in hydrogen bonding are shown. Hydrogen bonds are shown as dashed lines.
cis-Diammine(glycolato-κ2O1,O2)platinum(II) top
Crystal data top
[Pt(C2H2O3)(NH3)2]Dx = 3.480 Mg m3
Mr = 303.19Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1354 reflections
a = 5.6293 (6) Åθ = 2.9–28.3°
b = 7.2853 (8) ŵ = 24.17 mm1
c = 14.1107 (16) ÅT = 298 K
V = 578.70 (11) Å3Block, colourless
Z = 40.24 × 0.12 × 0.10 mm
F(000) = 544
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1354 independent reflections
Radiation source: fine-focus sealed tube1307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 67
Tmin = 0.068, Tmax = 0.196k = 99
3739 measured reflectionsl = 1718
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0103P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.001
S = 0.99Δρmax = 1.24 e Å3
1354 reflectionsΔρmin = 1.10 e Å3
76 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0087 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 489 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.013 (17)
Crystal data top
[Pt(C2H2O3)(NH3)2]V = 578.70 (11) Å3
Mr = 303.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6293 (6) ŵ = 24.17 mm1
b = 7.2853 (8) ÅT = 298 K
c = 14.1107 (16) Å0.24 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1354 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1307 reflections with I > 2σ(I)
Tmin = 0.068, Tmax = 0.196Rint = 0.034
3739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.042Δρmax = 1.24 e Å3
S = 0.99Δρmin = 1.10 e Å3
1354 reflectionsAbsolute structure: Flack (1983), 489 Friedel pairs
76 parametersAbsolute structure parameter: 0.013 (17)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.10734 (4)0.96205 (3)0.178777 (16)0.01860 (9)
N20.0429 (10)0.9713 (9)0.3193 (4)0.0310 (12)
H2A0.15741.03470.34790.047*
H2B0.03920.85770.34240.047*
H2C0.09641.02560.32960.047*
N10.4267 (10)0.8432 (8)0.2082 (3)0.0272 (13)
H1A0.44710.74570.17110.041*
H1B0.42980.80850.26860.041*
H1C0.54270.92370.19760.041*
O10.1557 (8)0.9447 (7)0.0377 (3)0.0308 (11)
O20.2005 (8)1.0830 (7)0.1425 (3)0.0263 (11)
C10.0264 (12)0.9948 (9)0.0099 (4)0.0230 (15)
C20.2372 (12)1.0639 (11)0.0439 (5)0.0332 (17)
H2E0.28271.18230.01820.040*
H2D0.36880.98030.03370.040*
O30.0334 (8)0.9898 (7)0.0983 (3)0.0288 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02166 (13)0.02149 (13)0.01266 (12)0.00028 (10)0.00029 (9)0.00010 (9)
N20.030 (3)0.043 (3)0.020 (3)0.003 (2)0.001 (2)0.003 (3)
N10.033 (3)0.036 (3)0.012 (2)0.010 (3)0.005 (2)0.003 (2)
O10.028 (3)0.046 (3)0.018 (2)0.004 (2)0.0023 (19)0.006 (2)
O20.027 (2)0.038 (3)0.014 (2)0.008 (2)0.0030 (18)0.0067 (19)
C10.027 (3)0.024 (4)0.018 (3)0.003 (2)0.003 (2)0.003 (2)
C20.032 (4)0.052 (5)0.016 (3)0.011 (3)0.002 (3)0.004 (3)
O30.036 (3)0.038 (3)0.012 (2)0.002 (2)0.0002 (18)0.0005 (19)
Geometric parameters (Å, º) top
Pt1—O22.010 (5)N1—H1B0.8900
Pt1—O12.013 (4)N1—H1C0.8900
Pt1—N22.017 (5)O1—C11.279 (8)
Pt1—N12.038 (5)O2—C21.413 (7)
N2—H2A0.8900C1—O31.248 (8)
N2—H2B0.8900C1—C21.496 (9)
N2—H2C0.8900C2—H2E0.9700
N1—H1A0.8900C2—H2D0.9700
O2—Pt1—O183.82 (18)Pt1—N1—H1C109.5
O2—Pt1—N294.6 (2)H1A—N1—H1C109.5
O1—Pt1—N2176.9 (2)H1B—N1—H1C109.5
O2—Pt1—N1176.77 (19)C1—O1—Pt1113.2 (4)
O1—Pt1—N193.18 (18)C2—O2—Pt1109.5 (4)
N2—Pt1—N188.4 (2)O3—C1—O1122.8 (6)
Pt1—N2—H2A109.5O3—C1—C2119.5 (6)
Pt1—N2—H2B109.5O1—C1—C2117.7 (5)
H2A—N2—H2B109.5O2—C2—C1114.7 (6)
Pt1—N2—H2C109.5O2—C2—H2E108.6
H2A—N2—H2C109.5C1—C2—H2E108.6
H2B—N2—H2C109.5O2—C2—H2D108.6
Pt1—N1—H1A109.5C1—C2—H2D108.6
Pt1—N1—H1B109.5H2E—C2—H2D107.6
H1A—N1—H1B109.5
O2—Pt1—O1—C16.9 (4)Pt1—O1—C1—O3178.2 (5)
N2—Pt1—O1—C153 (5)Pt1—O1—C1—C22.4 (8)
N1—Pt1—O1—C1174.3 (5)Pt1—O2—C2—C111.1 (7)
O1—Pt1—O2—C29.7 (4)O3—C1—C2—O2173.3 (6)
N2—Pt1—O2—C2167.7 (5)O1—C1—C2—O26.1 (10)
N1—Pt1—O2—C231 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.892.012.883 (8)167
N1—H1B···O2ii0.892.443.107 (7)132
N1—H1B···O3iii0.892.453.049 (7)125
N1—H1A···O3iv0.892.002.888 (7)173
N2—H2C···O3v0.892.323.108 (7)147
N2—H2B···O2ii0.892.213.014 (8)150
N2—H2A···O3iii0.892.263.010 (7)142
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z+1/2; (iii) x+1/2, y+2, z+1/2; (iv) x+1/2, y+3/2, z; (v) x1/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pt(C2H2O3)(NH3)2]
Mr303.19
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.6293 (6), 7.2853 (8), 14.1107 (16)
V3)578.70 (11)
Z4
Radiation typeMo Kα
µ (mm1)24.17
Crystal size (mm)0.24 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.068, 0.196
No. of measured, independent and
observed [I > 2σ(I)] reflections
3739, 1354, 1307
Rint0.034
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.042, 0.99
No. of reflections1354
No. of parameters76
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 1.10
Absolute structureFlack (1983), 489 Friedel pairs
Absolute structure parameter0.013 (17)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.892.012.883 (8)166.5
N1—H1B···O2ii0.892.443.107 (7)132.4
N1—H1B···O3iii0.892.453.049 (7)124.6
N1—H1A···O3iv0.892.002.888 (7)173.1
N2—H2C···O3v0.892.323.108 (7)147.2
N2—H2B···O2ii0.892.213.014 (8)150.3
N2—H2A···O3iii0.892.263.010 (7)142.3
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z+1/2; (iii) x+1/2, y+2, z+1/2; (iv) x+1/2, y+3/2, z; (v) x1/2, y+2, z+1/2.
 

Acknowledgements

This work was supported by the Kunming Innovation Fund for Technology, Kunming IPM Pharmaceutical Co Ltd (08 G100110).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGriffith, D., Bergamo, A., Pin, S., Vadori, M., Helge, M. B., Sava, G. & Marmion, C. (2007). Polyhedron, 26, 4697–4706.  Web of Science CSD CrossRef CAS Google Scholar
First citationInuyama, Y., Miyake, H., Horiuchi, M., Hayasaki, K., Komiyama, S. & Ota, K. (1992). Gan To Kagaku Ryoho, 19, 871–877.  PubMed CAS Google Scholar
First citationKameyama, Y., Okazaki, N., Nakagawa, M., Koshida, H., Nakamura, M. & Gemba, M. (1990). Toxicol. Lett. 52, 15–24.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNoda, K., Ikeda, M., Yakushiji, M., Nishimura, H., Terashima, Y., Sasaki, H., Hata, T., Kuramoto, H., Tanaka, K., Takahashi, T., Hirabayashi, K., Yamabe, T. & Hatae, M. (1992). Gan To Kagaku Ryoho, 19, 885–892.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaguchi, T., Wakui, A., Nabeya, K., Kurihara, M., Isono, K., Kakegawa, T. & Oka, K. (1992). Gan To Kagaku Ryoho, 19, 483–488.  PubMed CAS Google Scholar
First citationYamamoto, N., Tamura, T., Kurata, T., Yamamoto, N., Sekine, I., Kunitoh, H., Kodama, T. & Saijo, N. (2000). Proc. Am. Soc. Clin. Oncol. 19, 203a (abstr 792).  Google Scholar
First citationYuge, H. & Miyamoto, T. K. (1998). Inorg. Chim. Acta, 297, 105–110.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds